РефератыОстальные рефераты«Т«Технология обработки изделий давлением»

«Технология обработки изделий давлением»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ


Государственное образовательное учреждение


высшего профессионального образования


Нижегородский государственный университет им. Н.И. Лобачевского


Факультет управления и предпринимательства


Курсовая работа по дисциплине «Технология машиностроения»


на тему: «Технология обработки изделий давлением »


Выполнила студентка


Группы 12444-09


Болотина Елена Валерьевна


______________________


Проверила:


Доцент Мотова Елена Алексеевна


_____________________


Нижний Новгород, 2010


ВВЕДЕНИЕ


Использование металлов человеком началось в глубокой древности (более пяти тысячелетий до н.э.). Вначале находили применение цветные металлы (медь, сплавы меди, золото, серебро, олово, свинец и др.), позднее начали применять черные - железо и сплавы на его основе.


Длительное время производство металлов носило примитивный характер и по объему было весьма незначительным. Однако в конце XIX в. мировая выплавка стали резко возросла с 0,5 млн. т в 1870 г. до 28 млн. т в 1900 г. Еще в большем объеме растет металлургическая промышленность в XX столетии.


Способность металлов принимать значительную пластическую деформацию в горячем и холодном состоянии широко используется в технике. При этом изменение формы тела осуществляется преимущественно с помощью давящего на металл инструмента. Поэтому полученное изделие таким способом называют обработкой металлов давлением или пластической обработкой.


Обработка металлов давлением представляет собой важный технологический процесс металлургического производства. При этом обеспечивается не только придание слитку или заготовке необходимой формы и размеров, но совместно с другими видами обработки существенно улучшаются механические и другие свойства металлов.


При обработке давлением холодного металла изменяются его механические и физико-химические свойства: он становится более прочным и плотным за счет появления наклёпа и деформации кристаллической решетки на микро и макро уровнях. Наклёп накапливает в металле часть энергии деформации, которая приводит к поверхностному упрочнению деталей. Полосчатость микроструктуры и свивание волокон макроструктуры создают явление анизотропии (зависимость физических свойств вещества от вектора приложенного воздействия). Этим объясняются удивительные свойства булатного клинка или традиционного японского меча. Прокованные много сотен раз при небольшом нагреве (ниже температуры рекристаллизации) волокна металла скручиваются в жгуты, переплетенные в разных направлениях. Такой меч сочетает в себе твердость и гибкость.


Современные технологии обработка металлов давлением позволяют не только получить изделия любой формы, но и создавать материалы с заданными свойствами для работы в сложных и экстремальных условиях


Горячая обработка проходит при высокой температуре и сопровождается явлениями возврата и рекристаллизации. Наклеп в этих условиях не образуется, а физико-химические свойства металла почти не изменяются. Микроструктура металла остается прежней, но макроструктура слитков или заготовок становится полосчатой – это и создает анизотропию механических свойств: вдоль волокон металл демонстрирует лучшие качества, чем поперек. Кроме того, обработка давлением – самый экономичный способ работы с металлами, никаких потерь материала на стружку.


Прессование металлов
, способ обработки давлением, заключающийся в выдавливании (экструдировании) металла из замкнутой полости (контейнера) через отверстие матрицы, форма и размеры которого определяют сечение прессуемого профиля. При П. м. создаётся высокое гидростатическое давление, вследствие чего значительно повышается пластичность металла. Прессованием можно обрабатывать многие хрупкие материалы, неподдающиеся обработке другими способами (прокаткой, ковкой, волочением). Различают следующие виды П. м. (рис.): с прямым истечением металла (направление движения металла совпадает с направлением движения пресс-шайбы — схемы а и б) и с обратным (металл течёт навстречу движению матрицы, которая выполняет также функции пресс-шайбы, — схемы в и г).


При П. м. с прямым истечением профиля сплошного сечения пресс-штемпель через пресс-шайбу передаёт давление на заготовку, находящуюся в контейнере. При этом металл заготовки выдавливается в отверстие матрицы, закрепленной в матрицедержателе, и образует профиль. Скорость истечения профиля во столько раз превышает скорость движения пресс-штемпеля (скорость прессования), во сколько раз площадь сечения полости контейнера больше площади отверстия в матрице. Отношение указанных площадей называется коэффициентом вытяжки. При прессовании трубы с прямым истечением металл заготовки выдавливается в кольцевой зазор между матрицей и иглой, образуя трубу заданной конфигурации. В этом случае заготовка перемещается не только относительно контейнера, но и относительно иглы.


