Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет им. Ф. Скорины"
Математический факультет
Кафедра МПМ
Изучение тригонометрического материала в школьном курсе математики
Реферат
Исполнитель:
Студентка группы М-42 Головачева А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент Лебедева М.Т.
Гомель 2007
Содержание
Введение
1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества
2. Методика введения определений тригонометрических функций углов от 0° до 180°
3. Методика изучения тригонометрических функций в курсе алгебры
4. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению
Заключение
Литература
Введение
Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00
до 1800
; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.
Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".
1. Методика введения понятий синуса, косинуса и тангенса на геометрическом материале. Основные тригонометрические тождества
Знакомство с тригонометрическим материалом начинается в курсе геометрии при знакомстве с прямоугольным треугольником. Понятия , и острых углов треугольника вводится для углов от до , как отношение сторон этого треугольника. Предварительно учащиеся должны усвоить названия сторон прямоугольного треугольника: катеты (стороны прямого угла) и гипотенуза (сторона противолежащая прямому углу). Для этого необходимо предложить учащимся прямоугольные треугольники, разнообразные по расположению вершин прямого угла и предложить назвать стороны треугольника.
Назовите катеты в ABC, APN. Назовите гипотенузы в LKM и EFA. Будут ли гипотенузами следующие отрезки: AB, KL, AP, AN, EF, FA в указанных треугольниках и почему?
Следующие выражения "прилежащий" и "противолежащий" отрабатываются на следующем этапе. Для этого необходимо по указанным треугольникам предложить учащимся назвать прилежащие и противолежащие острым углам катеты. Назвать отрезки: KL, PN, EA и попросить учащихся назвать те углы, против которых лежат эти катеты или, которым они прилегают.
Первым вводится понятие угла и доказывается теорема: " Косинус угла зависит от градусной меры угла и не зависит от расположения и размеров треугольника". Это определение уже " работает" при доказательстве теоремы Пифагора.
С остальными понятиями учащиеся знакомятся в пункте " Соотношения между сторонами и углами в прямоугольном треугольнике". sin , tg
Формируется свойство: синус и тангенс угла так же, как и косинус, зависят от величины угла.
Для синуса это доказывается так:
=,
так как косинус зависит только от величины угла, то и синус зависит только от величины угла.
Из определений , и получаем следующие правила:
- Катет, противолежащий углу , равен произведению гипотенузы на синус ;
- Катет, прилежащий к углу , равен произведению гипотенузы на косинус ;
- Катет, противолежащий углу , равен произведению второго катета на тангенс .
По этим правилам можно находить неизвестные элементы в прямоугольном треугольнике.
Перечисленные правила могут быть выведены учащимися самостоятельно. Для этого предлагаются вопросы: В прямоугольном треугольнике MNP, LN=, LM=, гипотенуза MP=m. Найти длины катетов этого треугольника. ( Задача решается по определению).
Раньше по программе тригонометрические функции и соотношения между углами и сторонами в прямоугольном треугольнике изучались в курсе 8 класса.
После введения понятий , и рассматривались решения основных задач, связанных с отысканием длин сторон и величин углов в прямоугольном треугольнике.
Задача №1. Дано: a, b. Требуется найти A, B, c.
Задача №2. Дано: a, c. Требуется найти A, B, b.
Задача №3. Дано: a, A. Требуется найти A, b, c.
Задача №4. Дано: a, B. Требуется найти A, b, c.
Задача №5. Дано: a, A. Требуется найти B, a, b.
По действующей программе эти задачи в курсе 8 класса (бывший 7 класс) заменены такой: В прямоугольном треугольнике даны: гипотенуза c и острый угол . Найдите катеты, их проекции на гипотенузу и высоту, опущенную на гипотенузу.
Вводятся основные тригонометрические тождества:
, , , .
В частности, основное тригонометрическое тождество выводится из формулировки теоремы Пифагора:
, .
Учащиеся знакомятся с некоторыми свойствами функций острого угла: 1) при возрастании острого угла и возрастают, а - убывает; 2) для любого острого угла : , ; которые формулируются как теоремы. Их доказательство связывается с соотношениями острых углов в прямоугольном треугольнике:
, , тогда , .
