Расчет редуктора

Спроектировать привод.


В состав привода входят следующие передачи:


1 - ременная передача с клиновым ремнём;


2 - закрытая зубчатая цилиндрическая передача;


3 - закрытая зубчатая цилиндрическая передача.


Мощность на выходном валу Р = 6,0 кВт.


Частота вращения выходного вала n = 70,0 об./мин.


Коэффициент годового использования Кг = 1,0.


Коэффициент использования в течении смены Кс = 1,0.


Срок службы L = 5,0 г.


Число смен S = 2,0.


Продолжительность смены T = 8,0 ч.


Тип нагрузки - постоянный.


Выбор электродвигателя и кинематический расчет


По табл. 1.1[1] примем следующие значения КПД:


- для ременной передачи с клиновым ремнем : 1 = 0,96


- для закрытой зубчатой цилиндрической передачи : 2 = 0,975


- для закрытой зубчатой цилиндрической передачи : 3 = 0,975


Общий КПД привода будет :


 = 1 x ... x n x подш.3 = 0,96 x 0,975 x 0,975 x 0,993 = 0,885


где подш. = 0,99% - КПД одного подшипника.


Угловая скорость на выходном валу будет :


вых. =  x nвых. / 30 = 3.14 x 70,0 / 30 = 7,33 рад/с


Требуемая мощность двигателя будет :


Pтреб. = Pвых. /  = 6,0 / 0,885 = 6,776 кВт


В таблице 24.7[2] по требуемой мощности выбираем электродвигатель 160M8 (исполнение IM1081), с синхронной частотой вращения 750,0 об/мин, с параметрами: Pдвиг.=11,0 кВт. Номинальная частота вращения с учётом скольжения nдвиг.=727,0 об/мин, угловая скорость двиг. =  x nдвиг. / 30 = 3,14 x 727,0 / 30 = 76,131 рад/с.


Oбщее передаточное отношение:


U = двиг. / вых. = 76,131 / 7,33 = 10,386


Для передач выбрали следующие передаточные числа:


U1 = 1,45


U2 = 3,15


U3 = 2,24


Рассчитанные частоты и угловые скорости вращения валов сведены ниже в таблицу :














Вал 1-й

n1 = nдвиг. / U1 =


727,0 / 1,45 = 501,379 об./мин.


1 = двиг. / U1 =


76,131 / 1,45 = 52,504 рад/c.


Вал 2-й

n2 = n1 / U2 =


501,379 / 3,15 = 159,168 об./мин.


2 = 1 / U2 =


52,504 / 3,15 = 16,668 рад/c.


Вал 3-й

n3 = n2 / U3 =


159,168 / 2,24 = 71,057 об./мин.


3 = 2 / U3 =


16,668 / 2,24 = 7,441 рад/c.



Вращающие моменты на валах будут:


T1 = Tдвиг. x U1 x 1 x подш. = Pтреб. x U1 x 1 x подш. / двиг. =


6,776 x 106 x 1,45 x 0,96 x 0,99 / 76,131 = 122652,556 Нxмм


где двиг. = 76,131 рад/с.


T2 = T1 x U2 x 2 x подш. =


122652,556 x 3,15 x 0,975 x 0,99 = 372929,696 Нxмм


T3 = T2 x U3 x 3 x подш. =


372929,696 x 2,24 x 0,975 x 0,99 = 806333,672 Нxмм


Расчет 1-й клиноремённой передачи


1. Вращающий момент на меньшем ведущем шкиве:


T(ведущий шкив) = 89002,493 Нxмм.


2. По номограмме на рис. 7.3[1] в зависимости от частоты вращения меньшего ведущего шкива n(ведущий шкив) (в нашем случае n(ведущий шкив)=727,0 об/мин) и передаваемой мощности:


P = T(ведущий шкив) x (ведущий шкив) = 89002,493 x 76,131 = 6,776кВт


принимаем сечение клинового ремня А.


3. Диаметр меньшего шкива по формуле 7.25[1]:


d1 = (3...4) x T(ведущий шкив)1/3 = (3...4) x 89002,4931/3 = 133,944...178,591 мм.


Согласно табл. 7.8[1] принимаем d1 = 160,0 мм.


4. Диаметр большого шкива (см. формулу 7.3[1]):


d2 = U x d1 x (1 - ) = 1,45 x 160,0 x (1 - 0,015 = 228,52 мм.


где  = 0,015 - относительное скольжение ремня.


Принимаем d2 = 224,0 мм.


5. Уточняем передаточное отношение:


Uр = d2 / (d1 x (1 - )) = 224,0 / (160,0 x (1 - 0,015)) = 1,421


При этом угловая скорость ведомого шкива будет:


(ведомый шкив) = (ведущий шкив) / Uр = 76,131 / 1,421 = 53,564 рад/с.


Расхождение с требуемым (52,504-53,564)/52,504=-2,018%, что менее допускаемого: 3%.


Следовательно, окончательно принимаем диаметры шкивов:


d1 = 160,0 мм;


d2 = 224,0 мм.


6. Межосевое расстояние Ap следует принять в интервале (см. формулу 7.26[1]):


amin = 0.55 x (d1 + d2) + T0 = 0.55 x (160,0 + 224,0) + 6,0 = 217,2 мм;


amax = d1 + d2 = 160,0 + 224,0 = 384,0 мм.


где T0 = 6,0 мм (высота сечения ремня).


Принимаем предварительно значение a = 447,0 мм.


7. Расчетная длина ремня по формуле 7.7[1]:


L = 2 x a + 0.5 x  x (d1 + d2) + (d2 - d1)2 / (4 x a) =


2 x 447,0 + 0.5 x 3,142 x (160,0 + 224,0) + (224,0 - 160,0)2 / (4 x 447,0) =


1499,477 мм.


Выбираем значение по стандарту (см. табл. 7.7[1]) 1500,0 мм.


8. Уточнённое значение межосевого расстояния aр с учетом стандартной длины ремня L (см. формулу 7.27[1]):


aр = 0.25 x ((L - w) + ((L - w)2 - 2 x y)1/2)


где w = 0.5 x  x (d1 + d2) = 0.5 x 3,142 x (160,0 + 224,0) = 603,186 мм;


y = (d2 - d1)2 = (224,0 - 224,0)2 = 4096,0 мм.


Тогда:


aр = 0.25 x ((1500,0 - 603,186) + ((1500,0 - 603,186)2 - 2 x 4096,0)1/2) = 447,262 мм,


При монтаже передачи необходимо обеспечить возможность уменьшения межосевого расстояния на 0,01 x L = 15,0 мм для облегчения надевания ремней на шкивы и возможность увеличения его на 0,025 x L = 37,5 мм для увеличения натяжения ремней.


9. Угол обхвата меньшего шкива по формуле 7.28[1]:


1 = 180o - 57 x (d2 - d1) / aр = 180o - 57 x (224,0 - 160,0) / aр = 171,844o


10. Коэффициент режима работы, учитывающий условия эксплуатации передачи, по табл. 7.10[1]: Cp = 1,2.


11. Коэффициент, учитывающий влияние длины ремня по табл. 7.9[1]: CL = 0,98.


12. Коэффициент, учитывающий влияние угла обхвата (см. пояснения к формуле 7.29[1]): C = 0,98.


13. Коэффициент, учитывающий число ремней в передаче (см. пояснения к формуле 7.29[1]): предполагая, что ремней в передаче будет от 4 до 6, примем коэффициент Сz = 0,85.


14. Число ремней в передаче:


z = P x Cp / (PoCL x C x Cz) = 6775,872 x 1,2 / (1870,0 x 0,98 x 0,98 x 0,85 = 5,329,


где Рo = 1,87 кВт - мощность, передаваемая одним клиновым ремнем, кВт (см. табл. 7.8[1]).


Принимаем z = 6,0.


15. Скорость:


V = 0.5 x (ведущего шкива) x d1 = 0.5 x 76,131 x 0,16 = 6,091 м/c.


16. Нажатие ветви клинового ремня по формуле 7.30[1]:


F0 = 850 x P x Cр x CL / (z x V x C) +  x V2 =


850 x 6,776 x 1,2 x 0,98 / (6,0 x 6,091 x 0,98) + 0,1 x 6,0912 = 192,915 H.


где  = 0,1 Hxc2/м2 - коэффициент, учитывающий влияние центробежных сил (см. пояснения к формуле 7.30[1]).


17. Давление на валы находим по формуле 7.31[1]:


Fв = 2 x F0 x sin(/2) = 2 x 192,915 x 6,0 x sin(171,844o/2) = 2309,12 H.


18. Напряжение от силы F0 находим по формуле 7.19[1]:


1 = F0 / A = 192,915 / 81,0 = 2,382 МПа.


где A = 81,0 мм2 - площадь поперечного сечения ремня.


19. Напряжение изгиба (формулa 7.19[1]):


и = 2 x Еи x y / d1 = 100 x 3,0 / 160,0 = 1,875 МПа.


где Еи = 100 МПа - для резинотканевых ремней; y - растояние от нейтральной оси до опасного волокна сечения ремня y = 3,0.


20. Напряжение от центробежных сил (по формуле 7.19[1]):


v =  x V2 x 10-6 = 1100 x 0,0062 = 0,041 МПа.


где  = 1100 кг/м3 - плотность ремня.


21. Максимальное напряжение по формуле 7.18[1] будет:


max = 1 + и + v = 2,382 + 1,875 + 0,041 = 4,297 МПа.