При П. м. с обратным истечением силовое воздействие на заготовку осуществляется через контейнер, получающий движение в направлении, указанном стрелкой, через укороченный пресс-штемпель — пробку, запирающую контейнер. С др. стороны контейнер запирается удлинённым матрицедержателем, в котором закреплена матрица. При перемещении контейнера вместе с ним перемещается заготовка, и металл выдавливается в канал матрицы, образуя профиль.


При П. м. с прямым истечением вследствие трения металла о поверхность контейнера периферийные слои заготовки испытывают значительно более высокие сдвиговые деформации, чем центральные слои. Неравномерность деформации приводит к различию структуры и свойств по сечению изделия; особенно заметно это при прессовании прутков большого диаметра. При П. м. с обратным истечением трение металла о поверхность контейнера отсутствует, вследствие чего неравномерность структуры и свойств по сечению изделия значительно меньше. Кроме того, при обратном истечении значительно меньше усилия, требуемые для П. м., благодаря чему возможно снижение температуры нагрева заготовок и повышение скорости процесса.


Для получения труб и полых профилей из алюминиевых и магниевых, а в некоторых случаях медных и титановых сплавов используется также П. м. со сваркой (схема д). Заготовка под давлением, передаваемым пресс-штемпелем, рассекается гребнем матрицы в зависимости от его конструкции на 2 или несколько потоков металла. Эти потоки затем под действием высокого давления свариваются, охватывая сплошной массой иглу матрицы, выполненную за одно целое с гребнем. Окончательно труба формируется в кольцевом зазоре между матрицей и иглой.


Существуют и другие способы прессования: труб из сплошной заготовки с предварительной прошивкой её иглой; сплошных и полых профилей плавно-переменного или ступенчато-переменного сечения; широких ребристых листов (панелей) из плоского (щелевого) контейнера и т.д. Промышленное применение находит также гидростатическое П. м. (гидроэкструзия), при котором давление на заготовку передаётся через жидкость. При этом способе силовое поле создаётся жидкостью высокого давления, подаваемой в контейнер от внешнего источника, или давлением на жидкость уплотнённого пресс-штемпеля. В современных установках для гидростатического П. м. давление жидкости в контейнере достигает примерно 3 Гн/м2 (30 000 кгс/см2).


П. м. осуществляется как с предварительным нагревом заготовки и инструмента, так и без нагрева. Холодное прессование (т. е. без нагрева) используют при обработке легкодеформируемых металлов (олова, свинца, чистого алюминия). Холодное гидростатическое прессование вследствие весьма высоких давлений и отсутствия трения заготовки о поверхность контейнера позволяет обрабатывать и более труднодеформируемые металлы и сплавы (дуралюмины, медные сплавы, стали). Горячим прессованием получают изделия из различных металлов и сплавов: алюминиевых, титановых, медных, никелевых, а также тугоплавких металлов. Наиболее высокие температуры нагрева заготовок (до 1600—1800 °С) используют при прессовании вольфрама и молибдена.


П. м. осуществляют на горизонтальных гидравлических прессах; реже, в основном при прессовании труб и гидроэкструзии, используют вертикальные гидравлические прессы. В некоторых случаях для холодного прессования труб из легкодеформируемых металлов используют прессы с механическим приводом. П. м. позволяет получать сплошные профили с площадью сечения 0,3—1500 см2 и диаметром описанной окружности 1,5—90 см, круглые прутки диаметром 0,6—60 см и трубы диаметром 0,8—120 см с толщиной стенки 0,1—10 см.


Прокатка
– это способ обработки пластическим деформированием – наиболее распространенный. Прокатке подвергают до 90 % всей выплавляемой стали и большую часть цветных металлов. Способ зародился в XVIII веке и, претерпев значительное развитие, достиг высокого совершенства.


Сущность процесса: заготовка обжимается (сдавливается), проходя в зазор между вращающимися валками, при этом, она уменьшается в своем поперечном сечении и увеличивается в длину. Форма поперечного сечения называется профилем.


