Прогуливаясь по городу, мы с приятелем зашли в небольшой книжный магазин. И вдруг увидели книгу, которую давно искали. Случайность! Школьнику задали на дом пять задач. Четыре он решил, пятая же не получилась. Он понадеялся, что учитель спросит кого-либо другого, а если и его, то попадется одна из четырех решенных им задач. Но учитель вызвал именно его и спросил как раз пятую задачу. Случайность! И на этот раз не очень-то приятная!
Кажется, как можно «предвидеть» наступление случайного события? Ведь оно может произойти, а может и не сбыться! Но математика нашла способы оценивать вероятность наступления случайных событий. Появление науки о случайном связано в первую очередь с именем французского ученого Паскаля. Чтобы понять его математические идеи, вспомним, что для выбора одной из двух возможностей (например, чтобы решить, кому сделать первый ход в игре) мы иногда бросаем монетку. Имеется один шанс из двух за то, что монета выпадет гербом вверх. Математики в таком случае говорят, что вероятность выпадения герба равна Ѕ А какова вероятность того, что при 50 бросаниях монеты ни разу не выпадет герб? Она равна 1/250. Вооружившись микрокалькулятором, можно подсчитать, что эта вероятность выражается десятичной дробью, у которой после запятой идут 15 нулей. Иначе говоря, имеется один шанс из миллиона миллиардов за то, что 50 раз подряд выпадет гер
Поучительный рассказ об этом можно прочитать в книге Я. И. Перельмана «Живая математика». Эта книга (как и другие произведения этого автора) расскажет много интересного о математике и ее приложениях в жизни. В наше время наука о случайном (теория вероятностей) очень важна. Она применяется в селекции при разведении наиболее ценных сортов растений и пород животных, при приемке промышленной продукции (когда по небольшому числу испытаний нужно оценить, каков примерно процент брака во всей партии изделий); при расчете числа телефонных линий, которыми следует соединить разные города, чтобы нагрузка на эти линии была по возможности более равномерной; при расчете графика разгрузки вагонов, позволяющего уменьшить простои, и во многих других случаях. Важный вклад в развитие этого раздела современной математики внесли академики С. Н. Бернштейн, А. Н. Колмогоров, Ю. В. Прохоров, Б. В. Гнеденко.