Курсовая работа
Исполнитель студент группы Ф-31 Гармилин Р.В.
Гомельский государственный университет имени Франциска Скорыны
Гомель 2007
Введение
Создание лазеров — совершило революцию в науке и технике. За два десятилетия после их возникновения формировались новые фундаментальные и прикладные направления физической оптики — оптическая квантовая электроника и нелинейная оптика. В настоящее время невозможно представить ни современные фундаментальные исследования, ни решение технических и технологических задач без использования лазеров.
Лазеры - это генераторы и усилители когерентного излучения в оптическом диапазоне, действие которых основано на индуцированном (вызванном полем световой волны) излучении квантовых систем - атомов, ионов, молекул, находящихся в состояниях, существенно отличных от термодинамического равновесия. Лазеры, как и мазеры, генераторы и усилители СВЧ диапазона, называют еще квантовыми генераторами (усилителями), поскольку поведение участвующих в их работе частиц описывается законами квантовой механики. Принципиальным отличием лазеров от всех других источников света (тепловых, газоразрядных и др.), представляющих собой по сути дела источники оптического шума, является высокая степень когерентности лазерного излучения. С созданием лазеров в оптическом диапазоне появились источники излучения, аналогичные привычным в радиодиапазоне генераторам когерентных сигналов, способные успешно использоваться для целей связи и передачи информации, а по многим своим свойствам - направленности излучения, полосе передаваемых частот, низкому уровню шумов, концентрации энергии во времени и т.д. - превосходящие классические устройства радиодиапазона.
Глава I. Лазер. История создания. Принцип действия.
История создания лазера
Слово "лазер" составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Таким образом, в самом термине лазер отражена так фундаментальная роль процессов вынужденного испускания, которую они играют в генераторах и усилителях когерентного света. Поэтому историю создания лазера следует начинать с 1917 г., когда Альберт Эйнштейн впервые ввел представление о вынужденном испускании.
Это был первый шаг на пути к лазеру. Следующий шаг сделал советский физик В. А. Фабрикант, указавший в 1939 г. на возможность использования вынужденного испускания для усиления электромагнитного излучения при его прохождении через вещество. Идея, высказанная В. А. Фабрикантом, предполагала использование микросистем с инверсной заселенностью уровней. Позднее, после окончания Великой Отечественной войны В. А. Фабрикант вернулся к этой идее и на основе своих исследований подал в 1951 г. заявку на изобретения способа усиления излучения при помощи вынужденного испускания. На эту заявку было выдано свидетельство, в котором под рубрикой "Предмет изобретения" было написано: "Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радиодиапазонов волн), отличающейся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточною по сравнению с равновесной концентрацию атомов, других частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниями".
Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот. В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики Н. Г. Басов и А. М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его "молекулярным генератором". Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом.
В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара - в Физическом институте имени П. Н. Лебедева Академии наук СССР и в Колумбийском Университете в США.
Впоследствии от термина "мазер" и произошел термин "лазер" в результате замены буквы "М" (начальная буква слова Microwave - микроволновой) буквой "L" (начальная буква слова Light - свет). В основе работы, как мазера, так и лазера лежит один и тот же принцип - принцип, сформулированный . В. А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его называли квантовой радиофизикой, а позднее стали называть квантовой электроникой.
В 1955 г. Н. Г. Басов и А. М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселенности уровней. В 1957 г. Н. Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же году В. А. Фабрикант и Ф. А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количествах водорода и гелия. В 1958 г. А. М. Прохоров и независимо от него американский физик Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; он выдвинули идею применения в оптическом диапазоне не объемных, а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объемного тем, что убраны боковые проводящие стенки и линейные размеры резонатора выбраны большими по сравнению с длинной волны излучения.
Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели ученых в самом конце 50-х годов к созданию лазера. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого "оптического мазера" - лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого, имели серебряное покрытие (эти грани играли роль зеркала резонатора), периодически облучались зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика.
