ЗМІСТ
1. Вступ
2. Хімічний склад ґрунту і його практичне значення.
3. Генетико-морфологічна будова і властивості дерново-підзолитистих ґрунтів Українського Полісся.. Кислотна деградація (декальцинація) ґрунтів
3.1 Загальне поняття, причини та масштаби розвитку
3.2. Агрофізична деградація ґрунтів
4. Природа кислотності та її види.
5. Висновок
6. Література
ВСТУП
Зростаюча кислотність ґрунтового покриву — одна з найгостріших проблем сучасності та найближчою майбутнього. Процес підкислення ґрунтів набуває глобальних масштабів, спричинюючи негативні агрогеохімічні наслідки.
Особливу тривогу викликає те, що явище підкислення ґрунтів має прихований і в багатьох випадках вторинний характер. Спочатку відбувається процес декальцинації, а потім, значнопізніше, спостерігається підкислення ґрунту. Нерідко вже провапновані ґрунти знов стають кислими. З'являються кислі ґрунти і в районах, де їх раніше не було.
Причин, що обумовлюють підкислення, багато. Найістотнішими з них є кислотні дощі, низький рівень удобрювання ґрунтів органікою, необґрунтовано інтенсивне застосування засобів хімізації в землеробстві. Отже, вторинне підкислення ґрунтів має переважно антропогенне походження. За даними ЮНЕСКО, в атмосферу надходить 109
т/рік кислотних агентів газового та аерозольного характеру. Це насамперед сполуки сірки, азоту, вуглецю і хлору. При їх окисненні та конденсації утворюється сірчана, соляна, вугільна й азотна кислоти, які випадають на ґрунти з дощовою водою.
Найбільше кислотних дощів випадає у країнах Скандинавського півострова. Нині добре відомо, що підкислення ґрунтів — це проблема східних районів США, Канади, Німеччини, Великої Британії, Бельгії, Польщі, України, Молдови, країн Прибалтики, низки областей Росії.
1.
Хімічний склад ґрунту і його практичне значення.
Ґрунти утворюються під впливом клімату, живих організмів, складу і будови материнських гірських порід, рельєфу місцевості і віку території. Від клімату залежить кількість опадів, що впливає на розвиток рослинності, життєдіяльність мікроорганізмів, розчиння різних сполук у ґрунті та їх переміщення. Температура впливає на перебіг хімічних і біохімічних реакцій.
У результаті взаємодії багатьох складних процесів формується хімічний склад ґрунту.
Ґрунт складається з різноманітних мінеральних, органічних та органо-мінеральних сполук.
Найважливішою складовою частиною ґрунту є гумус – перегній. Він утворюється з органічних рослинно-тваринних решток, які щорічно потрапляють у ґрунт і під впливом життєдіяльності мікроорганізмів розкладаються й синтезуються.
Хімічний склад ґрунту суттєво впливає на його родючість, на його фізичні та біологічні властивості.
Рослинний опад в лісах і відмерла трав’яна рослинність після розкладу мікроорганізмами дають багато органічної речовини, збільшуючи потужність ґрунту. Частково гумус мінералізується і знову під впливом мікроорганізмів переходить в доступні рослинам мінеральні сполуки.
Ґрунт містить мікроелементи (азот, фосфор, калій, кальцій, магній, сірку, залізо та ін.) і мікроелементи (бор, марганець, молібден, мідь, цинк та ін.), які рослини споживають у невеликих кількостях. Їх співвідношення і визначає хімічний склад ґрунту. Він залежить від вмісту елементів в материнській породі, кліматичних факторів, рослинності. Чим більше зволожений ґрунт, тим переважно бідніше мінеральними сполуками її верхні горизонти.
Хімічний склад ґрунту постійно видозмінюється під впливом життєдіяльності організмів, клімату, діяльності людини. При внесенні добривами ґрунт збагачується живильними речовинами.