Процесс прокатки обеспечивается силами трения между вращающимся инструментом и заготовкой, благодаря которым заготовка перемещается в зазоре между валками, одновременно деформируясь. В момент захвата металла со стороны каждого валка действуют на металл две силы: нормальная сила и касательная сила трения (рис. 2).



Рис. 2 - Схема сил, действующих при прокатке


Способы прокатки


Когда требуется высокая прочность и пластичность, применяют заготовки из сортового или специального проката. В процессе прокатки литые заготовки подвергают многократному обжатию в валках прокатных станов, в результате чего повышается плотность материала за счет залечивания литейных дефектов, пористости, микротрещин. Это придает заготовкам из проката высокую прочность и герметичность при небольшой их толщине.


Существуют три основных способа прокатки
, имеющих определенное отличие по характеру выполнения деформации: продольная, поперечная, поперечно – винтовая (рис.3).



Рис. 3 - Схемы основных видов прокатки: а – продольная; б – поперечная; в – поперечно – винтовая


При продольной прокатке деформация осуществляется между вращающимися в разные стороны валками (рис.3 а). Заготовка втягивается в зазор между валками за счет сил трения. Этим способом изготавливается около 90 % проката: весь листовой и профильный прокат.


Поперечная прокатка (рис. 3.б). Оси прокатных валков и обрабатываемого тела параллельны или пересекаются под небольшим углом. Оба валка вращаются в одном направлении, а заготовка круглого сечения – в противоположном.


В процессе поперечной прокатки обрабатываемое тело удерживается в валках с помощью специального приспособления. Обжатие заготовки по диаметру и придание ей требуемой формы сечения обеспечивается профилировкой валков и изменением расстояния между ними. Данным способом производят специальные периодические профили, изделия представляющие тела вращения – шары, оси, шестерни.


Поперечно – винтовая прокатка (рис. 3.в). Валки, вращающиеся в одну сторону, установлены под углом друг другу. Прокатываемый металл получает еще и поступательное движение. В результате сложения этих движений каждая точка заготовки движется по винтовой линии. Применяется для получения пустотелых трубных заготовок.


Правка проката


Изделия, полученные прокаткой, часто требуют правки. Иногда правку выполняют в горячем состоянии, например, при производстве толстых листов. Но обычно в холодном состоянии, так как последующее охлаждение после горячей правки может вызвать дополнительное изменение формы.


Процесс правки заключается в однократном или многократном пластическом изгибе искривленных участков полосы, каждый раз в обратном направлении.


Правку можно выполнять и растяжением полосы, если напряжения растяжения будут превышать предел текучести материала.


Роликоправильные машины с параллельно расположенными роликами предназначены для правки листа и сортового проката (рис. 7)



Рис. 7 - Схема правки проката на роликоправильных машинах с параллельно расположенными роликами


Процесс правки заключается в прохождении полосы между двумя рядами последовательно расположенных роликов, установленных в шахматном порядке таким образом, что при движении полосы, ее искривление устраняется. Диаметр роликов – 25…370 мм, шаг – 30…400 мм, количество роликов: для тонких листов – 19…29, для толстых – 7…9.


Правильные машины с косо расположенными гиперболоидальными роликами предназначены для правки труб и круглых прутков (рис.8).



Рис. 8 - Схема правки проката на машинах с косо расположенными гиперболоидальными роликами


Ролики выполняют в виде однополостного гиперболоида и располагают под некоторым углом друг к другу. Выправляемый металл, кроме поступательного движения, совершает вращательное, что вызывает многократные перегибы полосы роликами и обеспечивает осесимметричную правку.


Растяжные правильные машины используют для правки тонких листов (менее 0,3 мм), трудно поддающихся правке на роликоправильных машинах.


Разрезка и заготовительная обработка проката


Производится на заготовительных участках механических цехов различными способами, отличающимися производительностью, точностью заготовки, стойкостью инструмента и др.


Разрезка пилами применяется для относительно крупных заготовок, в основном из цветных металлов. Заготовка характеризуется высокой точностью по длине, хорошим качеством среза, перпендикулярностью торца к оси. Основными недостатками являются низкая производительность и значительные потери металла на рез.


