РефератыНаука и техникаЭЛЭЛТ с магнитной отклоняющей системой

ЭЛТ с магнитной отклоняющей системой

.


Электронно-лучевыми приборами называют такие электронные электровакуумные приборы, в которых используется поток электронов, сконцентрированный в форме луча или пучка лучей. Электронно-лучевой прибор, имеющий форму трубки, обычно называют электронно-лучевой трубкой.


Управление пространственным положением луча осуществляется с помощью электрических (электростатическая отклоняющая система) и магнитных (магнитная отклоняющая система) полей, а управление плотностью тока – с помощью электрических полей. Электронно-лучевые приборы используются для получения видимого изображения электрических сигналов, а также для запоминания (хранения) сигналов.


Отклоняющая система служит для управления положением луча в пространстве. В трубках с магнитным управлением отклоняющая система состоит из двух пар отклоняющих катушек.





Магнитная отклоняющая система обычно содержит две пары катушек, надеваемых на горловину трубки и образующих магнитные поля во взаимно перпендикулярных направлениях. Рассмотрим отклонение электрона магнитным полем одной пары катушек, считая, что поле ограничено диаметром катушки и в этом пространстве однородно. На рис.1 силовые линии магнитного поля изображены уходящими от зрителя перпендикулярно плоскости чертежа. Электрон с начальной скоростью V0
движется в магнитном поле, вектор индукции B которого нормален к вектору скорости V0
, по окружности с радиусом





По выходе из магнитного поля электрон продолжает движение по касательной к его криволинейной траектории в точке выхода из поля. Он отклонится от оси трубки на некоторую величину z = L tga. При малых углах a» tg a; z » La.


Величина центрального угла a = s/r » l1
/r, где s – кривая, по которой движется электрон в поле В. Подставляя сюда значение r, получаем:


Таким образом, отклонение электрона равно:

Выражая скорость V0
электрона через напряжение на аноде, получаем:








Учитывая, что индукция магнитного поля пропорциональна числу ампер-витков wI, можно записать:

Конструкция отклоняющих катушек. Отклоняющие катушки с ферромагнитными сердечниками позволяют увеличить плотность потока магнитных силовых линий в необходимом пространстве. Катушки с ферромагнитными сердечниками применяются только при низкочастотных отклоняющих сигналах, так как с увеличением частоты отклоняющего напряжения возрастают потери в сердечнике. В телевизионных и радиолокационных электронно-лучевых трубках обычно применяются отклоняющие катушки без сердечника. Стремясь получить более однородное магнитное поле, края катушки отгибают, а саму катушку изгибают по форме горловины трубки. Витки в катушке распределяют неравномерно: Число витков на краях обычно в 2 – 3 раза больше, чем в середине. Для уменьшения поля рассеяния катушки без сердечника обычно заключаются в стальной экран.


Достоинства и недостатки электростатической и магнитной систем отклонения. Отклонение луча магнитным полем в меньшей степени зависит от скорости электрона, чем для электростатической системы отклонения. Поэтому магнитная отклоняющая система находит применение в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана.


К недостаткам магнитных отклоняющих систем следует отнести невозможность их использования при отклоняющих напряжениях с частотой более 10 – 20 кГц, в то время как обычные трубки с электростатическим отклонением имеют верхний частотный предел порядка десятков мегагерц и больше. Кроме того, потребление магнитными отклоняющими катушками значительного тока требует применения мощных источников питания.


Достоинством магнитной отклоняющей системы является ее внешнее относительно электронно-лучевой трубки расположение, что позволяет применять вращающиеся вокруг оси трубки отклоняющие системы.


Статические и физические параметры транзистора.


Транзистором называют электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, пригодный для усиления мощности, имеющий три или более выводов.


Физические параметры транзистора.


Токи в транзисторе определяются рядом физических процессов в электронно-дырочных переходах и в объеме базы, характеризуемых соответствующими параметрами. Физические параметры играют важную роль при анализе работы транзистора на переменном токе с сигналами малых амплитуд. Большинство этих параметров являются дифференциальными величинами и используются в качестве так называемых малосигнальных параметров транзистора.