Условие прочности max <= 7 МПа выполнено.


22. Проверка долговечности ремня:


Находим рабочий ресурс ремня по формуле 7.22[1]


а) базовое число циклов для данного типа ремня:


Noц = 4600000,0;


б) коэффициент, учитывающий влияние передаточного отношения;


Ci = 1.5 x U1/3 - 0.5 = 1.5 x 1,4211/3 = 1,187;


в) коэффициент, учитывающий характер нагрузки СH = 1 при постоянной нагрузке.


H0 = Noц x Lр x Ci x CH x (-1 / max)8 / (60 x  x d1 x n(ведущий шкив)) =


4600000,0 x 1500,0 x 1,187 x 1,0 x (7,0 / 4,297)8 / (60 x 3,142 x 160,0 x 727,0) =


18503,085 ч.


При среднем режиме нагрузки рабочий ресурс ремня должен быть не менее 2000 часов


Таким образом условие долговечности выполнено.


23. Ширина шкивов Вш (см. табл. 7.12[1]):


Вш = (z - 1) x e + 2 x f = (6,0 - 1) x 15,0 + 2 x 10,0 = 95,0 мм.


Расчет 2-й зубчатой цилиндрической передачи


Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. табл. 2.1-2.3[1]):


- для шестерни : сталь : 45


термическая обработка : улучшение


твердость : HB 230


- для колеса : сталь : 45Л


термическая обработка : нормализация


твердость : HB 160


Допустимые контактные напряжения (стр. 13[2]) , будут:


[]H = H lim x ZN x ZR x Zv / SH ,


По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :


H lim b = 2 x HB + 70 .


H lim(шестерня) = 2 x 230,0 + 70 = 530,0 МПа;


H lim(колесо) = 2 x 160,0 + 70 = 390,0 МПа;


SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.


ZN = (NHG / NHE)1/6,


где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:


NHG = 30 x HBср2.4 <= 12 x 107


NHG(шест.) = 30 x 230,02.4 = 13972305,126


NHG(кол.) = 30 x 160,02.4 = 5848024,9


NHE = H x Nк - эквивалентное число циклов.


Nк = 60 x n x c x t


Здесь :


- n - частота вращения, об./мин.; nшест. = 501,379 об./мин.; nкол. = 159,168 об./мин.


- c = 1 - число колёс, находящихся в зацеплении;


t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.


- Lг=5,0 г. - срок службы передачи;


- С=2 - количество смен;


- tc=8,0 ч. - продолжительность смены.


t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.


H = 0,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:


Nк(шест.) = 60 x 501,379 x 1 x 29200,0 = 878416008,0


Nк(кол.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0


NHE(шест.) = 0,18 x 878416008,0 = 158114881,44


NHE(кол.) = 0,18 x 278862336,0 = 50195220,48


В итоге получаем:


ZN(шест.) = (13972305,126 / 158114881,44)1/6 = 0,667


Так как ZN(шест.)<1.0 , то принимаем ZN(шест.) = 1,0


ZN(кол.) = (5848024,9 / 50195220,48)1/6 = 0,699


Так как ZN(кол.)<1.0 , то принимаем ZN(кол.) = 1,0


ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.


Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15


Предварительное значение межосевого расстояния:


a' = K x (U + 1) x (Tшест. / U)1/3


где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:


a' = 10 x (3,15 + 1) x (122,653 / 3,15)1/3 = 140,66 мм.


Окружная скорость Vпредв. :


Vпредв. = 2 x  x a' x nшест. / (6 x 104 x (U + 1)) =


2 x 3.142 x 140,66 x 501,379 / (6 x 104 x (3,15 + 1)) = 1,78 м/с


По найденной скорости получим Zv:


Zv = 0.85 x V0.1 = 0.85 x 1,780.1 = 0,9


Допустимые контактные напряжения:


для шестерни []H1 = 530,0 x 1,0 x 0,9 x 1,0 / 2,2 = 216,818 МПа;


для колеса []H2 = 390,0 x 1,0 x 0,9 x 1,0 / 2,2 = 159,545 МПа;


Для косозубых колес расчетное допустимое контактное напряжение находим по формуле 3.10 гл.3[1]:


[]H = (0.5 x ( []H12 + []H22 ))1/2


Тогда расчетное допускаемое контактное напряжение будет:


[]H = (0.5 x (216,8182 + 159,5452))1/2 = 190,348 МПа.


Требуемое условие выполнено :


[]H = 190,348МПа < 1.25 x []H2 = 1.25 x 159,545 = 199,432


Допустимые напряжения изгиба (стр. 15[2]) , будут:


[]F = F lim x YN x YR x YA / SF ,


По таблицам 2.1 и 2.2 гл. 2[2] имеем


F lim(шестерня) = 414,0 МПа;


F lim(колесо) = 288,0 МПа;


SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.


YN = (NFG / NFE)1/6,


где NFG - число циклов, соответствующее перелому кривой усталости:


NFG = 4 x 106


NFE = F x Nк - эквивалентное число циклов.


Nк = 60 x n x c x t


Здесь :


- n - частота вращения, об./мин.; nшест. = 501,379 об./мин.; nкол. = 159,168 об./мин.


- c = 1 - число колёс, находящихся в зацеплении;


t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.


- Lг=5,0 г. - срок службы передачи;


- С=2 - количество смен;


- tc=8,0 ч. - продолжительность смены.


t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.


F = 0,065 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:


Nк(шест.) = 60 x 501,379 x 1 x 29200,0 = 878416008,0


Nк(кол.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0


NFE(шест.) = 0,065 x 878416008,0 = 57097040,52


NFE(кол.) = 0,065 x 278862336,0 = 18126051,84


В итоге получаем:


YN(шест.) = (4 x 106 / 57097040,52)1/6 = 0,642


Так как YN(шест.)<1.0 , то принимаем YN(шест.) = 1,0


YN(кол.) = (4 x 106 / 18126051,84)1/6 = 0,777


Так как YN(кол.)<1.0 , то принимаем YN(кол.) = 1,0


YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.


YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).


Допустимые напряжения изгиба:


для шестерни []F1 = 414,0 x 1,0 x 1,0 x 0,65 / 1,7 = 158,294 МПа;


для колеса []F2 = 288,0 x 1,0 x 1,0 x 0,65 / 1,7 = 110,118 МПа;


По таблице 2.5[2] выбираем 9-ю степень точности.


Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):


a = K x a x (U + 1) x (KH x Tшест. / (ba x U x []2H))1/3 ,


где Кa = 410 - для косозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем ba = 0,315; KH - коэффициент нагрузки в расчётах на контактную прочность:


KH = KHv x KH x KH


где KHv = 1,036 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KH - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KH определяют по формуле:


KH = 1 + (KHo - 1) x KH


Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHo предварительно вычисляем ориентировочное значение коэффициента bd:


ba = 0.5 x ba x (U + 1) =


0.5 x 0,315 x (3,15 + 1) = 0,654


По таблице 2.7[2] KHo = 1,091. KH = 0,194 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:


KH = 1 + (1,091 - 1) x 0,194 = 1,018


Коэффициент KH определяют по формуле:


KH = 1 + (KHo - 1) x KH


KHo - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для косозубой передачи и для данного типа сталей колёс:


KHo = 1 + 0.25 x (nст - 5) =


1 + 0.25 x (9,0 - 5) = 2,0


Так как значение получилось большим 1.6, то принимаем KHo = 1.6


KH = 1 + (1,6 - 1) x 0,194 = 1,116


В итоге:


KH = 1,036 x 1,018 x 1,116 = 1,176


Тогда:


a = 410,0 x (3,15 + 1) x (1,176 x 122,653 / (0,315 x 3,15 x 190,3482))1/3 = 270,398 мм.


Принимаем ближайшее значение a по стандартному ряду: a = 280,0 мм.


Предварительные основные размеры колеса:


Делительный диаметр:


d2 = 2 x a x U / (U + 1) =


2 x 280,0 x 3,15 / (3,15 + 1) = 425,06 мм.


Ширина:


b2 = ba x a =


0,315 x 280,0 = 88,2 мм.


Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 90,0 мм.


Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:


mmax = 2 x a / (17 x (U + 1)) =


2 x 280,0 / (17 x (3,15 + 1)) = 7,938 мм.


Минимально допустимый модуль mmin, мм, определяют из условия прочности:


mmin = (Km x KF x Tшест. x (U + 1)) / (a x b2 x []F)


где Km = 2.8 x 103 - для косозубых передач; []F - наименьшее из значений []F1 и []F2.


Коэффициент нагрузки при расчёте по напряжениям изгиба:


KF = KFv x KF x KF


Здесь коэффициент KFv = 1,071 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KF - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:


KF = 0.18 + 0.82 x KHo = 0.18 + 0.82 x 1,091 = 1,074


KF = KFo = 1,6 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.


Тогда:


KF = 1,071 x 1,074 x 1,6 = 1,841


mmin = (2.8 x 103 x 1,841 x 122,653 x (3,15 + 1)) / (280,0 x 90,0 x 110,118) = 0,946 мм.


Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 1,0.


Для косозубой передачи предварительно принимаем угол наклона зубьев:  = 8,0o.