,
тогда из равенства правых частей получаем:
.
, тогда .
Вывод свойства возрастания и убывания выглядит так:
Пусть и - острые углы, и , и она пересекает стороны углов и в точках и соответственно.
Так как , то точка лежит между точками и , тогда . А значит, по свойству наклонных, (через сравнение их проекций). Так как , , то косинус убывает. А так как , то синус возрастает.
2. Методика введения определений тригонометрических функций углов от до
Расширение области определения тригонометрических функций от до происходит в теме: "Декартовы координаты на плоскости".
Рассмотрим окружность с центром в начале координат произвольного радиуса R. Откладываем в полуплоскость угол . Пусть точка имеет координаты и . , , то из треугольника : , .
Определяются значения и этими формулами для любого угла α (для 0
-исключается).
Можно найти значения этих функций для углов 900
, 00
, 1800
. Доказывается, что для любого угла α , 00
<α<1800
, .
повернем подвижный радиус на угол 1800
-α=
по гипотенузе и острому углу: => OB1
=OB; A1
B1
=AB => x = -x1
,y = y1
=>
Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности.
Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного треугольника; 2) затем введенные понятия обобщаются для углов от 00
до 1800
; 3) тригонометрические функции определяются для произвольных угловых величин и действительных чисел.
Первые два этапа реализуются в курсе планиметрии. Геометрический характер определений тригонометрических функций объясняет тот факт, что они составляют единственный вид функций, который начинают изучать не в курсе алгебры, а в курсе геометрии. Для геометрии важен "общефункциональный взгляд" на тригонометрические функции, а их прикладная сторона (решение прямоугольных треугольников, применение некоторых тригонометрических тождеств, теорем cos и sin, решение произвольных треугольников). Поэтому в курсе планиметрии нет термина "тригонометрические функции".
Конкретизировать, например, понятие cos острого угла прямоугольного треугольника, можно по следующей методической схеме:
1) построить на миллиметровой бумаге прямоугольный треугольник ABC;
2) обозначить величину острого угла А буквой α;
3) измерить (по клеткам) прилежащий катет АС и гипотенузу АВ;
4) вычислить отношение
5) записать значение cos α (делается следующая запись cos α ≈ в которой для α не указывается его конкретное значение);
6) измерить транспортиром угол α, найти его величину и записать значение косинуса этого угла данного прямоугольного треугольника.
Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла α зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 370
. Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 370
, они построят прямоугольный треугольник (каждый свой) с углом в 370
, измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 370
. Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 370
при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.
При решении прямоугольных треугольников необходимо обратить внимание учащегося на тот факт, что с каждой из формул для cos, sin и tg α связывается еще две формулы:
Определение cos, sin, tg углов от 00
до 1800
являются генетическими, т.к. в них указываются построения и вычисления, позволяющие найти значение тригонометрической функции.
В пособие говорится следующее (стр. 132, 1, 2 абзац), обратите внимание учащихся на следующее обстоятельство. Ранее для острых углов были установлены некоторые тригонометрические тождества. "Справедливы ли эти тождества для углов от 00
до 1800
. Справедливы ли прежние доказательства этих тождеств или необходимо привести новые?"
Сравним доказательства основного тригонометрического тождества: для острых углов и для углов от 00
до 1800
:
00
|
00
|
1 |
1 |
2 |
2 |
3 |
3 |
В курсе "Алгебра 9" обобщается определение cos, tg и sin α на случай произвольного угла α и вводится понятие ctg α. Возможность такого обобщения – во введении понятия угла поворота, положительного и отрицательного угла, понятия полного оборота. Доказывается, что тригонометрические функции, их значение, не зависит от длины радиуса.
Здесь же приведены с доказательствами основные тригонометрические формулы, формулы сложения и их следствия.
3. Методика изучения тригонометрических функций в курсе алгебры
Традиционная методическая схема изучения тригонометрических функций:
· в начале определяются тригонометрические функции для острого угла прямоугольного треугольника;
· затем введенные понятия обобщаются для углов от до ;
· тригонометрические функции определяются для произвольных угловых величин и действительных чисел.