Рассмотрим основные процессы и физические параметры транзистора.


Токи в транзисторе.


В активном режиме работы транзистора дырки, инжектируемые из эмиттера, движутся затем в базе и втягиваются полем коллекторного перехода, образуя коллекторный ток IK
. В следствие рекомбинации в базе и других причин IK
< IЭ
. На основании закона Кирхгофа для токов в цепях электродов транзистора можно записать: IЭ
= IK
+ IБ
.


В активном режиме к эмиттерному переходу приложено прямое напряжение и через переход течет ток IЭ
, который содержит составляющие IЭр
и IЭп
– токов инжекции дырок из эмиттера в базу и электронов из базы в эмиттер, составляющую IЭr
– тока рекомбинации в эмиттерном переходе, а также ток утечки IЭу
: IЭ
= IЭр
+ IЭп
+ IЭr
+ IЭу
.


Токами IЭп
, IЭ
r
, IЭу
пренебрежем: IЭ
»IЭр
.


Ток коллектора – это ток через переход, к которому в активном режиме приложено обратное напряжение. Помимо обратного тока через коллекторный переход протекает ток экстракции дырок из базы в коллектор равный дырочной составляющей эмиттерного тока за вычетом тока, обусловленного рекомбинацией дырок в базе.


Ток базы может быть определен как разность токов эмиттера и коллектора.


Обратные токи переходов.


Обратным током коллектора (или эмиттера) называют ток при заданном обратном напряжении на коллекторном (или эмиттерном) переходе при условии, что цепь другого перехода разомкнута: IЭ
= 0 (или IК
= 0)


Поскольку обратный ток коллектора, определяемый процессами генерации носителей в коллекторе, базе и коллекторном переходе, представляет собой не управляемую процессами в эмиттерном переходе часть коллекторного тока. Ток IКБО
играет важную толь в работе транзистора в активном режиме, когда коллекторный переход находи

тся под обратным напряжением.


Соответственно обратный ток эмиттера IЭБО
представляет собой составляющую эмиттерного тока, значения которого определяется процессами генерации носителей в эмиттере, базе и в области эмиттерного перехода. Этот ток имеет важное значение при работе транзистора в инверсном режиме (эмиттерный переход включен в обратном направлении).


Помимо токов IКБО
и IЭБО
, измеряемых в режиме холостого хода в цепи эмиттера или коллектора соответственно, в транзисторе различают также обратные токи IКБК
и IЭБК
.


Ток IКБК
, текущий через коллекторный переход при обратном напряжении на этом переходе, измеряется в условиях короткого замыкания цепи эмиттер – база. Аналогично ток IЭБК
– это ток в эмиттерном переходе при обратном напряжении на этом переходе и при условии, что цепь коллектор – база замкнута накоротко.


Коэффициенты передачи тока.


С учетом понятия обратного тока коллектора ток IК
для активного режима работы следует представить как сумму двух составляющих: тока IКБО
и части эмиттерного тока, который определяется потоком носителей, инжектированных в базу и дошедших до коллекторного перехода.


Следовательно,



= a IЭ
+ IКБО
.





Величина

называется коэффициентом эмиттерного тока. Обычно a < 1. В инверсном режиме (коллекторный переход включен в прямом, а эмиттерный – в обратном направлении) ток эмиттера равен:



= a1

+ IЭБО
.





Величина

называется инверсным коэффициентом передачи коллекторного тока. Как правило, a1
< a.


С помощью коэффициентов a и a1
можно установить связь между обратными токами:


IКБО
= IКБК
(1 – aa1
);


IЭБО
= IЭБК
(1 – aa1
);


В транзисторе, включенном по схеме с общим эмиттером, входным током служит ток базы IБ
, а выходным, как и в схеме с ОБ, то коллектора IК
. Для схемы ОЭ, широко применяемой в радиотехнических устройствах на транзисторах, используется коэффициент передачи базового тока b. Выражение для b можно получить, решая его относительно тока IК
:





Запишем это выражение в виде



= b IБ
+ IКЭО
.