Суммарное число зубьев:


Z = 2 x a x cos() / m =


2 x 280,0 x cos(8,395o) / 1,0 = 554,55


Полученное значение Z округляем в меньшую сторону до целого числа Z = 554. После этого определяется действительное значение угла o наклона зубьев:


 = arccos(Z x m / (2 x a)) =


arccos(554,0 x 1,0 / (2 x 280,0)) = 8,395o


Число зубьев шестерни:


z1 = Z / (U + 1) >= z1min = 17


z1 = 554 / ( 3.15 + 1) = 133,494


Принимаем z1 = 134


Коэффициент смещения x1 = 0 при z1 >= 17.


Для колеса внешнего зацепления x2 = -x1 = 0,0


Число зубьев колеса внешнего зацепления:


z2 = Z - z1 = 554 - 134 = 420


Фактическое передаточное число:


Uф = z2 / z1 = 420 / 134 = 3,134


Фактическое значение передаточного числа отличается на 0,498%, что не более, чем допустимые 4% для двухступенчатого редуктора.


Делительное межосевое расстояние:


a = 0.5 x m x (z2 + z1) / cos() = 0.5 x 1,0 x ( 420 + 134) / cos(8,395o) = 280,0 мм.


Коэффициент воспринимаемого смещения:


y = -(aw - a) / m = -(280,0 - 280,0) / 1,0 = 0,0


Диаметры колёс:


делительные диаметры:


d1 = z1 x m / cos() = 134 x 1,0 / cos(8,395o) = 135,451 мм.


d2 = 2 x a - d1 = 2 x 280 - 135,451 = 424,549 мм.


диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:


da1 = d1 + 2 x (1 + x1 - y) x m = 135,451 + 2 x (1 + 0,0 - 0,0) x 1,0 = 137,451 мм.


df1 = d1 - 2 x (1.25 - x1) x m = 135,451 - 2 x (1.25 - 0,0) x 1,0 = 132,951 мм.


da2 = d2 + 2 x (1 + x2 - y) x m = 424,549 + 2 x (1 + 0,0 - 0,0) x 1,0 = 426,549 мм.


df2 = d2 - 2 x (1.25 - x2) x m = 424,549 - 2 x (1.25 - 0,0) x 1,0 = 422,049 мм.


Расчётное значение контактного напряжения:


H = Z x ((KH x Tшест. x (Uф + 1)3) / (b2 x Uф))1/2 / a <= []H


где Z = 8400 - для прямозубой передачи. Тогда:


H = 8400 x ((1,176 x 122,653 x (3,134 + 1)3) / (90,0 x 3,134))1/2 / 280,0 =


180,365 МПа <= []H = 190,348 МПа.


Силы в зацеплении:


окружная:


Ft = 2 x Tшест. / d1 = 2 x 122652,556 / 135,451 = 1811,021 H;


радиальная:


Fr = Ft x tg() / cos() = 1811,021 x tg(20o) / cos(8,395o) = 666,297 H;


осевая:


Fa = Ft x tg() = 1811,021 x tg(8,395o) = 267,259 H.


Расчётное напряжение изгиба:


в зубьях колеса:


F2 = KF x Ft x YFS2 x Y x Y / (b2 x m) <= []F2


в зубьях шестерни:


F1 = F2 x YFS1 / YFS2 <= []F1


Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:


zv1 = z1 / cos3() = 134 / cos3(8,395o) = 138,401


zv2 = z2 / cos3() = 420 / cos3(8,395o) = 433,795


По табл. 2.10[2]:


YFS1 = 3,59


YFS2 = 3,59


Значение коэффициента Y, учитывающего угол наклона зуба, вычисляют по формуле:


Y = 1 -  / 100 = 1 - 8,395 / 100 = 0,916


Для косозубой передачи значение коэффициента, учитывающего перекрытие зубьев Ye = 0,65.


Тогда:


F2 = 1,841 x 1811,021 x 3,59 x 0,916 x 0,65 / (90,0 x 1,0) =


79,206 МПа <= []F2 = 110,118 МПа.


F1 = 79,206 x 3,59 / 3,59 =


79,206 МПа <= []F1 = 158,294 МПа.


Расчет 3-й зубчатой цилиндрической передачи


Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. табл. 2.1-2.3[1]):


- для шестерни : сталь : 45


термическая обработка : улучшение


твердость : HB 230


- для колеса : сталь : 45


термическая обработка : улучшение


твердость : HB 210


Допустимые контактные напряжения (стр. 13[2]) , будут:


[]H = H lim x ZN x ZR x Zv / SH ,


По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350 :


H lim b = 2 x HB + 70 .


H lim(шестерня) = 2 x 230,0 + 70 = 530,0 МПа;


H lim(колесо) = 2 x 210,0 + 70 = 490,0 МПа;


SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.


ZN = (NHG / NHE)1/6,


где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:


NHG = 30 x HBср2.4 <= 12 x 107


NHG(шест.) = 30 x 230,02.4 = 13972305,126


NHG(кол.) = 30 x 210,02.4 = 11231753,462


NHE = H x Nк - эквивалентное число циклов.


Nк = 60 x n x c x t


Здесь :


- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.


- c = 1 - число колёс, находящихся в зацеплении;


t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.


- Lг=5,0 г. - срок службы передачи;


- С=2 - количество смен;


- tc=8,0 ч. - продолжительность смены.


t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.


H = 0,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:


Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0


Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0


NHE(шест.) = 0,18 x 278862336,0 = 50195220,48


NHE(кол.) = 0,18 x 124491864,0 = 22408535,52


В итоге получаем:


ZN(шест.) = (13972305,126 / 50195220,48)1/6 = 0,808


Так как ZN(шест.)<1.0 , то принимаем ZN(шест.) = 1,0


ZN(кол.) = (11231753,462 / 22408535,52)1/6 = 0,891


Так как ZN(кол.)<1.0 , то принимаем ZN(кол.) = 1,0


ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.


Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15


Предварительное значение межосевого расстояния:


a' = K x (U + 1) x (Tшест. / U)1/3


где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:


a' = 10 x (2,24 + 1) x (372,93 / 2,24)1/3 = 178,24 мм.


Окружная скорость Vпредв. :


Vпредв. = 2 x  x a' x nшест. / (6 x 104 x (U + 1)) =


2 x 3.142 x 178,24 x 159,168 / (6 x 104 x (2,24 + 1)) = 0,917 м/с


По найденной скорости получим Zv:


Zv = 0.85 x V0.1 = 0.85 x 0,9170.1 = 0,843


Допустимые контактные напряжения:


для шестерни []H1 = 530,0 x 1,0 x 0,9 x 1,0 / 2,2 = 216,818 МПа;


для колеса []H2 = 490,0 x 1,0 x 0,9 x 1,0 / 2,2 = 200,455 МПа;


Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса.


Тогда расчетное допускаемое контактное напряжение будет:


[]H = []H2 = 200,455 МПа.


Требуемое условие выполнено :


[]H = 200,455МПа < 1.25 x []H2 = 1.25 x 200,455 = 250,568


Допустимые напряжения изгиба (стр. 15[2]) , будут:


[]F = F lim x YN x YR x YA / SF ,


По таблицам 2.1 и 2.2 гл. 2[2] имеем


F lim(шестерня) = 414,0 МПа;


F lim(колесо) = 378,0 МПа;


SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.


YN = (NFG / NFE)1/6,


где NFG - число циклов, соответствующее перелому кривой усталости:


NFG = 4 x 106


NFE = F x Nк - эквивалентное число циклов.


Nк = 60 x n x c x t


Здесь :


- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.


- c = 1 - число колёс, находящихся в зацеплении;


t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.


- Lг=5,0 г. - срок службы передачи;


- С=2 - количество смен;


- tc=8,0 ч. - продолжительность смены.


t = 365 x 5,0 x 2 x 8,0 = 29200,0 ч.


F = 0,065 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:


Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0


Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0


NFE(шест.) = 0,065 x 278862336,0 = 18126051,84


NFE(кол.) = 0,065 x 124491864,0 = 8091971,16


В итоге получаем:


YN(шест.) = (4 x 106 / 18126051,84)1/6 = 0,777


Так как YN(шест.)<1.0 , то принимаем YN(шест.) = 1,0


YN(кол.) = (4 x 106 / 8091971,16)1/6 = 0,889


Так как YN(кол.)<1.0 , то принимаем YN(кол.) = 1,0


YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.


YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).


Допустимые напряжения изгиба:


для шестерни []F1 = 414,0 x 1,0 x 1,0 x 0,65 / 1,7 = 158,294 МПа;


для колеса []F2 = 378,0 x 1,0 x 1,0 x 0,65 / 1,7 = 144,529 МПа;


По таблице 2.5[2] выбираем 9-ю степень точности.


Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):


a = K x a x (U + 1) x (KH x Tшест. / (ba x U x []2H))1/3 ,


где Кa = 450 - для прямозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем ba = 0,315; KH - коэффициент нагрузки в расчётах на контактную прочность:


KH = KHv x KH x KH


где KHv = 1,06 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KH - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KH определяют по формуле:


KH = 1 + (KHo - 1) x KH


Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHo предварительно вычисляем ориентировочное значение коэффициента bd:


ba = 0.5 x ba x (U + 1) =


0.5 x 0,315 x (2,24 + 1) = 0,51


По таблице 2.7[2] KHo = 1,067. KH = 0,174 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:


KH = 1 + (1,067 - 1) x 0,174 = 1,012


Коэффициент KH определяют по формуле:


KH = 1 + (KHo - 1) x KH


KHo - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для прямозубой передачи:


KHo = 1 + 0.06 x (nст - 5) =


1 + 0.06 x (9,0 - 5) = 1,24


KH = 1 + (1,24 - 1) x 0,174 = 1,042


В итоге:


KH = 1,06 x 1,012 x 1,042 = 1,117


Тогда:


a = 450,0 x (2,24 + 1) x (1,117 x 372,93 / (0,315 x 2,24 x 200,4552))1/3 = 357,111 мм.