В том же 1960 г. американскими физиками А. Джавану, В. Беннету, Э. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В. А. Фабриканта и Ф. А. Бутаевой, выполненными в 1957 г.
Начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях. Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962-1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры.
Принцип действия лазеров
Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E1, E2 и т. д. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом может находиться бесконечно долго в отсутствие внешних возмущений, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка 10–8 с, после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10–3 с. Такие уровни называются метастабильными. Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях. Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов . Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными. В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным или индуцированным. Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца. Именно индуцированное излучение является физической основой работы лазеров.
На рис. 1 схематически представлены возможные механизмы переходов между двумя энергетическими состояниями атома с поглощением или испусканием кванта.
Рисунок 1. Условное изображение процессов (a) поглощения, (b) спонтанного испускания и (c) индуцированного испускания кванта. |
Рассмотрим слой прозрачного вещества, атомы которого могут находиться в состояниях с энергиями E1 и E2 > E1. Пусть в этом слое распространяется излучение резонансной частоты перехода ν = ΔE / h. Согласно распределению Больцмана, при термодинамическом равновесии большее количество атомов вещества будет находиться в нижнем энергетическом состоянии. Некоторая часть атомов будет находиться и в верхнем энергетическом состоянии, получая необходимую энергию при столкновениях с другими атомами. Обозначим населенности нижнего и верхнего уровней соответственно через n1 и n2 < n1. При распространении резонансного излучения в такой среде будут происходить все три процесса, изображенные на рис. 1. Эйнштейн показал, что процесс (a) поглощения фотона невозбужденным атомом и процесс (c) индуцированного испускания кванта возбужденным атомом имеют одинаковые вероятности. Так как n2 < n1 поглощение фотонов будет происходить чаще, чем индуцированное испускание. В результате прошедшее через слой вещества излучение будет ослабляться. Это явление напоминает появление темных фраунгоферовских линий в спектре солнечного излучения. Излучение, возникающее в результате спонтанных переходов, некогерентно и распространяется во всевозможных направлениях и не дает вклада в проходящую волну.Чтобы проходящая через слой вещества волна усиливалась, нужно искусственно создать условия, при которых n2 > n1, т. е. создать инверсную населенность уровней. Такая среда является термодинамически неравновесной. Идея использования неравновесных сред для получения оптического усиления впервые была высказана В. А. Фабрикантом в 1940 году. В 1954 году русские физики Н. Г. Басов и А. М. Прохоров и независимо от них американский ученый Ч. Таунс использовали явление индуцированного испускания для создания микроволнового генератора радиоволн с длиной волны λ = 1,27 см. За разработку нового принципа усиления и генерации радиоволн в 1964 году все трое были удостоены Нобелевской премии. Среда, в которой создана инверсная населенность уровней, называется
активной. Она может служить резонансным усилителем светового сигнала. Для того, чтобы возникала генерация света, необходимо использовать
обратную связь. Для этого активную среду нужно расположить между двумя высококачественными зеркалами, отражающими свет строго назад, чтобы он многократно прошел через активную среду, вызывая лавинообразный процесс индуцированной эмиссии когерентных фотонов. При этом в среде должна поддерживаться инверсная населенность уровней. Этот процесс в лазерной физике принято называть
накачкой. Начало лавинообразному процессу в такой системе при определенных условиях может положить случайный спонтанный акт, при котором возникает излучение, направленное вдоль оси системы. Через некоторое время в такой системе возникает стационарный режим генерации. Это и есть лазер. Лазерное излучение выводится наружу через одно (или оба) из зеркал, обладающее частичной прозрачностью. На рис. 2 схематически представлено развитие лавинообразного процесса в лазере.
Рисунок 2. Развитие лавинообразного процесса генерации в лазере. |
Особенности лазерного излучения
Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:
1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10-5 рад).
2. Свет лазера обладает исключительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.
