РефератыОстальные рефератыI.I. приборы с кратковременным взаимодействием прямолинейного электронного пучка с вч полем

I. приборы с кратковременным взаимодействием прямолинейного электронного пучка с вч полем

ФИЗИКА И ТЕХНИКА СВЧ



Факультет физико-математических и естественных наук Кафедра радиофизики Обязательный курс


Объём учебной нагрузки: 60 час. – лекции, 60 час. – лабораторные работы


Цель курса


Назначение курса состоит в том, чтобы дать слушателям современные физические основы современной вакуумной СВЧ электроники. Несмотря на то, что за последние десятилетия твердотельная электроника все больше и больше завоевывает высокочастотную область, тем не менее, ряд принципиальных направлений в современной СВЧ электроники больших мощностей до настоящего времени подвластно только вакуумной электронике.


В основе курса лекций излагаются физические принципы усиления и генерации СВЧ колебаний при взаимодействии как прямолинейных, так и криволинейных электронных пучков с электромагнитными полями в резонансных или замедляющих электродинамических системах. Лабораторный практикум, проводимый параллельно с циклом лекций, направлен на теоретическое и практическое освоение студентами методов СВЧ техники и электроники.


Содержание курса



Введение


Предмет и задачи курса. Значение вакуумной СВЧ электроники для решения важных проблем электроники больших мощностей, а также в техническом освоении коротковолнового диапазона волн.


Физические основы электроники СВЧ: особенности работы электронных устройств с кратковременным (частотный резонанс) и длительным (пространственный резонанс) взаимодействием электронного пучка и электромагнитного поля; скоростная модуляция и фазировка. Основные уравнения электроники – уравнения движения электронов Лоренца, макроскопические уравнения Максвелла, плотности токов и зарядов. Лабораторные источники СВЧ мощности.


I
. ПРИБОРЫ С КРАТКОВРЕМЕННЫМ ВЗАИМОДЕЙСТВИЕМ ПРЯМОЛИНЕЙНОГО ЭЛЕКТРОННОГО ПУЧКА С ВЧ ПОЛЕМ


1. Усилительный клистрон


Теория группирования электронов в приборах клистронного типа. Исходные положения. Взаимодействие электронов с СВЧ полем в зазоре тороидального резонатора. Мощность взаимодействия СВЧ поля с электронным потоком в зазоре. Ток конвекции и наведенный ток. Баланс мощностей в стационарном режиме.



2. Двухрезонаторный пролетный клистрон – СВЧ усилитель


Общая характеристика явлений. Движение электронов в пространстве дрейфа пролетного клистрона. Параметры группирования. Динамический угол пролета, фаза группировки.


Гармонический состав конвекционного тока электронов, группирующихся в пространстве дрейфа. Выходная мощность, теоретический электронный К.П.Д. Многорезонаторный и умножительный пролетные клистроны. Типичные технические параметры и область применения клистронов.


3. Отражательный клистрон – СВЧ генератор


Принципиальная схема устройства. Сущность физических явлений в отражательном клистроне (ОК). Движение электронов в ОК. Углы пролета, параметр группирования и фаза группировки.


Гармонический состав тока конвекции в ОК. Оценка выходной мощности и электронный К.П.Д.


Эквивалентная схема ОК - одноконтурного генератора. Закон сохранения энергии в форме комплексных проводимостей для ОК. Баланс активных и реактивных мощностей и его применение для нахождения амплитуды установившихся колебаний и электронного смещения частоты. Зоны генерации, электронная перестройка и ее крутизна. Конструкции ОК, технические параметры и типичные применения.



II
. ФИЗИЧЕСКИЕ ПРИНЦИПЫ ПРИБОРОВ СВЧ, ОСНОВАННЫХ НА ДЛИТЕЛЬНОМ ВЗАИМОДЕЙСТВИИ С ГРУППИРОВКОЙ ЭЛЕКТРОНОВ БЛАГОДАРЯ СКОРОСТНОЙ МОДУЛЯЦИИ В НЕРЕЗОНАНСНЫХ ЗАМЕДЛЯЮЩИХ СТРУКТУРАХ


4. Нерезонансные замедляющие структуры


Медленные электромагнитные волны над поверхностью диэлектрика и металла с конечной проводимостью. Три типа волноведущих систем. Однородные и неоднородные замедляющие структуры. Прямые и обратные пространственные гармоники. Групповая и фазовая скорости медленных волн. Нормальная и аномальная частотные дисперсии фазовой скорости.


Замедляющие системы типа «диафрагмированного волновода» и «гребенки». Вывод характеристического уравнения, коэффициента замедления и распределения полей в этих системах. Неоднородные структуры типа «встречных штырей».


5. Принципы работы усилительной ЛБВ и генераторной ЛОВ


Схематическое устройство усилительной ЛБВ и ее технические параметры. Схематическое устройство генераторной ЛОВ. Амплитудные и фазовые условия самовозбуждения. Прямые и обратные гармоники. Цепь обратной связи. Возможности плавной широкополосной перестройки частоты генерации. Основные параметры ЛОВ и её применение.