Принимаем ближайшее значение a по стандартному ряду: a = 360,0 мм.


Предварительные основные размеры колеса:


Делительный диаметр:


d2 = 2 x a x U / (U + 1) =


2 x 360,0 x 2,24 / (2,24 + 1) = 497,778 мм.


Ширина:


b2 = ba x a =


0,315 x 360,0 = 113,4 мм.


Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 110,0 мм.


Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:


mmax = 2 x a / (17 x (U + 1)) =


2 x 360,0 / (17 x (2,24 + 1)) = 13,072 мм.


Минимально допустимый модуль mmin, мм, определяют из условия прочности:


mmin = (Km x KF x Tшест. x (U + 1)) / (a x b2 x []F)


где Km = 3.4 x 103 - для прямозубых передач; []F - наименьшее из значений []F1 и []F2.


Коэффициент нагрузки при расчёте по напряжениям изгиба:


KF = KFv x KF x KF


Здесь коэффициент KFv = 1,018 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KF - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:


KF = 0.18 + 0.82 x KHo = 0.18 + 0.82 x 1,067 = 1,055


KF = KFo = 1,24 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.


Тогда:


KF = 1,018 x 1,055 x 1,24 = 1,331


mmin = (3.4 x 103 x 1,331 x 372,93 x (2,24 + 1)) / (360,0 x 110,0 x 144,529) = 0,955 мм.


Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 3,0.


Для прямозубой передачи предварительно принимаем угол наклона зубьев:  = 0o.


Суммарное число зубьев:


Z = 2 x a x cos() / m =


2 x 360,0 x cos(0,0o) / 3,0 = 240,0


Полученное значение Z округляем в меньшую сторону до целого числа Z = 240. После этого определяется действительное значение угла o наклона зубьев:


 = arccos(Z x m / (2 x a)) =


arccos(240,0 x 3,0 / (2 x 360,0)) = 0,0o


Число зубьев шестерни:


z1 = Z / (U + 1) >= z1min = 17


z1 = 240 / ( 2.24 + 1) = 74,074


Принимаем z1 = 75


Коэффициент смещения x1 = 0 при z1 >= 17.


Для колеса внешнего зацепления x2 = -x1 = 0,0


Число зубьев колеса внешнего зацепления:


z2 = Z - z1 = 240 - 75 = 165


Фактическое передаточное число:


Uф = z2 / z1 = 165 / 75 = 2,2


Фактическое значение передаточного числа отличается на 1,786%, что не более, чем допустимые 4% для двухступенчатого редуктора.


Делительное межосевое расстояние:


a = 0.5 x m x (z2 + z1) / cos() = 0.5 x 3,0 x ( 165 + 75) / cos(0,0o) = 360,0 мм.


Коэффициент воспринимаемого смещения:


y = -(aw - a) / m = -(360,0 - 360,0) / 3,0 = 0,0


Диаметры колёс:


делительные диаметры:


d1 = z1 x m / cos() = 75 x 3,0 / cos(0,0o) = 225,0 мм.


d2 = 2 x a - d1 = 2 x 360 - 225,0 = 495,0 мм.


диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:


da1 = d1 + 2 x (1 + x1 - y) x m = 225,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 231,0 мм.


df1 = d1 - 2 x (1.25 - x1) x m = 225,0 - 2 x (1.25 - 0,0) x 3,0 = 217,5 мм.


da2 = d2 + 2 x (1 + x2 - y) x m = 495,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 501,0 мм.


df2 = d2 - 2 x (1.25 - x2) x m = 495,0 - 2 x (1.25 - 0,0) x 3,0 = 487,5 мм.


Расчётное значение контактного напряжения:


H = Z x ((KH x Tшест. x (Uф + 1)3) / (b2 x Uф))1/2 / a <= []H


где Z = 9600 - для прямозубой передачи. Тогда:


H = 9600 x ((1,117 x 372,93 x (2,2 + 1)3) / (110,0 x 2,2))1/2 / 360,0 =


200,286 МПа <= []H = 200,455 МПа.


Силы в зацеплении:


окружная:


Ft = 2 x Tшест. / d1 = 2 x 372929,696 / 225,0 = 3314,931 H;


радиальная:


Fr = Ft x tg() / cos() = 3314,931 x tg(20o) / cos(0,0o) = 1206,536 H;


осевая:


Fa = Ft x tg() = 3314,931 x tg(0,0o) = 0,0 H.


Расчётное напряжение изгиба:


в зубьях колеса:


F2 = KF x Ft x YFS2 x Y x Y / (b2 x m) <= []F2


в зубьях шестерни:


F1 = F2 x YFS1 / YFS2 <= []F1


Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:


zv1 = z1 / cos3() = 75 / cos3(0,0o) = 75,0


zv2 = z2 / cos3() = 165 / cos3(0,0o) = 165,0


По табл. 2.10[2]:


YFS1 = 3,605


YFS2 = 3,59


Значение коэффициента Y, учитывающего угол наклона зуба, вычисляют по формуле:


Y = 1 -  / 100 = 1 - 0,0 / 100 = 1,0


Для прямозубой передачи для 9-й точности значение коэффициента, учитывающего перекрытие зубьев Ye = 1.


Тогда:


F2 = 1,331 x 3314,931 x 3,59 x 1,0 x 1,0 / (110,0 x 3,0) =


47,997 МПа <= []F2 = 144,529 МПа.


F1 = 47,997 x 3,605 / 3,59 =


48,198 МПа <= []F1 = 158,294 МПа.


ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ ВАЛОВ


Предварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям.


Диаметр вала при допускаемом напряжении [кр] = 20 МПа вычисляем по формуле 8.16[1]:


dв >= (16 x Tк / ( x [к]))1/3


В е д у щ и й в а л.


dв = (16 x 122652,556 / (3,142 x 25))1/3 = 29,235 мм.


Под 1-й элемент (ведомый) выбираем диаметр вала: 36,0 мм.


Под 2-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.


Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.


Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.


2 - й в а л.


dв = (16 x 372929,696 / (3,142 x 25))1/3 = 42,353 мм.


Под 1-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.


Под 2-й элемент (ведомый) выбираем диаметр вала: 55,0 мм.


Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.


Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.


В ы х о д н о й в а л.


dв = (16 x 806333,672 / (3,142 x 25))1/3 = 54,766 мм.


Под 1-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.


Под 2-й элемент (ведомый) выбираем диаметр вала: 70,0 мм.


Под 3-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.


Под свободный (присоединительный) конец вала выбираем диаметр вала: 60,0 мм.


Диаметры участков валов назначаем исходя из конструктивных соображений.


КОНСТРУКТИВНЫЕ РАЗМЕРЫ ШЕСТЕРЕН И КОЛЁС


ВЕДУЩИЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 48,0 = 72,0 мм.


Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 48,0 = 57,6 мм = 95,0 мм.Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10,0 мм.


где h = 8,7 мм - глубина канавки под ремень от делительного диаметра.


Внутренний диаметр обода:


Dобода = d1 - 2 x o = 160,0 - 2 x 10,0 = 140,0 мм = 122,6 мм.


Диаметр центровой окружности:


DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (122,6 + 72,0) = 97,3 мм = 97,0 мм


где Doбода = 122,6 мм - внутренний диаметр обода.


Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (122,6 + 72,0) / 4 = 12,65 мм = 13,0 мм.


ВЕДОМЫЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 36,0 = 54,0 мм.


Длина ступицы: Lступ = (1...1,5) x dвала = 1,2 x 36,0 = 43,2 мм = 95,0 мм.Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 10,0 мм.


Внутренний диаметр обода:


Dобода = d2 - 2 x o = 224,0 - 2 x 10,0 = 204,0 мм = 186,6 мм.


Диаметр центровой окружности:


DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (186,6 + 54,0) = 120,3 мм = 120,0 мм


где Doбода = 186,6 мм - внутренний диаметр обода.


Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (186,6 + 54,0) / 4 = 33,15 мм = 33,0 мм.


ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ПЕРЕДАЧИ.


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.


Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 95,0 мм.


Толщина обода: о = 2,2 x mn + 0,05 x b1 = 2,2 x 1,0 + 0,05 x 1,0 = 6,95 мм = 7,0 мм.


где b1 = 95,0 мм - ширина зубчатого венца.


Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (7,0 + 0,5 x (75,0 - 50,0)) = 9,75 мм = 24,0 мм.


Внутренний диаметр обода:


Dобода = Df1 - 2 x o = 132,951 - 2 x 7,0 = 118,951 мм = 119,0 мм.


Диаметр центровой окружности:


DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (119,0 + 75,0) = 97,0 мм = 98,0 мм


где Doбода = 119,0 мм - внутренний диаметр обода.


Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (119,0 + 75,0) / 4 = 11,0 мм


Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм


Округляем по номинальному ряду размеров: n = 1,0 мм.


ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ПЕРЕДАЧИ.


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 55,0 = 82,5 мм. = 82,0 мм.


Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 55,0 = 44,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 90,0 мм.


Толщина обода: о = 2,2 x mn + 0,05 x b2 = 2,2 x 1,0 + 0,05 x 1,0 = 6,7 мм = 7,0 мм.


где b2 = 90,0 мм - ширина зубча

того венца.


Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (7,0 + 0,5 x (82,0 - 55,0)) = 10,25 мм = 22,0 мм.


Внутренний диаметр обода:


Dобода = Df2 - 2 x o = 422,049 - 2 x 7,0 = 408,049 мм = 408,0 мм.


Диаметр центровой окружности:


DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (408,0 + 82,0) = 245,0 мм = 246,0 мм


где Doбода = 408,0 мм - внутренний диаметр обода.


Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (408,0 + 82,0) / 4 = 81,5 мм = 82,0 мм.


Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм


Округляем по номинальному ряду размеров: n = 1,0 мм.


ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ПЕРЕДАЧИ.


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.


Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 115,0 мм.


Толщина обода: о = 2,2 x mn + 0,05 x b1 = 2,2 x 3,0 + 0,05 x 3,0 = 12,35 мм = 12,0 мм.


где b1 = 115,0 мм - ширина зубчатого венца.


Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (12,0 + 0,5 x (75,0 - 50,0)) = 12,25 мм = 29,0 мм.


Внутренний диаметр обода:


Dобода = Df1 - 2 x o = 217,5 - 2 x 12,0 = 193,5 мм = 194,0 мм.


Диаметр центровой окружности:


DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (194,0 + 75,0) = 134,5 мм = 135,0 мм


где Doбода = 194,0 мм - внутренний диаметр обода.


Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (194,0 + 75,0) / 4 = 29,75 мм = 30,0 мм.


Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм


Округляем по номинальному ряду размеров: n = 2,0 мм.


ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ПЕРЕДАЧИ.


Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 70,0 = 105,0 мм.


Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 70,0 = 56,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 110,0 мм.


Толщина обода: о = 2,2 x mn + 0,05 x b2 = 2,2 x 3,0 + 0,05 x 3,0 = 12,1 мм = 12,0 мм.


где b2 = 110,0 мм - ширина зубчатого венца.


Толщина диска: С = 0,5 x (о + 0,5 x (Dступ. - Dвала)) = 0,5 x (12,0 + 0,5 x (105,0 - 70,0)) = 14,75 мм = 28,0 мм.


Внутренний диаметр обода:


Dобода = Df2 - 2 x o = 487,5 - 2 x 12,0 = 463,5 мм = 464,0 мм.


Диаметр центровой окружности:


DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (464,0 + 105,0) = 284,5 мм = 285,0 мм


где Doбода = 464,0 мм - внутренний диаметр обода.


Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (464,0 + 105,0) / 4 = 89,75 мм = 90,0 мм.


Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм


Округляем по номинальному ряду размеров: n = 2,0 мм.


ПРОВЕРКА ПРОЧНОСТИ ШПОНОЧНЫХ СОЕДИНЕНИЙ


ВЕДУЩИЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.


Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).


Материал шпоноки - сталь 45 нормализованная.


Напряжение смятия и условие прочности проверяем по формуле 8.22[1].


см = 2 x Т / (dвала x (l - b) x (h - t1)) =


2 x 89002,493 / (48,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 13,941 МПа <= [см]


где Т = 89002,493 Нxмм - момент на валу; dвала = 48,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.


Проверим шпонку на срез по формуле 8.24[1].


ср = 2 x Т / (dвала x (l - b) x b) =


2 x 89002,493 / (48,0 x (90,0 - 14,0) x 14,0) = 3,485 МПа <= [ср]


Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.


Все условия прочности выполнены.


ВЕДОМЫЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.


Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 10x8. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).


Материал шпоноки - сталь 45 нормализованная.


Напряжение смятия и условие прочности проверяем по формуле 8.22[1].


см = 2 x Т / (dвала x (l - b) x (h - t1)) =


2 x 122652,556 / (36,0 x (90,0 - 10,0) x (8,0 - 5,0)) = 28,392 МПа <= [см]


где Т = 122652,556 Нxмм - момент на валу; dвала = 36,0 мм - диаметр вала; h = 8,0 мм - высота шпонки; b = 10,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.


Проверим шпонку на срез по формуле 8.24[1].


ср = 2 x Т / (dвала x (l - b) x b) =


2 x 122652,556 / (36,0 x (90,0 - 10,0) x 10,0) = 8,518 МПа <= [ср]


Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.


Все условия прочности выполнены.


ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.


Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).


Материал шпоноки - сталь 45 нормализованная.


Напряжение смятия и условие прочности проверяем по формуле 8.22[1].


см = 2 x Т / (dвала x (l - b) x (h - t1)) =


2 x 122652,556 / (50,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 18,444 МПа <= [см]


где Т = 122652,556 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.


Проверим шпонку на срез по формуле 8.24[1].


ср = 2 x Т / (dвала x (l - b) x b) =


2 x 122652,556 / (50,0 x (90,0 - 14,0) x 14,0) = 4,611 МПа <= [ср]


Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.


Все условия прочности выполнены.


ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.


Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 16x10. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).


Материал шпоноки - сталь 45 нормализованная.


Напряжение смятия и условие прочности проверяем по формуле 8.22[1].


см = 2 x Т / (dвала x (l - b) x (h - t1)) =


2 x 372929,696 / (55,0 x (80,0 - 16,0) x (10,0 - 6,0)) = 52,973 МПа <= [см]


где Т = 372929,696 Нxмм - момент на валу; dвала = 55,0 мм - диаметр вала; h = 10,0 мм - высота шпонки; b = 16,0 мм - ширина шпонки; l = 80,0 мм - длина шпонки; t1 = 6,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.


Проверим шпонку на срез по формуле 8.24[1].


ср = 2 x Т / (dвала x (l - b) x b) =


2 x 372929,696 / (55,0 x (80,0 - 16,0) x 16,0) = 13,243 МПа <= [ср]


Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.


Все условия прочности выполнены.


ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.


Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).


Материал шпоноки - сталь 45 нормализованная.


Напряжение смятия и условие прочности проверяем по формуле 8.22[1].


см = 2 x Т / (dвала x (l - b) x (h - t1)) =


2 x 372929,696 / (50,0 x (110,0 - 14,0) x (9,0 - 5,5)) = 44,396 МПа <= [см]


где Т = 372929,696 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 110,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.


Проверим шпонку на срез по формуле 8.24[1].


ср = 2 x Т / (dвала x (l - b) x b) =


2 x 372929,696 / (50,0 x (110,0 - 14,0) x 14,0) = 11,099 МПа <= [ср]


Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.


Все условия прочности выполнены.


ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.


Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 20x12. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).


Материал шпоноки - сталь 45 нормализованная.


Напряжение смятия и условие прочности проверяем по формуле 8.22[1].


см = 2 x Т / (dвала x (l - b) x (h - t1)) =


2 x 806333,672 / (70,0 x (100,0 - 20,0) x (12,0 - 7,5)) = 63,995 МПа <= [см]


где Т = 806333,672 Нxмм - момент на валу; dвала = 70,0 мм - диаметр вала; h = 12,0 мм - высота шпонки; b = 20,0 мм - ширина шпонки; l = 100,0 мм - длина шпонки; t1 = 7,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75,0 МПа.


Проверим шпонку на срез по формуле 8.24[1].


ср = 2 x Т / (dвала x (l - b) x b) =


2 x 806333,672 / (70,0 x (100,0 - 20,0) x 20,0) = 14,399 МПа <= [ср]


Допускаемые напряжения среза при стальной ступице [ср] = 0,6 x [см] = 0,6 x 75,0 = 45,0 МПа.


Все условия прочности выполнены.


КОНСТРУКТИВНЫЕ РАЗМЕРЫ КОРПУСА РЕДУКТОРА


Для редукторов толщину стенки корпуса, отвечающую требованиям технологии литья, необходимой прочности и жёсткости корпуса, вычисляют по формуле:


 = 1.3 x (T(тихоходная ступень))1/4 = 1.3 x 806,3341/4 = 6,927 мм


Так как должно быть  >= 8.0 мм, принимаем  = 8.0 мм.


В местах расположения обработанных платиков, приливов, бобышек, во фланцах толщину стенки необходимо увеличить примерно в полтора раза:


1 = 1.5 x  = 1.5 x 8,0 = 12,0 мм


Плоскости стенок, встречающиеся под прямым углом, сопрягают радиусом r = 0.5 x  = 0.5 x 8,0 = 4,0 мм. Плоскости стенок, встречающиеся под тупым углом, сопрягают радиусом R = 1.5 x  = 1.5 x 8,0 = 12,0 мм.


Толщина внутренних ребер из-за более медленного охлаждения металла должна быть равна 0,8 x  = 0,8 x 8,0 = 6,4 мм.


Учитывая неточности литья, размеры сторон опорных платиков для литых корпусов должны быть на 2...4 мм больше размеров опорных поверхностей прикрепляемых деталей.


Обрабатываемые поверхности выполняются в виде платиков, высота h которых принимается h = (0,4...0,5) x . Принимаем h = 0,5 x 8,0 = 4,0 мм.


Толщина стенки крышки корпуса 3 = 0,9 x  = 0,9 x 6,927 = 6,235 мм. Округляя, получим 3 = 6,0 мм.