3. Лазеры являются самыми мощными источниками света. В узком интервале спектра кратковременно (в течение промежутка времени продолжительностью порядка 10-13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2
Классификация лазеров
Классификация лазеров производиться с учетом как типа активной среды, так и способа ее возбуждения ( способа накачки ). По способу накачки следует, прежде всего, выделить два способа – оптическую накачку и накачку с использованием самостоятельного электрического разряда. Оптическая накачка имеет универсальный характер. Она применяется для возбуждения самых различных активных сред – диэлектрических кристаллов, стекол, полупроводников, жидкостей, газовых смесей. Оптическое возбуждение может использоваться так же как составной элемент некоторых других способов накачки. Накачка с использованием самостоятельного электрического разряда применяется в разряженных газообразных активных средах – при давлении 1….10 мм рт. ст. Соответствующие типы лазеров объединяют общим термином газоразрядные лазеры.
Классификация лазеров по активной среде и области применения:
Газовые лазеры
Гелий-неоновые лазеры (HeNe) (543 нм, 632,8 нм, 1,15 нм, 3,39 нм)
Аргоновые лазеры (458 нм, 488 нм или 514,5 нм)
Лазеры на углекислом газе (9,6 мкм и 10,6 мкм) используются в промышленности для резки и сварки материалов, имеют мощность до 100 кВт
Лазеры на монооксиде углерода. Требуют дополнительного охлаждения, однако имеют большую мощность — до 500 кВт
Эксимерные газовые лазеры, дающие ультрафиолетовое излучение. Используются при производстве микросхем(фотолитография) и в установках коррекции зрения. F2 (157 нм), ArF (193 нм), KrCl (222 нм), KrF (248 нм), XeCl (308 нм), XeF (351 нм)
Твердотельные лазеры
рубиновые (694 нм), александритовые (755 нм), массивы импульсных диодов (810 нм), Nd:YAG (1064 нм), Ho:YAG (2090 нм), Er:YAG (2940 нм). Используются в медицине.
Алюмо-иттриевые твердотельные лазеры с неодимовым легированием (Nd:YAG) — инфракрасные лазеры большой мощности, используемые для точной резки, сварки и маркировки изделий из металлов и других материалов
Кристаллические лазеры с иттербиевым легированием, такие как Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, или на основе иттербиевого стекловолокна; обычно работают в диапазоне 1020—1050 нм; потенциально самые высокоэффективные благодаря малому квантовому дефекту; наибольшая мощность сверхкоротких импульсов достигнута на Yb:YAG-лазере. Волоконные лазеры с иттербиевым легированием обладают рекордной непрерывной мощностью среди твердотельных лазеров (десятки киловатт)
алюмо-иттриевые с эрбиевым легированием, 1645 нм
алюмо-иттриевые с тулиевым легированием, 2015 нм
алюмо-иттриевые с гольмиевым легированием, 2096 нм, Эффективный ИК-лазер, излучение поглощается влажными материалами толщиной менее 1 мм. Обычно работает в импульсном режиме и используется в медицине.
Титан-сапфировые лазеры. Хорошо перестраиваемый по длине волны инфракарасный лазер, используемый для генерации сверхкоротких импульсов и в спектроскопии
Лазеры на эрбиевом стекле, изготавливаются из специального оптоволокна и используются как усилители в оптических линиях связи.
Микрочиповые лазеры. Компактные интегрированные импульсные твердотельные лазеры, наиболее широко используются в сверхъярких лазерных указках
Полупроводниковые лазерные диоды
Самый распространенный тип лазеров: используются в лазерных указках, лазерных принтерах, телекоммуникациях и оптических носителях информации(CD/DVD). Мощные лазерные диоды используются для накачки современных твердотельных лазеров.