В залежності від наявності тих чи інших хімічних елементів виділяють кислотність ґрунту. Основне природне джерело кислотності ґрунту – органічні кислоти. Вони утворюються при розкладі рослинних залишків мікроорганізмів без доступу повітря і просочуються в товщу ґрунту з атмосферною вологою. Підкислення ґрунту відбувається також, коли осади вимивають кальцій і магній з кореневоживого шару. Кислоти можуть накопичуватися в ґрунті і від систематичного застосування так званих фізіологічних кислотних добрив (сульфат амонію, хлористий амоній тощо).
Кислотність ґрунту визивають іони водню, які утворюються при дисоціації кислот і гідролітичних кислих солей, а також поглинуті самими дрібними частинками ґрунту – коллоїдами, які можуть переходити в ґрунтовий розчин.
Підвищення кислотність негативно впливає на ріст і розвиток більшості культурних рослин, заважає сприятливому ходу мікробіологічних процесів в ґрунті. Особливо чутливі до підвищеної кислотності люцерна, пшениця, кукурудза та ін.
Також виділяють серед хімічних явищ пов’язаних з ґрунтом засолення ґрунтів.
Засоленням ґрунтів називається збільшення переважного вмісту легкорозчинних солей в ґрунті (понад 0,25%), що призводить до утворення солонцюватих і солончакових ґрунтів.
Розумне регулювання хімічного складу ґрунту може підвищувати родючість ґрунту, і навпаки, невміле використання мінеральних добрив, неправильна обробка ґрунту – може змінити хімічний склад ґрунту в негативну сторону і стати причиною спустошення родючих земель.
2.
Генетико-морфологічна будова і властивості дерново-підзолитистих ґрунтів Українського Полісся.
Кожній природній зоні властивий свій ґрунтовий покрив, який характеризується тільки йому властивою генетико-морфологічною будовою.
На рівнинній частині України виділяють три основні ґрунтові зони: дерново-підзолистих, сірих лісових і чорноземних ґрунтів. Ґрунти гірських областей мають вертикальну поясність.
На півночі України – в зоні Українського Полісся – під дубово-сосновими лісами з розвинутим трав’яним покривом формуються дерново-підзолисті ґрунти, які мають слабкий і середній ступінь підзолистості.
Хід пізолотворчого процесу такий. Під пологом мішаного лісу на поверхні ґрунту завжди лежить шар лісової підстилки. В ній відбувається безперервний процес розкладання органічних решток, нагромадження гумусних речовин. Але оскільки в лісах відбувається переважно низхідний рух вологи, гумусові легкорозчинні речовини з верхнього шару переміщуються на значну глибину і там осідають. Завдяки цьому верхній, гумусовий, горизонт має сіре забарвлення.
Дерново-підзолисті ґрунти, як правило, гумусу містять тільки 1-3%, мають кислу реакцію, потребують вапнування. При внесенні органічних та мінеральних добрив стають родючими
3. Кислотна деградація (декальцинація) ґрунтів
Загальне поняття, причини та масштаби розвитку
Зростаюча кислотність ґрунтового покриву — одна з найгостріших проблем сучасності та найближчою майбутнього. Процес підкислення ґрунтів набуває глобальних масштабів, спричинюючи негативні агрогеохімічні наслідки.
Особливу тривогу викликає те, що явище підкислення ґрунтів має прихований і в багатьох випадках вторинний характер. Спочатку відбувається процес декальцинації, а потім, значнопізніше, спостерігається підкислення ґрунту. Нерідко вже провапновані ґрунти знов стають кислими. З'являються кислі ґрунти і в районах, де їх раніше не було.
Причин, що обумовлюють підкислення, багато. Найістотнішими з них є кислотні дощі, низький рівень удобрювання ґрунтів органікою, необґрунтовано інтенсивне застосування засобів хімізації в землеробстві. Отже, вторинне підкислення ґрунтів має переважно антропогенне походження. За даними ЮНЕСКО, в атмосферу надходить 109
т/рік кислотних агентів газового та аерозольного характеру. Це насамперед сполуки сірки, азоту, вуглецю і хлору. При їх окисненні та конденсації утворюється сірчана, соляна, вугільна й азотна кислоти, які випадають на ґрунти з дощовою водою.