Диаметр винтов крепления крышки корпуса вычисляем в зависимости от вращающего момента на выходном валу редуктора:


d = 1,25 x (T(тихоходная ступень))1/3 = 1,25 x 806,3341/3 = 11,635 мм


Принимаем d = 12,0 мм.


Диаметр штифтов dшт = (0,7...0,8) x d = 0,7 x 12,0 = 8,4 мм. Принимаем dшт = 9,0 мм.


Диаметр винтов крепления редуктора к плите (раме):


dф = 1.25 x d = 1.25 x 12,0 = 15,0 мм. Принимаем dф = 16,0 мм.


Высоту ниши для крепления корпуса к плите (раме) принимаем:


h0 = 2,5 x d = 2,5 x 16,0 = 40,0 мм.


РАСЧЕТ РЕАКЦИЙ В ОПОРАХ


1-Й ВАЛ.


Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:


Fy1 = -2309,12 H


Fx3 = -1811,021 H


Fy3 = -666,297 H


Fz3 = -267,259 H


H3 = 67,726 мм


3 = 90,0o


Из условия равенства суммы моментов сил относительно 1-й опоры:


Rx2 = ( - F3 x Hx3 x - Fx1 x ( L1 + L2 + L3 ) - Fx3 x L3 ) / ( L2 + L3 )


= ( - 0,0 x 0,0 x - (0,0) x (95,0 + 85,0 + 198,0) - (-1811,021) x 198,0) / (85,0 + 198,0)


= 1267,075 H


Ry2 = ( - F3 x Hy3 x - Fy1 x ( L1 + L2 + L3 ) - Fy3 x L3 ) / ( L2 + L3 )


= ( - 0,0 x 67,726 x - (-2309,12) x (95,0 + 85,0 + 198,0) - (-666,297) x 198,0) / (85,0 + 198,0)


= 3614,397 H


Из условия равенства суммы сил относительно осей X и Y:


Rx4 = - Fx1 - Rx2 - Fx3


= - (0,0) - 1267,075 - (-1811,021)


= 543,946 H


Ry4 = - Fy1 - Ry2 - Fy3


= - (-2309,12) - 3614,397 - (-666,297)


= -638,98 H


Суммарные реакции опор:


R2 = (Rx22 + Ry22)1/2 = (1267,0752 + 3614,3972)1/2 = 3830,058 H;


R4 = (Rx42 + Ry42)1/2 = (543,9462 + (-638,98)2)1/2 = 839,151 H;


2-Й ВАЛ.


Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:


Fx2 = -1811,021 H


Fy2 = 666,297 H


Fz2 = 267,259 H


H2 = 212,274 мм


2 = 270,0o


Fx3 = -3314,931 H


Fy3 = -1206,536 H


Из условия равенства суммы моментов сил относительно 1-й опоры:


Rx1 = ( - F2 x Hx2 x - Fx2 x ( L2 + L3 ) - Fx3 x L3 ) / ( L1 + L2 + L3 )


= ( - 0,0 x (0,0) x - (-1811,021) x (103,0 + 95,0) - (-3314,931) x 95,0) / (85,0 + 103,0 + 95,0)


= 2379,861 H


Ry1 = ( - F2 x Hy2 x - Fy2 x ( L2 + L3 ) - Fy3 x L3 ) / ( L1 + L2 + L3 )


= ( - 0,0 x (-212,274) x - 666,297 x (103,0 + 95,0) - (-1206,536) x 95,0) / (85,0 + 103,0 + 95,0)


= 139,316 H


Из условия равенства суммы сил относительно осей X и Y:


Rx4 = - Rx1 - Fx2 - Fx3


= - 2379,861 - (-1811,021) - (-3314,931)


= 2746,091 H


Ry4 = - Ry1 - Fy2 - Fy3


= - 139,316 - 666,297 - (-1206,536)


= 400,924 H


Суммарные реакции опор:


R1 = (Rx12 + Ry12)1/2 = (2379,8612 + 139,3162)1/2 = 2383,935 H;


R4 = (Rx42 + Ry42)1/2 = (2746,0912 + 400,9242)1/2 = 2775,204 H;


3-Й ВАЛ.


Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:


Fx2 = -3314,931 H


Fy2 = 1206,536 H


Из условия равенства суммы моментов сил относительно 1-й опоры:


Rx1 = ( - Fx2 x L2 ) / ( L1 + L2 )


= ( - (-3314,931) x 95,0) / (188,0 + 95,0)


= 1112,786 H


Ry1 = ( - Fy2 x L2 ) / ( L1 + L2 )


= ( - 1206,536 x 95,0) / (188,0 + 95,0)


= -405,021 H


Из условия равенства суммы сил относительно осей X и Y:


Rx3 = - Rx1 - Fx2


= - 1112,786 - (-3314,931)


= 2202,145 H


Ry3 = - Ry1 - Fy2


= - (-405,021) - 1206,536


= -801,515 H


Суммарные реакции опор:


R1 = (Rx12 + Ry12)1/2 = (1112,7862 + (-405,021)2)1/2 = 1184,202 H;


R3 = (Rx32 + Ry32)1/2 = (2202,1452 + (-801,515)2)1/2 = 2343,473 H;


ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКОВ


1-Й ВАЛ.


Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:


d = 45,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);


D = 100,0 мм - внешний диаметр подшипника;


C = 52,7 кН - динамическая грузоподъёмность;


Co = 30,0 кН - статическая грузоподъёмность.


Радиальные нагрузки на опоры:


Pr1 = 3830,0585 H;


Pr2 = 839,1505 H.


Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.


Эквивалентная нагрузка вычисляется по формуле:


Рэ = (Х x V x Pr1 + Y x Pa) x Кб x Кт,


где - Pr1 = 3830,0585 H - радиальная нагрузка; Pa = Fa = 267,2588 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).


Отношение Fa / Co = 267,2588 / 30000,0 = 0,0089; этой величине (по табл. 9.18[1]) соответствует e = 0,1209.


Отношение Fa / (Pr1 x V) = 267,2588 / (3830,0585 x 1,0) = 0,0698 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.


Тогда: Pэ = (1,0 x 1,0 x 3830,0585 + 0,0 x 267,2588) x 1,1 x 1,0 = 4213,0643 H.


Расчётная долговечность, млн. об. (формула 9.1[1]):


L = (C / Рэ)3 = (52700,0 / 4213,0643)3 = 1957,2107 млн. об.


Расчётная долговечность, ч.:


Lh = L x 106 / (60 x n1) = 1957,2107 x 106 / (60 x 501,3793) = 65060,8785 ч,


что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 501,3793 об/мин - частота вращения вала.


2-Й ВАЛ.


Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:


d = 45,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);


D = 100,0 мм - внешний диаметр подшипника;


C = 52,7 кН - динамическая грузоподъёмность;


Co = 30,0 кН - статическая грузоподъёмность.


Радиальные нагрузки на опоры:


Pr1 = 2383,9351 H;


Pr2 = 2775,2037 H.


Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.


Эквивалентная нагрузка вычисляется по формуле:


Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,


где - Pr2 = 2775,2037 H - радиальная нагрузка; Pa = Fa = 267,2588 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).


Отношение Fa / Co = 267,2588 / 30000,0 = 0,0089; этой величине (по табл. 9.18[1]) соответствует e = 0,1209.


Отношение Fa / (Pr2 x V) = 267,2588 / (2775,2037 x 1,0) = 0,0963 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.


Тогда: Pэ = (1,0 x 1,0 x 2775,2037 + 0,0 x 267,2588) x 1,1 x 1,0 = 3052,7241 H.


Расчётная долговечность, млн. об. (формула 9.1[1]):


L = (C / Рэ)3 = (52700,0 / 3052,7241)3 = 5144,8081 млн. об.


Расчётная долговечность, ч.:


Lh = L x 106 / (60 x n2) = 5144,8081 x 106 / (60 x 159,168) = 538718,7349 ч,


что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 159,168 об/мин - частота вращения вала.


3-Й ВАЛ.


Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 313 средней серии со следующими параметрами:


d = 65,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);


D = 140,0 мм - внешний диаметр подшипника;


C = 92,3 кН - динамическая грузоподъёмность;


Co = 56,0 кН - статическая грузоподъёмность.


Радиальные нагрузки на опоры:


Pr1 = 1184,202 H;


Pr2 = 2343,4735 H.


Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.


Эквивалентная нагрузка вычисляется по формуле:


Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,


где - Pr2 = 2343,4735 H - радиальная нагрузка; Pa = Fa = 0,0 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).


Отношение Fa / Co = 0,0 / 56000,0 = 0,0; этой величине (по табл. 9.18[1]) соответствует e = 0,0.


Отношение Fa / (Pr2 x V) = 0,0 / (2343,4735 x 1,0) = 0,0 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.


Тогда: Pэ = (1,0 x 1,0 x 2343,4735 + 0,0 x 0,0) x 1,1 x 1,0 = 2577,8208 H.


Расчётная долговечность, млн. об. (формула 9.1[1]):


L = (C / Рэ)3 = (92300,0 / 2577,8208)3 = 45903,6185 млн. об.


Расчётная долговечность, ч.:


Lh = L x 106 / (60 x n3) = 45903,6185 x 106 / (60 x 71,0572) = 10766829,4647 ч,


что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n3 = 71,0572 об/мин - частота вращения вала.


УТОЧНЁННЫЙ РАСЧЁТ ВАЛОВ


РАСЧЁТ 1-ГО ВАЛА.