Применяются пилы зубчатые и гладкие (трения).


Разрезка на эксцентриковых пресс-ножницах применяется для стального проката круглого или квадратного сечения до 300 мм. Является наиболее производительным и дешевым процессом разделки проката на заготовки. Основными недостатками являются косой рез и смятие концов заготовки.


Заготовки из высокоуглеродистых и легированных сталей целесообразно подогреть до 450…650 0
С.


Применяют ножи с плоской режущей кромкой и с ручьями.


Разрезка на токарных полуавтоматах отрезными резцами.


Электроискровая и анодно-механическая резка обеспечивает максимальную точность размеров. Применяется для особо прочных металлов.


Разрезка на прессах-хладоломах применяется для заготовок крупного сечения. На заготовке предварительно делается надрез пилой или газовым резаком.


Газопламенная разрезка смесью ацитилена и кислорода.


Плазменно-дуговая разрезка применяется для высоколегированных тугоплавких сталей и сплавов. Вдоль электрической дуги по каналу плазмотрона пропускается газ (аргон), который сжимает дугу и выходит из сопла в виде плазмы с температурой 10000…30000 0
С.


Штамповка
— процесс пластической деформации материала с изменением формы и размеров тела. Чаще всего штамповке подвергаются металлы или пластмассы. Существуют два основных вида штамповки — листовая и объёмная. Листовая штамповка подразумевает в исходном виде тело, одно из измерений которого пренебрежимо мало по сравнению с двумя другими (лист-до 6 мм). В противном случае штамповка называется объёмной. Для процесса штамповки используются прессы — устройства, позволяющие деформировать материалы с помощью механического воздействия.По типу применяемой оснастки штамповку листовых материалов можно разделить на виды:


· штамповка в инструментальных штампах,


· штамповка эластичными средами,


· импульсная штамповка:


· магнитно-импульсная,


· гидро-импульсная,


· штамповка взрывом,


· валковая штамповка.


Холодная листовая штамповка


Сущность способа заключается в процессе, где в качестве заготовки используют полученные прокаткой лист, полосу или ленту, свёрнутую в рулон. Листовой штамповкой изготовляют самые разнообразные плоские и пространственные детали массой от долей грамма и размерами, исчисляемыми долями миллиметра (например, секундная стрелка ручных часов), и детали массой в десятки килограммов и размерами, составляющими несколько метров (облицовка автомобиля, самолёта, ракеты).Для деталей, получаемых листовой штамповкой, характерно то, что толщина их стенок незначительно отличается от толщины исходной заготовки. При изготовлении листовой штамповкой пространственных деталей заготовка обычно испытывает значительные пластические деформации. Это обстоятельство вынуждает предъявлять к материалу заготовки достаточно высокие требования по пластичности.При листовой штамповке чаще всего используют низкоуглеродистую сталь, пластичные легированные стали, медь, латунь, содержащую более 60 % Cu, алюминий и его сплавы, магниевые сплавы, титан и др. Листовой штамповкой получают плоские и пространственные детали из листовых неметаллических материалов, таких, как кожа, целлулоид, органическое стекло, фетр, текстолит, гетинакс и др.Листовую штамповку широко применяют в различных отраслях промышленности, особенно в таких, как авто-, тракторо-, самолето-, ракето- и приборостроение, электротехническая промышленность и др.К преимуществам листовой штамповки относятся:


возможность получения деталей минимальной массы при заданной их прочности и жёсткости;


достаточно высокие точность размеров и качество поверхности, позволяющие до минимума сократить отделочные операции обработки резанием;


сравнительная простота механизации и автоматизации процессов штамповки, обеспечивающая высокую производительность (30—40 тыс. деталей в смену с одной машины);


хорошая приспособляемость к масштабам производства, при которой листовая штамповка может быть экономически целесообразной и в массовом, и в мелкосерийном производстве.