В курсе алгебры и начала анализа осуществляется заключительный этап изучения, который включает:
a) Закрепление представлений учащихся о радианной мере угла; отработка навыков перехода от градусной меры к радианной и наоборот;
b) Формирование представлений об углах с градусной мерой, большей ; формирование представлений об углах с положительной и отрицательной градусными мерами; перевод этих градусных мер в радианы (положительные и отрицательные действительные числа);
c) Описание тригонометрических функций на языке радианной меры угла;
d) Утверждение функциональной точки зрения на , , и (трактовка , , и как функций действительного аргумента, установление области определения, области значений, построение графика функции, установление промежутков монотонности, знакопостоянства и т.д.);
e) Повторение известных и озна
f) Применение тригонометрических тождеств в тождественных преобразованиях и при решении задач по стереометрии.
В курсе "Алгебра 9" учащиеся знакомятся с функциональной точкой зрения. Выражения и определимы при , т.к угла поворота можно найти соответствующее значение дробей и . Выражение имеет смысл при , кроме углов поворота , , …, т.к. имеет смысл дробь .
Каждому допустимому значению соответствует единственное значение , , и . Поэтому , , и являются функциями угла . Их называют тригонометрическими функциями.
Учащиеся знакомятся со следующими общефункциональными свойствами этих функций:
1. область значения и - , для и - множество всех действительных чисел
2. промежутки знакопостоянства: , то значит зависит от знака и т.д.
3. , и являются нечетными функциями, а является четной функцией
4. при изменении угла на целое число оборотов значение , , , не изменится (под обратным понимаем поворот на ).
Введение радианной меры угла основывается на том факте, что отношения длины окружности к её радиусу постоянно для данного центрального угла и не зависит от выбора концентрических окружностей. По этой причине меру центрального угла можно охарактеризовать действительным числом . Если положить равным 1, то радианная мера центрального угла равна 1, т.е. .
Тогда для каждого угла, заданного в градусах, достаточно вычислить соответствующую дугу единичной окружности. Длина такой дуги будет выражать меру данного угла в радианах.
Радианная мера угла позволяет любому действительному числу поставить в соответствие определенную градусную меру угла по формуле: , где .
Переход от радианной меры угла к действительному числу осуществляется на основании того, что . Учащимся следует показать изменение величин углов по координатным углам:
1 четверть: , ;
2 четверть: , ; и т.д.
Определение тригонометрической функции выглядит так:
Опр.
Окружность радиуса 1 с центром в начале координат называют единичной
окружностью. Пусть точка единичной окружности получена при повороте точки на угол в радиан. Ордината точки - это синус угла . Числовая функция, заданная формулой , называется синусом числа, каждому числу ставится в соответствие число .
Устанавливаются области определения и значения функций, напоминаются свойства:
; .
Построим график функции на .
Делим единичную окружность и отрезок на 16 равных частей.
Через точку проводим прямую, параллельную . Проводим прямую до пересечения с построенной прямой. Получим одну из точек графика функции , называемого синусоидой.
Отрезок оси , с помощью которого находятся значения синуса, называется линией синусов.
Для построения графика синуса вне этого отрезка заметим, что . Поэтому во всех точках вида , где , значения синуса совпадают, и, следовательно, график синуса на всей прямой получается из построенного графика с помощью параллельных переносов его вдоль оси .
Для построения графика косинуса следует вспомнить, что . Следовательно, значение косинуса в произвольной точке равно значению синуса в точке . Это значит, что график косинуса получается из графика синуса с помощью параллельного переноса на расстояние в отрицательном направлении оси . Поэтому график функции также является синусоидой.
Для функций и определяется аналогично. Область определения - множество всех чисел, где .
Построение графика: проведем касательную к единичной окружности в точке .
Пусть произвольное число, для которого . Тогда точка не лежит на оси ординат, и, следовательно, прямая пересекает в некоторой точке с абсциссой 1. Найдем ординату этой точки. Для этого заметим, что прямая проходит через точки и . Поэтому она имеет уравнение .
Абсцисса точки , лежащей на этой прямой, равна 1. Из уравнения прямой находим, что ордината точки равна . Итак, ордината точки пересечения прямых и равна . Поэтому прямую называют линией тангенсов.