Крутящий момент на валу Tкр. = 122652,556 Hxмм.


Для данного вала выбран материал: сталь 45. Для этого материала:


- предел прочности b = 780,0 МПа;


- предел выносливости стали при симметричном цикле изгиба


-1 = 0,43 x b = 0,43 x 780,0 = 335,4 МПа;


- предел выносливости стали при симметричном цикле кручения


-1 = 0,58 x -1 = 0,58 x 335,4 = 194,532 МПа.


2-E СЕЧЕНИE.


Диаметр вала в данном сечении D = 45,0 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).


Коэффициент запаса прочности по нормальным напряжениям:


S = -1 / ((k / ( x )) x v +  x m) , где:


- амплитуда цикла нормальных напряжений:


v = Mизг. / Wнетто = 219366,425 / 8946,176 = 24,521 МПа,


здесь


Wнетто =  x D3 / 32 =


3,1416 x 45,03 / 32 = 8946,176 мм3


- среднее напряжение цикла нормальных напряжений:


m = Fa / ( x D2 / 4) = 267,259 / (3,142 x 45,02 / 4) = 0,168 МПа, Fa = -267,259 МПа - продольная сила,


-  = 0,2 - см. стр. 164[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];


- k/ = 4,0 - находим по таблице 8.7[1];


Тогда:


S = 335,4 / ((4,0 / 0,97) x 24,521 + 0,2 x 0,168) = 3,316.


Коэффициент запаса прочности по касательным напряжениям:


S = -1 / ((k  / (t x )) x v + t x m), где:


- амплитуда и среднее напряжение отнулевого цикла:


v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 122652,556 / 17892,352 = 3,428 МПа,


здесь


Wк нетто =  x D3 / 16 =


3,1416 x 45,03 / 16 = 17892,352 мм3


- t = 0.1 - см. стр. 166[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].


- k/ = 2,8 - находим по таблице 8.7[1];


Тогда:


S = 194,532 / ((2,8 / 0,97) x 3,428 + 0,1 x 3,428) = 19,004.


Результирующий коэффициент запаса прочности:


S = S x S / (S2 + S2)1/2 = 3,316 x 19,004 / (3,3162 + 19,0042)1/2 = 3,267


Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.


3-E СЕЧЕНИE.


Диаметр вала в данном сечении D = 50,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14,0 мм, глубина шпоночной канавки t1 = 5,5 мм.


Коэффициент запаса прочности по нормальным напряжениям:


S = -1 / ((k / ( x )) x v +  x m) , где:


- амплитуда цикла нормальных напряжений:


v = Mизг. / Wнетто = 166151,807 / 10747,054 = 15,46 МПа,


здесь


Wнетто =  x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 50,03 / 32 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 10747,054 мм3,


где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;


- среднее напряжение цикла нормальных напряжений:


m = Fa / ( x D2 / 4) = 267,259 / (3,142 x 50,02 / 4) = 0,136 МПа, Fa = -267,259 МПа - продольная сила,


-  = 0,2 - см. стр. 164[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];


- k = 1,8 - находим по таблице 8.5[1];


-  = 0,82 - находим по таблице 8.8[1];


Тогда:


S = 335,4 / ((1,8 / (0,82 x 0,97)) x 15,46 + 0,2 x 0,136) = 9,579.


Коэффициент запаса прочности по касательным напряжениям:


S = -1 / ((k  / (t x )) x v + t x m), где:


- амплитуда и среднее напряжение отнулевого цикла:


v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 122652,556 / 23018,9 = 2,664 МПа,


здесь


Wк нетто =  x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 50,03 / 16 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 23018,9 мм3,


где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;


- t = 0.1 - см. стр. 166[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].


- k = 1,7 - находим по таблице 8.5[1];


-  = 0,7 - находим по таблице 8.8[1];


Тогда:


S = 194,532 / ((1,7 / (0,7 x 0,97)) x 2,664 + 0,1 x 2,664) = 28,044.


Результирующий коэффициент запаса прочности:


S = S x S / (S2 + S2)1/2 = 9,579 x 28,044 / (9,5792 + 28,0442)1/2 = 9,065


Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.


РАСЧЁТ 2-ГО ВАЛА.


Крутящий момент на валу Tкр. = 372929,696 Hxмм.


Для данного вала выбран материал: сталь 45. Для этого материала:


- предел прочности b = 780,0 МПа;


- предел выносливости стали при симметричном цикле изгиба


-1 = 0,43 x b = 0,43 x 780,0 = 335,4 МПа;


- предел выносливости стали при симметричном цикле кручения


-1 = 0,58 x -1 = 0,58 x 335,4 = 194,532 МПа.


2-E СЕЧЕНИE.


Диаметр вала в данном сечении D = 55,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 16,0 мм, глубина шпоночной канавки t1 = 6,0 мм.


Коэффициент запаса прочности по нормальным напряжениям:


S = -1 / ((k / ( x )) x v +  x m) , где:


- амплитуда цикла нормальных напряжений:


v = Mизг. / Wнетто = 207209,186 / 14238,409 = 14,553 МПа,


здесь


Wнетто =  x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 55,03 / 32 - 16,0 x 6,0 x (55,0 - 6,0)2/ (2 x 55,0) = 14238,409 мм3,


где b=16,0 мм - ширина шпоночного паза; t1=6,0 мм - глубина шпоночного паза;


- среднее напряжение цикла нормальных напряжений:


m = Fa / ( x D2 / 4) = 267,259 / (3,142 x 55,02 / 4) = 0,112 МПа, Fa = 267,259 МПа - продольная сила,


-  = 0,2 - см. стр. 164[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];


- k = 1,8 - находим по таблице 8.5[1];


-  = 0,76 - находим по таблице 8.8[1];


Тогда:


S = 335,4 / ((1,8 / (0,76 x 0,97)) x 14,553 + 0,2 x 0,112) = 9,433.


Коэффициент запаса прочности по касательным напряжениям:


S = -1 / ((k  / (t x )) x v + t x m), где:


- амплитуда и среднее напряжение отнулевого цикла:


v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 372929,696 / 30572,237 = 6,099 МПа,


здесь


Wк нетто =  x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 55,03 / 16 - 16,0 x 6,0 x (55,0 - 6,0)2/ (2 x 55,0) = 30572,237 мм3,


где b=16,0 мм - ширина шпоночного паза; t1=6,0 мм - глубина шпоночного паза;


- t = 0.1 - см. стр. 166[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].


- k = 1,7 - находим по таблице 8.5[1];


-  = 0,65 - находим по таблице 8.8[1];


Тогда:


S = 194,532 / ((1,7 / (0,65 x 0,97)) x 6,099 + 0,1 x 6,099) = 11,406.


Результирующий коэффициент запаса прочности:


S = S x S / (S2 + S2)1/2 = 9,433 x 11,406 / (9,4332 + 11,4062)1/2 = 7,269


Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.


3-E СЕЧЕНИE.


Диаметр вала в данном сечении D = 50,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14,0 мм, глубина шпоночной канавки t1 = 5,5 мм.


Коэффициент запаса прочности по нормальным напряжениям:


S = -1 / ((k / ( x )) x v +  x m) , где:


- амплитуда цикла нормальных напряжений:


v = Mизг. / Wнетто = 263644,353 / 10747,054 = 24,532 МПа,


здесь


Wнетто =  x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 50,03 / 32 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 10747,054 мм3,


где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;


- среднее напряжение цикла нормальных напряжений:


m = Fa / ( x D2 / 4) = 267,259 / (3,142 x 50,02 / 4) = 0,136 МПа, Fa = 267,259 МПа - продольная сила,


-  = 0,2 - см. стр. 164[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];


- k = 1,8 - находим по таблице 8.5[1];


-  = 0,82 - находим по таблице 8.8[1];


Тогда:


S = 335,4 / ((1,8 / (0,82 x 0,97)) x 24,532 + 0,2 x 0,136) = 6,039.


Коэффициент запаса прочности по касательным напряжениям:


S = -1 / ((k  / (t x )) x v + t x m), где:


- амплитуда и среднее напряжение отнулевого цикла:


v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 372929,696 / 23018,9 = 8,101 МПа,


здесь


Wк нетто =  x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 50,03 / 16 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 23018,9 мм3,


где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;


- t = 0.1 - см. стр. 166[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].


- k = 1,7 - находим по таблице 8.5[1];


-  = 0,7 - находим по таблице 8.8[1];


Тогда:


S = 194,532 / ((1,7 / (0,7 x 0,97)) x 8,101 + 0,1 x 8,101) = 9,223.


Результирующий коэффициент запаса прочности:


S = S x S / (S2 + S2)1/2 = 6,039 x 9,223 / (6,0392 + 9,2232)1/2 = 5,052


Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.


РАСЧЁТ 3-ГО ВАЛА.


Крутящий момент на валу Tкр. = 806333,672 Hxмм.


Для данного вала выбран материал: сталь 45. Для этого материала:


- предел прочности b = 780,0 МПа;


- предел выносливости стали при симметричном цикле изгиба


-1 = 0,43 x b = 0,43 x 780,0 = 335,4 МПа;


- предел выносливости стали при симметричном цикле кручения


-1 = 0,58 x -1 = 0,58 x 335,4 = 194,532 МПа.


2-E СЕЧЕНИE.


Диаметр вала в данном сечении D = 70,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 20,0 мм, глубина шпоночной канавки t1 = 7,5 мм.