Найбільше кислотних дощів випадає у країнах Скандинавського півострова. Нині добре відомо, що підкислення ґрунтів — це проблема східних районів США, Канади, Німеччини, Великої Британії, Бельгії, Польщі, України, Молдови, країн Прибалтики, низки областей Росії.
За останні 50—60 років спостерігається загальнопланетарне підвищення кислотності дощових опадів. Сильне зростання цього показника зареєстровано в багатьох індустріальних районах Швеції, Норвегії, США та Канади. У цих країнах рН дощової води знизився з 6—6,5 до 5—4,6, а в окремі періоди до 4—3,5. За свідченням В. А. Ковди (1989), у Підмосков'ї (Росія) спостерігались випадки, коли рН дощової води опускався до 3—2,6.
Особливо висока кислотність вод виникає під час весняного сніготанення. Реакція таких вод може досягати рН 4—3,5. Кислі талі та дощові води, потрапляючи у ґрунт, спричинюють підкислення всього профілю ґрунту, а нерідко підкислюють і підґрунтові води. Кислоти, потрапляючи в ґрунт, взаємодіють з його органічною та мінеральною частинами.
Встановлено, що гідроліз і нітрифікація однієї граммолекули NH4
NO3
дає в результаті дві грам-молекули HNO3
. При нітрифікації однієї грам-молекули (NH4
)2
SO4
утворюються дві грам-молекули азотної і одна молекула сірчаної кислоти. З однієї грам-молекули NH4
OH за певних умов може утворитися одна грам-молекула азотної кислоти (Новоторов, 1989).
Тому темпи вапнування ґрунтів повинні перевищувати внесення мінеральних добрив. Невиконання цього правила призведе до вторинного підкислення ґрунтів.
В Україні є понад 11 млн га дерново-підзолистих, буроземних, сірих опідзолених ґрунтів і чорноземів опідзолених з підвищеною кислотністю, з яких 7, 8 млн га припадає на ріллю, понад 3 млн га — на природні кормові угіддя (Мазур та ін., 1984).
За даними ІГА УААІІ, наприклад, в Україні внесення поживних елементів з мінеральними добривами зросло у середньому за рік у 1971-1975 і 1976-1980 pp. відповідно на 84 та 147 % порівняно з періодом 1966—1970 pp. Використання вапнякових матеріалів зросло всього на ЗО %. У цей період спостерігалось збільшення площ слабо- і середньокислих фунтів за рахунок зменшення площ фунтів з близькою до нейтральної реакції, особливо в районах бурякосіяння, де площа слабокислих ґрунтів збільшилась на 555, а середньокислих — на 196 тис. га (Грінченко, 1989).
Підсилювались процеси декальцинації і вторинного підкислення чорноземів вилугованих, типових і звичайних через широке впровадження у виробництво індустріальних та інтенсивних технологій вирощування сільськогосподарських культур з внесенням підвищених і високих норм мінеральних добрив.
У 90-х роках рівень внесення мінеральних добрив різко зменшився і 1998—1999 pp. становив лише 17—20 кг діючої речовини на 1 га. У той же час знизились і норми внесення органічних добрив та хімічних меліорантів. Тому ситуація щодо підкислення і декальцинації ґрунтів наприкінці 90-х років не змінилася. На підкислення і декальцинацію ґрунтів істотно впливають також кислотні дощі, викиди промислових підприємств, перенесення водою і вітром продуктів з териконів та відвалів розкривних робіт.
На основі дослідів НАУ встановлено, що внесення мінеральних добрив без вапнякових матеріалів спричинює підкислення чорноземів типових, початкова реакція яких була близькою до нейтральної. При тривалому внесенні підвищених доз мінеральних добрив спостерігається зростання активної кислотності. Внесення азотних добрив ще більш підвищує активну кислотність фунту порівняно з внесенням фосфорно-калійних добрив. Найбільша активна кислотність відмічається при внесенні 157 кг/га азоту. Аналогічні зміни при внесенні мінеральних добрив відбуваються і з обмінно
Під впливом підвищених норм мінеральних добрив змінюється також склад обмінних катіонів. Знижується сума увібраних основ. Ємність катіонного обміну чорнозему типового дещо зростає під впливом внесення добрив, але збільшення її відбувається за рахунок гідролітичної кислотності. Наведені дані свідчать, що на чорноземах типових за наявності високих норм мінеральних добрив потрібно вносити вапнякові матеріали. За існуючими рекомендаціями, на кожен центнер фізіологічне кислих туків слід вносити від 0,4 до 3 ц СаСО3
.