Где


и


- обратный ток коллекторного перехода в схеме ОЭ при IБ
= 0.


Выражение для коэффициента передачи базового тока b легко получить используя эти соотношения:






Статические параметры транзистора.


Статические параметры транзистора характеризуют свойства прибора в статическом режиме, т.е. в том случае, когда к его электродам подключены лишь источники постоянных напряжений.


Система статических параметров транзистора выбирается таким образом, чтобы с помощью минимального числа этих параметров можно было бы наиболее полно отобразить особенности статических характеристик транзистора в различных режимах. Можно выделить статические параметры режима отсечки, активного режима и режима насыщения. К статическим параметрам относятся также величины, отображающие характеристики в близи пробоя.


Статические параметры в активном режиме.


Статическим параметром для этого режима служит статический коэффициент передачи тока в схеме ОЭ:



Коэффициент h21Э
является интегральным коэффициентом передачи базового тока b, однако, статический коэффициент определяет как пренебрегая током ІКБО
, что вполне допустимо при условии, что ІБ
³ 20ІКБО
.


В качестве статического параметра активного режима используется также статическая крутизна прямой передачи в схеме ОЭ:



Статические параметры в режиме отсечки.


В качестве этих параметров используются обратные токи в транзисторе.


Статические параметры режима отсечки в значительной мере определяют температурную нестабильность работы транзистора и обязательно используются во всех расчетах схем на транзисторах. К числу этих параметров относятся следующие токи:


обратный ток коллектора ІКБО
– это ток через коллекторный переход при заданном обратном напряжении коллектор – база и разомкнутом выводе эмиттера;


обратный ток эмиттера ІЭБО
– это ток через эмиттерный переход при заданном обратном напряжении эмиттер – база и разомкнутом выводе коллектора;


обратный ток коллектора ІКБК
– это ток через коллекторный переход при заданном обратном напряжении коллектор – база и при замкнутых накоротко выводах эмиттера и базы;


обратный ток ІЭБК
– это ток через эмиттерный переход при заданном обратном напряжении эмиттер – база и при замкнутых накоротко выводах коллектора и базы;


обратный ток коллектор – эмиттер – ток в цепи коллектор – эмиттер при заданном обратном напряжении UКЭ
. Этот ток обозначается: ІКЭО
– при разомкнутом выводе базы; ІКЭК
– при коротко замкнутых выводах эмиттера и базы; ІКЭ
R
– при заданном сопротивлении в цепи базы – эмиттер; ІКЭX
– при заданном обратном напряжении UБЭ
.


Статические параметры в режиме насыщения.


В качестве параметров в этом режиме используются величины напряжений между электродами транзистора, включенного по схеме ОЭ.


Напряжение насыщение коллектор – эмиттер UКЭ нас
– это напряжение между выводами коллектора и эмиттера в режиме насыщения при заданных токах базы и коллектора;


напряжение насыщение база – эмиттер UБЭ нас
– это напряжение между выводами базы и эмиттера в режиме насыщения при заданных токах базы и коллектора.


При измерениях UКЭ нас
и UБЭ нас
ток коллектора задается чаще всего равным номинальному значению, а ток базы задается в соответствии с соотношением ІБ
= Кнас
І’Б
, где Кнас
коэффициент насыщения; І’Б
ток на границе насыщения.


Статические параметры в области пробоя.


Основными параметрами в этом режиме служат:


пробивное напряжение коллектор – база UКБО проб
– это пробивное напряжение между выводами коллектора и базы при заданном обратном токе коллектора ІКБО
и токе ІЭ
= 0.


пробивное напряжение коллектор – эмиттер – пробивное напряжение между выводами коллектора и эмиттера при заданном токе ІК
.


Напряжение UКЭО проб
определяется соотношением


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: ЭЛТ с магнитной отклоняющей системой

Слов:1688
Символов:14053
Размер:27.45 Кб.