Нетрудно доказать, что абсцисса точки пересечения прямой с касательной m к единичной окружности, проведённой через точку , равна при .
Поэтому прямую m называют линией котангенсов.
Область значений
- вся числовая прямая. Докажем это для функции . Пусть - произвольное действительное число. Рассмотрим точку . Как только что было показано, равен . Следовательно, функция принимает любое действительное значение , ч.т.д.
Построение графика аналогично построению .
Можно построить схему, позволяющую изобразить график тригонометрических функций:
1) Начертить единичную окружность, горизонтальный диаметр которой служит продолжением оси . Разделить её на равные части (например,16).
2) Для функции выбираем отрезок , для функции - и делим их на то же равное число частей.
3) По окружности находим соответствующее число значений этих функций.
4) Точки пересечения горизонтальных линий, отвечающих значениям функций и вертикальных линий, отвечающих значениям аргумента, представляют собой точки графика.
4. Тождественные преобразования тригонометрических выражений. Тригонометрические уравнения и неравенства и методика обучения решению
Тригонометрический материал изучается в школьном курсе в несколько этапов.
1) Функции тригонометрических функций для углов от до
(прямоугольный треугольник, планиметрия);
2) Тригонометрические функции для углов от до (тема: "Декартовы координаты на плоскости; геометрия");
3) Тригонометрические функции для любого действительного числа.
Параллельно изучению теоретического материала учащиеся знакомятся с тригонометрическими формулами, объём которых будет постепенно рассширяться. Умение "выделить" эти формулы в дальнейшем поможет в преобразовании тригонометрических выражений.
К обязательным результатам обучения за курс геометрии в 7-9 классах относиться умение решать типичные задачи на вычисление значений геометрических величин (длин, углов, площадей) с привлечением свойств фигур, аппарата алгебры и тригонометрии.
Например:
1) В прямоугольном треугольнике найдите катеты, если его гипотенуза равна 5 см, а один из углов равен .
2) В прямоугольном треугольнике катет равен 4 см, а прилежащий к нему угол равен . Найдите другой катет и гипотенузу.
3) В треугольнике ABC: AB=3см, BC=6 см, . Определите .
4) В треугольнике ABC известны стороны: AB=4 см; BC=5 см; AC=6 см.
Найдите угол B.
Существуют различные доказательства формулы косинуса суммы двух аргументов.
Одно из наиболее простых доказательств основано на применении системы координат и формулы расстояние между двумя точками. Воспроизвести доказательство по опорному конспекту:
1. ;
2. ;
3. ;
4. ;
5. .
6. ;
, ч.т.д.
; -.
С другой стороны:
-
- -
- теорема сложения.
и по доказанной формуле.
Для доказательства суммы и разности двух углов используются формула приведения, которые помогают преобразовать функции от аргументов вида:
, , , .
Проведём радиус , длина которого равна , на угол : и получили радиус , где и на угол и получим радиус , где .
, : , .
- прямоугольник. Повернём его на угол вокруг точки :
; ; , т.е.
; , т.е:
; , по
Аналогично:
Тогда:
и т.д.
К функциям от углов можно прийти и из геометрических соображений.
Формулы приведения для и выводится из определения этих функций и ранее полученных формул приведения для синуса и косинуса. После этого полученные результаты сводятся в одну таблицу, с помощью которой можно сформулировать мнемоническое правило. Желательно учащимся предложить алгоритм применения формул приведения. Поясним его на примере:
{определяем четность, в которой оканчивается угол - II четверть; определяем знак данной функции в этой четверти – " - ". Изменяется ли название функции – нет, поэтому:} = - cos .
Вернёмся к выводу формулы синуса суммы и разности двух углов.
,
а затем применяется уже известная формула.
Формулы двойного угла выводятся из формулы синуса и косинуса суммы и разности двух углов, положив .
Сумму и разность тригонометрических функций можно преобразовать в произведение, используя следующий пример:
={ , }=
=,
но:
Таким образом:
Замечание: при ознакомлении учащихся с формулами следует добиваться от них проговаривания словесных формулировок доказываемых формул.
Например: сумма синусов двух углов равна удвоенному произведению синуса полусуммы этих углов на косинус полуразности.