Горячая объёмная штамповка


Горячая объёмная штамповка — это вид обработки металлов давлением, при которой формообразование поковки из нагретой заготовки осуществляют с помощью специального инструмента — штампа. Течение металла ограничивается поверхностями полостей (а также выступов), изготовленных в отдельных частях штампа, так что в конечный момент штамповки они образуют единую замкнутую полость (ручей) по конфигурации поковки. В качестве заготовок для горячей штамповки применяют прокат круглого, квадратного, прямоугольного профилей, а также периодический. При этом прутки разрезают на отдельные (мерные) заготовки, хотя иногда штампуют из прутка с последующим отделением поковки непосредственно на штамповочной машине. Мерные заготовки отрезают от прутка различными способами: на кривошипных пресс-ножницах, механическими пилами, газовой резкой и т. д. При горячей объёмной штамповке пластическое деформирование заготовки существенно облегчается её нагревом, о

днако возникает риск появления трещин в материале заготовки при неравномерной по объёму полости теплопередаче к материалу штампа.


Валковая штамповка


Валковая штамповка — формоизменяющая операция обработки металлов давлением, получения осесимметричных деталей из цилиндрической заготовки путём одновременного действия на неё радиальных и осевых нагрузок. Осевая нагрузка заготовки создаётся за счёт перемещения пуансона, а радиальная — за счёт обкатки её боковой поверхности в роликах или валках. Таким образом, валковая штамповка является способом комплексного локального деформирования, в котором в одном технологическом процессе происходит совмещение одной из основных кузнечных операций — прошивки или осадки с поперечной прокаткой или обкаткой. Валковая штамповка позволяет изготавливать круглые в плане сплошные и полые детали, тонкостенные и толстостенные изделия малых размеров, применяемые в приборостроении, а также крупногабаритные детали с высокой точностью и качеством при технологических усилиях на порядок меньших, чем при традиционных методах объёмной штамповки. Комплексное нагружение очага пластической деформации локальным периодическим воздействием с одновременным воздействием через постоянно фиксируемую зону позволяет получить новый технологический эффект, недостижимый другими методами деформирования. Валковая штамповка способствует улучшению физико-механических свойств обрабатываемого металла, обеспечивает требуемое расположение его волокон, что повышает эксплуатационные свойства получаемых деталей. Относительно низкая стоимость оснастки, незначительное время подготовки производства, возможность быстрой переналадки на другой типоразмер детали, использование оборудования небольшой мощности позволяют применять валковую штамповку как в крупносерийном, так и в средне- и мелкосерийном производствах.


Волочение
— обработка металлов давлением, при которой изделия (заготовки) круглого или фасонного профиля (поперечного сечения) протягиваются через отверстие, сечение которого меньше сечения заготовки.


В результате поперечные размеры изделия уменьшаются, а длина увеличивается. Волочение широко применяется в производстве пруткового металла, проволоки, труб и другого. Производится на волочильных станах, основными частями которых являются волоки и устройство, тянущее через них металл.


Виды волочения


По чистоте обработки:


черновое (заготовительное)


чистовое (заключительная, операция для придания готовому изделию требуемых формы, размеров и качества);


По кратности переходов:


однократное


многократное (с несколькими последовательными переходами волочения одной заготовки);


По параллельности обработки:


однониточное


многониточное (с количеством одновременно протягиваемых заготовок 2, 4, 8);


По подвижности волоки:


через неподвижную волоку


через врашающуюся относительно продольной оси волоку;


По нагреву заготовки:


холодное волочение


тёплое волочение


Способы волочения


Барабанное волочение
-волочение проволоки, труб или профилей на волочильном стане барабанного типа


Беззабивочное волочение
- волочение с проталкиванием переднего конца заготовки через волоку без предварительного изготовления захватки.


Безоправочное волочение
- волочение труб из сталей, цветных металлов и сплавов, при котором внутренняя поверхность заготовки при протягивании не контактирует с технологическим инструментом. Безоправочное волочение обычно осуществляют в две волоки, первая из которых служит для центровки трубы, а во второй осуществляется основное обжатие трубы по диаметру. Безоправочное волочение применяют чаще для промежуточных проходов с целью уменьшения диаметра протягиваемых труб. В ряде случаев (трубки малого диаметра) его используют и как отделочную операцию. Недостатки безоправочного волочения — низкое качество внутренней поверхности труб и большие различия в толщине стенки трубы после волочения


Волочение без скольжения
-производство проволоки на стане многократного волочения, с накоплением её запаса между соседними волоками, благодаря чему исключается проскальзывание проволоки относительно поверхностей барабанов.