Коэффициент запаса прочности по нормальным напряжениям:


S = -1 / ((k / ( x )) x v +  x m) , где:


- амплитуда цикла нормальных напряжений:


v = Mизг. / Wнетто = 222629,98 / 29488,678 = 7,55 МПа,


здесь


Wнетто =  x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 70,03 / 32 - 20,0 x 7,5 x (70,0 - 7,5)2/ (2 x 70,0) = 29488,678 мм3,


где b=20,0 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза;


- среднее напряжение цикла нормальных напряжений:


m = Fa / ( x D2 / 4) = 0,0 / (3,142 x 70,02 / 4) = 0,0 МПа, Fa = 0,0 МПа - продольная сила,


-  = 0,2 - см. стр. 164[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];


- k = 1,8 - находим по таблице 8.5[1];


-  = 0,76 - находим по таблице 8.8[1];


Тогда:


S = 335,4 / ((1,8 / (0,76 x 0,97)) x 7,55 + 0,2 x 0,0) = 18,195.


Коэффициент запаса прочности по касательным напряжениям:


S = -1 / ((k  / (t x )) x v + t x m), где:


- амплитуда и среднее напряжение отнулевого цикла:


v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 806333,672 / 63162,625 = 6,383 МПа,


здесь


Wк нетто =  x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 70,03 / 16 - 20,0 x 7,5 x (70,0 - 7,5)2/ (2 x 70,0) = 63162,625 мм3,


где b=20,0 мм - ширина шпоночного паза; t1=7,5 мм - глубина шпоночного паза;


- t = 0.1 - см. стр. 166[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].


- k = 1,7 - находим по таблице 8.5[1];


-  = 0,65 - находим по таблице 8.8[1];


Тогда:


S = 194,532 / ((1,7 / (0,65 x 0,97)) x 6,383 + 0,1 x 6,383) = 10,899.


Результирующий коэффициент запаса прочности:


S = S x S / (S2 + S2)1/2 = 18,195 x 10,899 / (18,1952 + 10,8992)1/2 = 9,35


Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.


4-E СЕЧЕНИE.


Диаметр вала в данном сечении D = 60,0 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.


Коэффициент запаса прочности по касательным напряжениям:


S = -1 / ((k  / (t x )) x v + t x m), где:


- амплитуда и среднее напряжение отнулевого цикла:


v = m = max / 2 = 0,5 x Tкр. / Wк нетто = 0,5 x 806333,672 / 39462,051 = 10,217 МПа,


здесь


Wк нетто =  x D3 / 16 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 60,03 / 16 - 18,0 x 7,0 x (60,0 - 7,0)2/ (2 x 60,0) = 39462,051 мм3


где b=18,0 мм - ширина шпоночного паза; t1=7,0 мм - глубина шпоночного паза;


- t = 0.1 - см. стр. 166[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].


- k = 1,7 - находим по таблице 8.5[1];


-  = 0,65 - находим по таблице 8.8[1];


Тогда:


S = 194,532 / ((1,7 / (0,65 x 0,97)) x 10,217 + 0,1 x 10,217) = 6,809.


ГОСТ 16162-78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для редукторов должна быть 2,5 x Т1/2.


Приняв у ведущего вала длину посадочной части под муфту равной длине полумуфты l = 80 мм, получим Мизг. = 2,5 x Tкр1/2 x l / 2 = 2,5 x 806333,6721/2 x 80 / 2 = 89796,084 Н*мм.


Коэффициент запаса прочности по нормальным напряжениям:


S = -1 / ((k / ( x )) x v +  x m) , где:


- амплитуда цикла нормальных напряжений:


v = Mизг. / Wнетто = 89796,084 / 18256,3 = 4,919 МПа,


здесь


Wнетто =  x D3 / 32 - b x t1 x (D - t1)2/ (2 x D) =


3,142 x 60,03 / 32 - 18,0 x 7,0 x (60,0 - 7,0)2/ (2 x 60,0) = 18256,3 мм3,


где b=18,0 мм - ширина шпоночного паза; t1=7,0 мм - глубина шпоночного паза;


- среднее напряжение цикла нормальных напряжений:


m = Fa / ( x D2 / 4) = 0 / (3,142 x 60,02 / 4) = 0,0 МПа, Fa = 0 МПа - продольная сила,


-  = 0,2 - см. стр. 164[1];


-  = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];


- k = 1,8 - находим по таблице 8.5[1];


-  = 0,76 - находим по таблице 8.8[1];


Тогда:


S = 335,4 / ((1,8 / (0,76 x 0,97)) x 4,919 + 0,2 x 0,0) = 27,927.


Результирующий коэффициент запаса прочности:


S = S x S / (S2 + S2)1/2 = 27,927 x 6,809 / (27,9272 + 6,8092)1/2 = 6,616


Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.


ТЕПЛОВОЙ РАСЧЁТ РЕДУКТОРА


Для проектируемого редуктора площадь телоотводящей поверхности А = 1,089 мм2 (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища).


По формуле 10.1[1] условие работы редуктора без перегрева при продолжительной работе:


t = tм - tв = Pтр x (1 - ) / (Kt x A) <= [t],


где Ртр = 6,776 кВт - требуемая мощность для работы привода; tм - температура масла; tв - температура воздуха.


Считаем, что обеспечивается нормальная циркуляция воздуха, и принимаем коэффициент теплоотдачи Kt = 15 Вт/(м2xoC). Тогда:


t = 6775,872 x (1 - 0,885) / (15 x 1,089) = 47,5o <= [t],


где [t] = 50oС - допускаемый перепад температур.


Температура лежит в пределах нормы.


ВЫБОР СОРТА МАСЛА


Смазывание элементов передач редуктора производится окунанием нижних элементов в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение элемента передачи примерно на 10-20 мм. Объём масляной ванны V определяется из расчёта 0,25 дм3 масла на 1 кВт передаваемой мощности:


V = 0,25 x 6,776 = 1,694 дм3.


По таблице 10.8[1] устанавливаем вязкость масла. При контактных напряжениях H = 200,286 МПа и скорости v = 1,875 м/с рекомендуемая вязкость масла должна быть примерно равна 32,0 x 10-6 м/с2По таблице 10.10[1] принимаем масло авиационное МС-22 (по ГОСТ 20799-75*).


Выбираем для подшипников качения пластичную смазку УТ-1 по ГОСТ 1957-73 (см. табл. 9.14[1]). Камеры подшинпиков заполняются данной смазкой и периодически пополняются ей.


ВЫБОР ПОСАДОК


Посадки элементов передач на валы - Н7/р6, что по СТ СЭВ 144-75 соответствует легкопрессовой посадке.


Посадка муфты на выходной вал редуктора - Н8/h8.


Шейки валов под подшипники выполняем с отклонением вала k6.


Остальные посадки назначаем, пользуясь данными таблицы 8.11[1].


ТЕХНОЛОГИЯ СБОРКИ РЕДУКТОРА


Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов.


На валы закладывают шпонки и напрессовывают элементы передач редуктора. Мазеудерживающие кольца и подшипники следует насаживать, предварительно нагрев в масле до 80-100 градусов по Цельсию, последовательно с элементами передач. Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого в подшипниковые камеры закладывают смазку, ставят крышки подшипников с комплектом металлических прокладок, регулируют тепловой зазор. Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышку винтами. Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.


Список литературы


1. Чернавский С.А., Боков К.Н., Чернин И.М., Ицкевич Г.М., Козинцов В.П. 'Курсовое проектирование деталей машин': Учебное пособие для учащихся. М.:Машиностроение, 1988 г. 416с.


2. Дунаев П.Ф. ,Леликов О.П. 'Детали машин. Курсовое проектирование', М.: Высшая школа, 2003. 495 c.


3. Березовский Ю.Н., Чернилевский Д.В., Петров М.С. 'Детали машин', М.: Машиностроение, 1983. 384 c.


4. Боков В.Н., Чернилевский Д.В., Будько П.П. 'Детали машин: Атлас конструкций.' М.: Машиностроение, 1983. 575 c.


5. Гузенков П.Г., 'Детали машин'. 4-е изд. М.: Высшая школа, 1986. 360 с.


6. Детали машин: Атлас конструкций / Под ред. Д.Р.Решетова. М.: Машиностроение, 1979. 367 с.


7. Дружинин Н.С., Цылбов П.П. Выполнение чертежей по ЕСКД. М.: Изд-во стандартов, 1975. 542 с.


8. Кузьмин А.В., Чернин И.М., Козинцов Б.П. 'Расчеты деталей машин', 3-е изд. - Минск: Вышейшая школа, 1986. 402 c.


9. Куклин Н.Г., Куклина Г.С., 'Детали машин' 3-е изд. М.: Высшая школа, 1984. 310 c.


10. 'Мотор-редукторы и редукторы': Каталог. М.: Изд-во стандартов, 1978. 311 c.


11. Перель Л.Я. 'Подшипники качения'. M.: Машиностроение, 1983.588 c.


12. 'Подшипники качения': Справочник-каталог / Под ред. Р.В. Коросташевского и В.Н. Нарышкина. М.: Машиностроение, 1984. 280 с.


13. 'Проектирование механических передач' / Под ред. С.А. Чернавского, 5-е изд. М.: Машиностроение, 1984. 558 c.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Расчет редуктора

Слов:13451
Символов:89476
Размер:174.76 Кб.