Дози CaCOj для нейтралізації фізіологічне кислих добрив, ц на 1 ц туків
Добриво
Хлористий амоній NH4
Cl Сульфат амонію (NH4
)2
SO4
-Сульфат амонію-натрію "(NHi)2
'SO4
Аміачна селітра NH4
NO3
Аміачна вода МН3
-Ь Н2
О Аміак безводний NH3
Сечовина CO(NH2
)2
Амофос NH4
H2
PO4
Na2
S04
Доза СаСОз
1,40 1,20 1,90 0,75 0,40 2,9-3,0 0,80 0,65
За даними В. Н. Гуртової та А. 1. Савича (1980), істотний вплив на кислотність ґрунту можуть мати промислові викиди, що містять сульфіди та оксиди металів. У ґрунті вони утворюють сірчану кислоту, яка обумовлює підкислення. На освоєних болотних ґрунтах підкислення може бути спричинене окисненням сульфідів заліза та мангану. На цих ґрунтах дренажними водами виносяться сполуки кальцію, магнію та калію, тому для підвищення їх родючості слід провезти вапнування.
Агрофізична деградація ґрунтів
Втрати гумусу супроводжуються погіршенням агрофізичних властивостей ґрунтів. Дослідження В. В. Медведєва (1982) свідчать про таке їх погіршення порівняно з цілиною: на 4—11 %
маси ґрунту зросла брилистість, на 3—6 % — розпорошеність, на 10— 18 % знизився вміст агрономічне цінних агрегатів (розмір 10— 0,25 мм), на 15—19 % — водотривкість ґрунтової структури, на 16—26 % —
механічна міцність, на 2—4 % — пористість агрегатів розміром від 5 до 0,25 мм при середніх значеннях цих показників на цілині 8, 15, 17, 55, 90, 42 % відповідно. Водопроникність ґрунтів в максимально розпушеному стані становить 120— 142 мм/год, а при рівноважній щільності — 55 мм/год. Зміна структурного стану, погіршення водно-фізичних властивостей обумовили підсилення процесів водної ерозії, дефляції, зниження потенціальної і ефективної родючості.
Агрофізична деградація призвела до зменшення глибини коренемісткого шару, зниження польової вологоємності, діапазону активної вологи, її доступність рослинам, а також рухомість елементів живлення. Погіршилась якість обробітку ґрунту і збільшились затрати на його проведення.
Істотним чинником змін в агроекосисгемі є застосування сільськогосподарських машин. Сучасні трактори, автомобілі та сільськогосподарські машини активно взаємодіють з ґрунтом, атмосферою і рослинами, в багатьох випадках це спричинює порушення ходу природних процесів в агроландшафті. Через неправильне та надмірне використання сільськогосподарської техніки вплив її на довкілля супроводжується забрудненням атмосфери, ґрунту та водойм, руйнуванням структури і переущільненням ґрунту. Машинно-тракторні агрегати (tyl TA), виконуючи корисну роботу, у багатьох випадках надмірно ущільнюють оброблюваний шар ґрунту. Особливо зріс негативний вплив МТА на ґрунт за останні роки, коли середня маса трактора збільшилась у 1,5—2,4 раза, а кількість їх проходів по полю за вегетаційний період зросла з 3—4 до 10—15 при вирощуванні зернових і до 20—25 — просапних культур.
Трактори К-700, К-700А, К-701, Т-150К, маса яких досягає 8-16 т, у разі проходження по пухкому вологому ґрунті за рахунок ударних впливів і вібрацій спричинюють його деформацію на глибину 60—80 см, а в окремих випадках і глибше. В місцевостях з пересіченим рельєфом і зливовим характером опадів глибокі колії нерідко перетворюються на яри, За посушливих умов рух важких МТА з підвищеними швидкостями (до 10—30 км/год) призводить до руйнування структури ґрунту та підсилює процеси дефляції. Переущільнення ґрунтів відбувається внаслідок холостих переїздів МТА по полю, внесення органічних і мінеральних добрив, перевезення сільськогосподарської продукції вантажними автомобілями.