Бухтовое волочение труб
-волочение трубы из заготовки, смотанной в бухту и (или) со сматыванием протянутой трубы в бухту; получило промышленное применение с 1930-х гг., широко используется при получении труб из цветных металлов и сплавов (меди, латуни и др.). При бухтовом способе применяются как оправочное, так и безоправочное волочение на трубоволочильных бухтовых станах и барабанах. Данным способом получают трубы (трубки) диаметром от 1 до 70 мм с толщиной стенки от 0,2—0,3 мм до 3 мм соответственно. Скорости волочения до 25—30 м/с, длина обрабатываемых труб до 5—6 км. В качестве технологических смазок при бухтовом волочении применяют растительные, и минеральные масла, водные эмульсии, олеиновую кислоту, натуральную и синтетическую олифу. При волочении алюминиевых труб используются более густые смазки, напр, масло Вапор с добавками веретенного. Внутрь трубы смазка заливается (впрыскивается) автоматически со стороны заковываемой части трубной заготовки.


Гидродинамическое волочение
-волочение проволоки с использованием комбинированных волочильных устройств, включая напорную волоку, кольцо-насадку и рабочую волоку. Смазка перед напорной волокой захватывается движущейся проволокой и вовлекается в микрозазор в кольцах-насадках. Микрозазор от кольца к кольцу уменьшается, давление смазки всё больше повышается, и у входа в деформационную зону рабочей волоки создаются условия жидкостного трения. Поэтому гидродинамическое волочение позволяет использовать — не только эмульсии или лёгкие масла, но и достаточно густые смазки, например натриевое мыло. Создаваемые условия жидкостного трения позволяют проводить гидродинамическое волочение с повышенными, скоростями при высоком качестве поверхности и точности протягиваемых изделий и существенно повышают стойкость волочильного инструмента. Из-за необходимости использования насосов высокого давления и сложности заправки проволоки в волоки гидродинамическое волочение используют только в случаях, когда исключается возможность применения других, более простых способов волочения.


Длиннооправочное волочение
-волочение труб с протягиванием заготовки через волоку с длинной подвижной недеформируемой оправкой, которую затем извлекают из трубы.


Короткооправочное волочение
-волочение труб с обработкой внутренней поверхности заготовки короткой цилиндрической оправкой, удерживаемой в очаге деформации стержнем, закреплённым на станине волочильного стана


Мокрое волочение
- волочение с погружением волоки в жидкую смазку


Волочение на деформируемой оправке
- волочение труб с протягиванием заготовки через волоку на длинной подвижной оправке, деформируемой с заготовкой;


Волочение на закреплённой оправке
-один из наиболее, распространённых, методов волочения труб с середины XIX в. Закреплённая (короткая) оправка чаще всего цилиндрическая, иногда ей придают цилиндроконическую форму, что улучшает её центровку в очаге деформации. Закреплённые оправки выполняются полыми для труб большого диаметра и сплошными для тонкостенных труб меньшего диаметра;


Волочение на самоустанавливающейся оправке
- волочение труб с обработкой внутренней поверхности заготовки незакреплённой самоустанавливающейся оправкой, удерживаемой в очаге деформации уравновешиванием действующих на неё втягивающих и выталкивающих сил.


Волочение проволоки
- один из древнейших технологических процессов обработки металлов давлением. Волочением получают проволоку из сталей широкого сортамента, цветных металлов и сплавов диаметром от 16 до <0,01 мм. Проволока круглого, квадратного и шестигранного сечения поставляется в мотках, бухтах и на катушках. Для заготовительного волочения проволоки применяют машины одно- и многократного волочения. Конструкции волочильных машин могут быть самыми разными: с горизонтальными, и вертикальными барабанами, со скольжением и без, с индивидуальным и групповым приводом, с противонатяжением и т. д. Количество волок на таких машинах достигает > 25, скорости волочения до 50 м/с. Для тяжёлого (грубого) волочения обычно используют стальные волоки, толстое и среднее волочение проводят через твёрдосплавные, тонкое и тончайшее — через алмазные волоки. В качестве смазок при волочении проволоки обычно используют жидкие смазки и эмульсии. Единичные обжатия по переходам снижаются от 30-35 % при тяжелом и толстом волочении до 6-12 % при наитончайшем.