6. Линейная теория ЛБВ типа О

r />

Основные положения линейной теории. Электронные волны как результат сильной связи медленной синхронной волны и электронного пучка. Вывод самосогласованной системы уравнений для определения комплексного продольного волнового числа и функции поперечного распределения тока конвекции пучка в электронной волне.


Усредненные поля и характеристическое уравнение. Физические параметры теории: эффективная площадь поперечного сечения электронного пучка, удельное сопротивление связи пучка и волны, коэффициент депрессии сил пространственного заряда, усредненные по двум взаимодействующим сечениям электронного пучка нормальная и аномальная функции Грина, параметр усиления. Свойства функций Грина и их влияние на величину коэффициента депрессии и его зависимость от продольного волнового числа. Волны пространственного заряда. Редуцированная плазменная частота. Причины пространственной дисперсии.


Анализ решений характеристического уравнения в линейном приближении. Область параметров, зависящих от свойств замедляющей структуры и пучка, где существуют нарастающие электронные волны. Влияние пространственного заряда на структуру и свойства электронных волн. Механизм идеальной фазировки в ЛБВ.



III
. ФИЗИЧЕСКИЕ ОСНОВЫ ПРИБОРОВ СВЧ, ОСНОВАННЫХ НА ДВИЖЕНИИ ЭЛЕКТРОНОВ В СКРЕЩЕННЫХ ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ


7. Приборы магнетронного типа – генераторы и усилители СВЧ колебаний на основе криволинейных электронных пучков


Многорезонаторный магнетрон. Виды траекторий электронов, синхронизм, образование сгустков, виды колебаний (p -вид), структура СВЧ поля в пространстве взаимодействия. Механизм передачи энергии электронов ВЧ полю. Частотный диапазон применения, уровень мощности, К.П.Д., область применения. Методы борьбы с перескоками частоты.


Коаксиальные магнетроны и ниготроны. Схемы устройства этих приборов и структура распределения в них электромагнитных полей. Платинотроны, ЛБВ и ЛОВ М- типа. Схемы устройства амплитрона, карматрона и ЛОВ типа - М и принципы работы. Технические параметры.


8. Элементарная теория магнетрона


Плоский магнетрон (планотрон). Дрейфовое приближение и условия его применимости. Движение электронов в скрещенных статических электрическом и магнитном полях в плоском магнетроне. Учет влияния на движение электронов СВЧ полч синхронной медленной волны. Фазировка в магнетронных приборах: траектории ведущих центров, образование электронных сгустков - язычков, механизмы фазовой фокусировки и энергетических превращений при идеальном синхронизме. Влияние расстройки скоростей электронов и фазовой скорости медленной волны на дрейф, форму язычков и анодный ток и КПД. Устойчивость генерации.



IV
. АНТЕННЫЕ ИЗМЕРЕНИЯ


Свойства и параметры антенн. Наиболее распространенные типы антенн. Типичные пространственные диаграммы направленности антенн: изотропный излучатель, вибратор Герца и решетка таких вибраторов, плоские излучатели и направленные излучатели. Усиление и эффективная площадь антенн. Диаграмма направленности ее расчет. Уравнение Кирхгофа, Вычисления полей в ближней и дальней зонах плоских антенн. Экспериментальные методы измерения усиления, эффективной площади и диаграммы направленности. Методы идентичных и эталонных антенн.


ЗАКЛЮЧЕНИЕ


Современные задачи и перспективы развития высокочастотной электроники.


Перечень основных лабораторных работ



1. Исследование отражательного клистрона.


2. Триодные генераторы СВЧ диапазона.


3. Диэлектрическая антенна.


4. Методы измерения мощности в СВЧ диапазоне.


5. Исследование направленного ответвителя сантиметрового диапазона.


6. Анализаторы спектра в СВЧ диапазоне.



Литература



Основная


1. Вайнштейн Л.А., Солнцев В.А. Лекции по сверхвысокочастотной электронике. – М.: Сов. радио, 1973.


2. Гайдук В.И., Палатов К.И., Петров Д.М. Физические основы электроники СВЧ. – М.: Сов. радио, 1971.


3. Лебедев И.В. Техника и приборы сверхвысоких частот, Т. I. и Т. II. – М.: Энергия, 1964.


Дополнительная


1. Тишер Ф. Техника измерений на сверхвысоких частотах. – М.: Гос. Изд-во физ.-мат. лит., 1963.


2. Гинзтон Э.Л. Измерения на сантиметровых волнах. – М.: ИЛ, 1960.


3. Капица П.Л. Электроника больших мощностей, Сб.1. – М.: Наука, 1960.


4. Силин Р.А., Сазонов В.П. Замедляющие системы. – М.: Сов. радио, 1966.


Программа составлена


Тищенко Э.А.


Доктор физ.-мат. наук, профессор


Кафедра радиофизики, Факультет физико-математических и естественных наук РУДН.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: I. приборы с кратковременным взаимодействием прямолинейного электронного пучка с вч полем

Слов:1116
Символов:10345
Размер:20.21 Кб.