Такі агротехнічні заходи, як лущення стерні, основний обробіток ґрунту, вирівнювання поверхні, культивація, боронування, посів, догляд за посівами виконуються за існуючими технологіями окремо, а багато з них і неодноразово. Тому в період польових робіт поверхня поля покривається ущільненими смугами, сумарна поверхня яких значно перевищує площу поля. За даними В. В. Медведева та співавт. (1964), при вирощуванні озимої пшениці площа, ущільнення 1 га (без урахування збирально-транспортних операцій) досягає в середньому 22—26 тис. м2
, кукурудзи — 18—30, цукрового буряка — 30—32 тис. м2
. Дослідження В. В. Медведєва та спївавт. (1989) показали, що трактори всіх марок ущільнюють ґрунт на глибину 50—60 см і глибше , а сліди колії колісного трактора Т-150К видно протягом всього періоду вегетації. Ущільнений чорнозем цілком втрачає міжагрегатні пори. Ґрунтові агрегати деформуються, витягуються у горизонтальному напрямку, збільшуючи свою щільність. Це призводить до зниження водо- , повітро- та коренепроникності ґрунту.
За наявності ущільнення тракторами у ґрунті змінюється співвідношення між твердою і газоподібною фазами. Найбільше змінюється щільність одного шару, ЇЇ максимальні значення.
4.
Природа кислотності та її види.
Від складу і концентрації речовин, розчинених в ґрунтовому розчині, залежить його активна реакція. Реакція ґрунтового розчину зумовлюється наявністю і співвідношенням в ньому водневих (Н+) і гідроксильних (ОН~) іонів. Величину активної реакції виражають в одиницях рН десятичний логарифм концентрації Н+-іонів з від'ємним знаком. Отже, рН =lgH+
].
Вода в звичайних умовах в незначній кількості дисоціює, тобто розпадається на іони Н+ і ОН~. Концентрація їх незначна. Добуток концентрацій [Нь
] * [ОН~ ] = 10~и
. В ідеально чистій воді концентрація цих іонів однакова: [Н>] == [ОН~] ==10~7
.
Збільшення концентрації іонів Іі+ (доливання кислоти) зумовлює кислу реакцію розчину [Н+]>10-7
. Збільшення концентрації основ підвищує концентрацію іонів ОН~. Розчин набуває лужної
реакції [ОН-]>10-7
.
В нейтральних розчинах, в яких [Н+] = [ОН~] =10~7
, величина рН —7, в кислих — менше 7, в лужних — більше 7. рН ґрунтових розчинів коливається в межах від 3 до 9.
Залежно від стану іонів Іі+ розрізняють актуальну і потенціальну кислотність.
Актуальна кислотність
зумовлена наявністю в ґрунтовому розчині вільних іонів Н+. її величину (рН) визначають у водних витяжках.
Потенціальна кислотність
зумовлена наявністю в ГВК увібраних іонів Н+ і А13
+, які знаходяться в твердій фазі ґрунту. Іони алюмінію підкислюють ґрунтовий розчин внаслідок гідролізу солей
алюмінію.
АІСІз + ЗН2
О ->.
А1(ОН)3
+ ЗНС1.
За способом визначення потенціальної кислотності виділяють обмінну і гідролітичну кислотності.
Обмінна кислотність
— концентрація іонів водню, витіснених з дифузного шару колоїдної міцели катіонами нейтральних солей. Для визначення обмінної кислотності використовують 1,0 н. розчин КС1 (рН близько 6,0).
Гідролітична кислотність.
Іони водню утримуються колоїдною часткою дуже міцно і при обміні з катіонами нейтральної солі повністю не витісняються. Якщо діяти па ґрунт гідролітичне лужною сіллю (солі з сильною основою і слабким кислотним залишком), то відбудеться майже повне витіснення увібраних іонів водню. Для визначення гідролітичної кислотності використовують ЇМ
розчин CH3
COONa (рН близько 8,2).