Волочение профилей
- от простых прямоугольных до самой сложной формы. Крупные профили волочат на линейных волочильных станах, профили меньшего сечения — на барабанах или комбинированных прокатно-волочильных агрегатах. Для построения рациональной системы переходов при волочении профилей сложной формы используются теоретический и графический методы: В. В. Зверева, Прайслера, ЭГДА, песчаной насыпи, «сходственных контуров» и др.


Профилировочное волочение
- волочение труб некруглой (фасонной) формы с использованием двух технологических схем. По первой готовую трубу получают из заготовки круглого сечения безоправочным волочением в волоке с каналом фасонного сечения. По второй волочат на оправках фасонную заготовку, сечение которой подобно сечению готовой трубы. Волочение фасонных труб из фасонной заготовки позволяет снизить трудоемкость процесса, повысить точность размеров и качество внутренней поверхности труб.


Волочение прутков
- волочение преимущественно холоднодеформированных (тянутых) прутков круглого, квадратного и шестигранного сечений из цв. металлов и сплавов. Прутки малых сечений волочат на барабанах в один или несколько переходов. Волочение крупных прутков (диаметром > 25—30 мм) осуществляется в отрезках на цепных станах. Единичные и суммарные вытяжки при волочении прутков (обычно 1,25—1,4) определяются пластичностью протягиваемого материала. В отделочных (калибровочных) проходах вытяжки снижаются до 1,10-1,15. Наиболее прогрессивна технологическая схема производства тянутых прутков из цветных металлов и сплавов: бухтовая заготовка — однократное волочение (калибровка) — отделка на автомат, линиях типа «Schumag».


Волочение со скольжением
- многократное волочение проволоки при скорости ее движения меньше окружной скорости тяговых роликов, то есть скольжении проволоки по их поверхности с разницей в скоростях < 2-4 %. Конструкции машин со скольжением проще, чем машины прямоточного типа, и удобнее при заправке проволоки. На них лучше условия смазки, охлаждения проволоки и волок, что позволяет достигать более высоких скоростей волочения.


Волочение с противонатяжением
- многократное волочение проволоки и мелких труб с приложением усилия противонатяжения Q к заготовке перед очагом деформации. Усилие в. возрастает с приложением противонатяжения, начиная только с некоторого минимального его значения, названного критическим противонатяжением Qкр, определяемым в основном пределом упругости протягиваемого металла и степенью его нагартовки. Во всех случаях, если Q < Qкр, сила волочения практически не возрастает, а условия деформации улучшаются.


Стержневое волочение
- волочение труб, которое включает ввод стержня в трубную заготовку, протягивание заготовки вместе со стержнем через волоку и извлечение стержня из трубы. Стержень из твёрдой термообработанной стали при волочении не деформируется и двигается со скоростью выхода трубы из волоки. Стержневое волочение позволяет изготовлять трубы из малопластичных сплавов и обеспечить жёсткие допуски на внутренний диаметр труб, что особенно важно при изготовлении капиллярных трубок внутренним диаметром 0,3-1 мм.


Сухое волочение
- волочение заготовок с твердой смазкой.


Волочение труб
- завершающая, как правило, операция при производстве холоднодеформированных (тянутых) труб из сталей, цветных металлов и сплавов; отличается большим разнообразием технологических схем волочения: — безоправочное волочение (осадка); волочение на короткой закреплённой оправке; волочение на самоустанавливающейся (плавающей) оправке; волочение на длинной подвижной оправке; волочение на деформирующемся сердечнике; рофилировочное волочение; волочение с раздачей трубной заготовки; волочение в режиме гидродинамического трения. Выбор метода волочения определяется размерами и требованиями к готовому изделию, маркой обрабатываемого металла или сплава, возможностями оборудования и т. д. Волочение труб ведут как на цепных (траковых) волочильных станах, так и на трубоволочильных барабанах (бухтовое волочение). Основным волочильным инструментом являются волоки (фильеры) и оправки самых разных конструкций.