В курсе алгебры 9 класса изучается тема: "Элементы тригонометрии" (30 часов):
1) радианное измерение углов, sin, cos, tg произвольного угла, их нахождение с помощью калькулятора;
2) основные тригонометрические тождества:
Их применение для вычисления значений sin, cos, tg;
3) формулы приведения; sin, cos суммы и разности двух углов; sin и cos двойного угла;
4) тождественные преобразования тригонометрических выражений; основная цель – сформировать умения выполнять тождественные преобразования несложных тригонометрических выражений с использованием формул, указанных в программе:
Рассмотрим некоторые примеры преобразований тригонометрических выражений:
Задача №1.
Доказать тождество:
Преобразуем левую часть и получим, применив формулы приведения:
8cos4+sin8=2sin8cos4+2sin4cos4=2cos4(sin8+sin4)=4cos4sin6cos2, и т.д.
Задачи №2.
Упростить выражение
а)
Можно применить формулы понижения степени:
=
{воспользуемся преобразованием разности косинусов в произведение по формуле: } =
б)
Задача №3
Преобразовать в произведение:
а) cos5+sin8+cos9+cos12=(cos5+cos12)+(cos8+cos9)=
=2cos17/2cos7/2+2cos17/2cos/2=2cos17/2(cos7/2+cos/2)=
=4cos17/2cos2cos3/2=4cos3/2cos2cos17/2
б) 3+4cos4+cos8=3(1+cos4)+(cos4+cos8)=6cos2
2+
+2cos6cos2=2 cos2(3cos2+cos6)=2cos2((cos2+|cos6)+
+2cos2)=2cos2(2cos4cos2+2cos2)=4cos2
2(cos4+cos2)=
=4cos2
2cos2
2=8cos4
2
Задача №4
Найти sin4
+cos4
, если известно, что:
sin-cos=1/2
sin4
+cos4
=(sin2
+cos2
)2
-2sin2
cos2
=1-2sin2
cos2
=
=1-1/2sin2
2={sin4-cos=1/2(sin-cos)2
=
=1-2sincos=1/4sin2=3/4}=
Задача №5
Вычислить:
sin=-cos(2arctg4/3)={обозначим arctg4/3 через y, тогда получим cos2y, который нужно преобразовать в тангенс половинного угла. Применим формулу и получим}=
Заключение
Определенные трудности в изучение элементов тригонометрии (по Пифагору) порождает теорема: "Косинус угла α зависит только от градусной меры угла". Необходимость изучения данной теоремы можно разъяснить учащемуся так: Пусть требуется на основании определения найти cos 370
. Предположим, что это задание выполняют отдельно друг от друга несколько человек. Чтобы найти cos 370
, они построят прямоугольный треугольник (каждый свой) с углом в 370
, измерят прилежащий катет и гипотенузу, найдут отношение прилежащего катета к гипотенузе. Полученное число и будет являться cos 370
. Есть ли гарантия, что каждый ученик получит один и тот же ответ? Этот вопрос возникает по той причине, что каждый строит свой треугольник, получает свои значения длин прилежащего катета и гипотенузы. Так, может быть, и искомое отношение у каждого ученика будет какое-то свое? Понятно, что если бы значение cos 370
при переходе от одного прямоугольного треугольника к другому изменялось, то ценность такого понятия в математике была бы не велика. Изучаемая терема является ответом на поставленные вопросы. Она утверждает, что косинус острого угла зависит не от выбора прямоугольного треугольника, а только от меры угла.
Литература
1. К.О. Ананченко "Общая методика преподавания математики в школе", Мн., "Унiверсiтэцкае",1997г.
2.Н.М.Рогановский "Методика преподавания в средней школе", Мн., "Высшая школа", 1990г.
3.Г.Фройденталь "Математика как педагогическая задача",М., "Просвещение", 1998г.
4.Н.Н. "Математическая лаборатория", М., "Просвещение", 1997г.
5.Ю.М.Колягин "Методика преподавания математики в средней школе", М., "Просвещение", 1999г.
6.А.А.Столяр "Логические проблемы преподавания математики", Мн., "Высшая школа", 2000г.