Меліорація кислих
ґрунтів. Кисла реакція ґрунтів несприятлива для більшості культурних рослин і корисних мікроорганізмів. Вона негативно впливає па процес формування родючості ґрунтів. Кислі ґрунти мають погані фізичні властивості. Через відсутність основ
поживні елементи, не містять хлоридів, сульфатів, карбонатів, їх ґрунтова маса погано оструктурена. Отже, ступінь кислотності ґрунтів е важливим показником під час оцінки генетичної і виробничої якості ґрунту.
За величиною рН ґрунти поділяють на сім агровиробничих груп.
Кожна агровиробнича група потребує певних меліоративних заходів. Для нейтралізації надлишкової кислотності проводять вапнування ґрунтів.
При внесенні вапна СаСО3
, реагуючи з вуглекислотою ґрунту, переходить у розчинну сполуку Са(НСОз)2
Дозу вапна розраховують за гідролітичною кислотністю орного горизонту. Внесена доза вапна має повністю нейтралізувати увібрані Н+ і А13
+. Якщо 20-сантиметровий шар ґрунту має щільність 1,3 г/см3
, його маса на площі 1 га становитиме 2600 т. Встановлено, що для нейтралізації 1 г-екв гідролітичної кислотності на 100 г ґрунту на 1 га слід вносити 1,3 т СаСО3
. Проте в ґрунт вносять не повну дозу вапна, а певну її частину залежно від біологічних особливостей культурних рослин.
Крім наведеного методу дозу вапна на 1 га ґрунту можна розрахувати, користуючись формулою
а-10-100-3 000 000
1 000 000 000
де а — повна гідролітична кислотність, ммоль.
Доведено, що між рН сольової витяжки і гідролітичною кислотністю ґрунту певного механічного складу існує чітка кореляційна залежність. Враховуючи це, розроблені спеціальні таблиці, що дають змогу визначити дозу за рН сольової витяжки.
ВИСНОВОК
За останні 50—60 років спостерігається загальнопланетарне підвищення кислотності дощових опадів. Сильне зростання цього показника зареєстровано в багатьох індустріальних районах Швеції, Норвегії, США та Канади. У цих країнах рН дощової води знизився з 6—6,5 до 5—4,6, а в окремі періоди до 4—3,5. За свідченням В. А. Ковди (1989), у Підмосков'ї (Росія) спостерігались випадки, коли рН дощової води опускався до 3—2,6.
Особливо висока кислотність вод виникає під час весняного сніготанення. Реакція таких вод може досягати рН 4—3,5. Кислі талі та дощові води, потрапляючи у ґрунт, спричинюють підкислення всього профілю ґрунту, а нерідко підкислюють і підґрунтові води. Кислоти, потрапляючи в ґрунт, взаємодіють з його органічною та мінеральною частинами.
Встановлено, що гідроліз і нітрифікація однієї граммолекули NH4
NO3
дає в результаті дві грам-молекули HNO3
. При нітрифікації однієї грам-молекули (NH4
)2
SO4
утворюються дві грам-молекули азотної і одна молекула сірчаної кислоти. З однієї грам-молекули NH4
OH за певних умов може утворитися одна грам-молекула азотної кислоти (Новоторов, 1989).
Отже, можна зробити загальний висновок, що кислотні дощі мають надто негативне значення для всього живого, а особливо для людини, тому неможна не брати до уваги негативні наслідки від підкислення ґрунтів.
Використана література:
1. Екологічний енциклопедичний словник / Під заг. ред. І.І.Дедю. – Кишинів, 1990.
2. Энциклопедический словарь юного земледельца. – М., 1988.
3. Застафний Ф.Д. - Географія України. – Львів, 1996.
4. І. Б. Чорний - Географія ґрунтів з основами ґрунтознавства. – К: Вища школа, 1995.
5. Навчальний посібник – Охорона ґрунтів. – К: Знання, 2001.