Ультразвуковое волочение
- волочение с наложением ультразвуковых колебаний на протягиваемый металл, что существенно снижает его сопротивление деформированию и коэффициент трения в очаге деформации. Существуют самые разнообразные схемы наложения ультразвуковых колебаний в процессе волочения — продольные колебания, перпендикулярные, радиальные, наложение колебаний на инструмент, на заготовку и т. д. Особенно эффективно применение ультразвуковых колебаний для труднодеформируемых сплавов, у которых при высоких скоростях снижается пластичность, а при нагреве происходит деформационное старение.


Электропластическое волочение
- волочение труднодеформируемых, в частности, тугоплавких сплавов, с использованием электропластич. эффекта, впервые исследованного в работах русских ученых О. А. Троицкого и В. И. Спицина. Они установили, что при пропускании электрического тока через протягиваемый образец заметно снижаются напряжение и усилие волочения. Наибольший электропластический эффект (ЭПЭ) наблюдается при пропускании через металл импульсного тока высокой частоты — порядка 103 А/мм² в течение 104 с. Использование ЭПЭ позволило не только интенсифицировать процесс волочения, но и исключить операции подогрева заготовок и волок, которые необходимы при традиционной технологии получения проволоки из тугоплавких металлов, например вольфрама.


Волочильный стан
— машина для обработки металлов волочением.


Волочильный стан состоит из двух основных элементов:


рабочего инструмента — волоки


тянущего устройства, сообщающего обрабатываемому металлу движение через волоку.


Вращение от двигателя к тянущему устройству передаётся через редуктор. При волочильном стане имеется ряд вспомогательных устройств для механизации и автоматизации производства.


В зависимости от принципа работы тянущего устройства волочильные станы подразделяются на:


станы с прямолинейным движением обрабатываемого металла


станы с наматыванием обрабатываемого металла (барабанные).


Волочильные станы с прямолинейным движением обрабатываемого металла применяются для получения прутков и труб, барабанные — для волочения проволоки и металла других профилей, сматываемого на бунты.


Барабанные волочильные станы подразделяются на:


однократные — с одним ведущим (тянущим) барабаном, в которых волочение металла производится через одну волоку


многократные — с несколькими барабанами, в которых металл одновременно подвергается волочению через ряд последовательно установленных волок.


ВЫВОД


В основе всех процессов обработки давлением лежит способность металлов и их сплавов под действием внешних (или внутренних) сил пластически деформироваться, т.е. необратимо изменять свою форму не разрушаясь.


В современной металлообрабатывающей промышленности обработка давлением является одним из основных способов производства. Ей подвергается около 90% всей выплавляемой в стране стали. Продукция целого ряда ее процессов не нуждается в последующей механической обработке. В сочетании с термической обработкой обработка давлением обеспечивает самые высокие механические свойства металла.


В машиностроении наиболее широко применяются процессы горячей объемной и листовой штамповки. В современном автомобиле до 80% штампованных деталей, половина из которых не подвергается ни каким другим видам обработки.


Основными процессами обработки металлов давлением являются: прокатка, волочение, прессование, свободная ковка, объемная и листовая штамповка.


Список литературы


1 http://ru.wikipedia.org


2 http://delta-grup.ru/bibliot/3k/14.htm


3 http://www.cultinfo.ru/fulltext/1/001/008/092/533.htm


Федеральное агентство по образованию


Государственное образовательное учреждение высшего


профессионального образования


«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ


им. Н.И. Лобачевского»


Факультет управления и предпринимательства


Рецензия


На курсовую работу по дисциплине «Технология машиностроения»


Студента четвертого
курса, 12444-09
группы


На тему Технология обработки изделий давлением .


__________________________________________________________________


Срок представления: октябрь 2010г
.


Представил (а): Болотина Елена Валерьевна


Объем: 23 .
страницы


Работа к защите: _________________ рекомендуемая оценка ______________


(допускается, не допускается)


____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________


Научный руководитель ____Мотова Е.А.__________
/_________________/


“_____” _______________________ 2010 г.


Содержание























Введение………………………………………………………………..


2


Пресование………………………………….………………………….


3


Прокатка………………………….…………………………………….


6


Штамповка……………………….…….……………………………….


11


Волочение………………………………………………………….……


14


Вывод……………………….……………………………………


22


Список литературы………………..……………………………………


23


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: «Технология обработки изделий давлением»

Слов:4405
Символов:39702
Размер:77.54 Кб.