Лазеры с внешним резонатором (External-cavity lasers), используются для создания этиловом
Лазеры с квантовым каскадом спирте или этиленгликоле. Позволяют осуществлять пререстройку длины волны излучения в диапазоне от 350 нм до 850 нм (в зависимости от типа красителя). Применение - спектроскопия, медицина (в т.ч. фотодинамическая терапия), фотохимия. высокоэнергетических импульсов
Лазеры на красителях Тип лазеров, использующий в качестве активной среды раствор органических красителей
Лазеры на свободных электронах
Расшифровка обозначений
YAG — алюмо-иттриевый гранат
KGW — калий-гадолиниевый вольфрамат
YLF — фторид иттрия-лития
2. Поверхностная лазерная обработка
На режимах, не вызывающих разрушения материала, реализуются различные процессы лазерной поверхностной обработки. В основе этих процессов лежат необычные структурные и фазовые изменения в материале, возникающие вследствие сверхвысоких скоростей его нагрева и последующего охлаждения в условиях лазерного облучения. Важную роль при этом играют возможность насыщения поверхностного слоя элементами окружающей среды, рост плотности дислокаций в зоне облучения и другие эффекты.
2.1. Виды поверхностной лазерной обработки
В зависимости от степени развития указанных явлений в материале различают несколько видов поверхностной лазерной обработки (табл. 1), возможность реализации которых определяется основном уровнем плотности мощности излучения.
Упрочнение без фазового перехода предполагает структурные изменения в материале при уровне плотности мощности излучения, не приводящем к расплавлению облученной зоны. При этом виде обработки сохраняется исходная шероховатость обрабатывающей поверхности. Быстрый локальный нагрев поверхности и последующее охлаждение за счет теплоотвода в массив материала приводят к образованию в поверхностном слое стали специфической высоко-дисперсной, слаботравящейся, дезориентированной в пространстве структуры, имеющей микротвердость, в 2—4 раза превышающую микротвердость основы (матрицы). При малых плотностях мощности, скоростях нагрева и охлаждения, не превышающих критических значений, может быть реализован режим отжига (отпуска) ранее закаленных материалов. Необходимость такой операции возникает, например, при изготовлении листовых пружин, отбортовке краев обоймы подшипника и т. п. Упрочнение с фазовым переходом предполагает плавление материала в облученной зоне. Этот вид упрочнения требует более высокой плотности мощности излучения, что позволяет добиться значительных глубин упрочненного слоя. Поверхность этого слоя имеет характерное для закалки из жидкого состоянии дендритное строение. Затем идет ЗТВ, а между ней и материалом основы расположена переходная зона. При данном виде поверхностной обработки, естественно, нарушается исходная шероховатость, что требует введения в технологический процесс изготовления изделия дополнительной финишной операции (шлифования).
При реализации рассмотренных видов обработки не требуется специальной среды, процесс проводится на воздухе. При этом возможна частичная диффузия составляющих воздуха в облученную зону.
При следующем виде поверхностной обработки — лазерном легировании для насыщения поверхностного слоя легирующими элементами требуется специальная среда (газообразная, жидкостная, твердая). В результате на обрабатываемой поверхности образуется новый сплав, отличный по составу и структуре от матричного материала.
Виды поверхностной лазерной обработки Таблица 1
Вид обработки | плотность мощности 1 см 2 |
скорость охлаждения С |
глубина ЗТВ,мм |
Упрочнение без фазового перехода |
103-104 | 104-105 | 0,2-0,5 |
Лазерный отжиг (отпуск) | 102-103 | - | 0.05-0,1 |
упрочнение с фазовым переходом |
104-105 | 105-106 | 1,2- З.0 |
лазерное легирование | 104-106 | 104-106 | 0,2-2,0 |
Лазерная наплавка (напыление) | 104-106 | 104-106 | 0,02-3,0 |
Амортизация поверхности | 106-108 | 104106 | 0,01-0,05 |
шоковое упрочнение | 104-106 |
104-106 | 0,02-0,2 |
Лазерная наплавка (напыление) позволяет нанести па поверхность обрабатываемого материала слой другого материала, улучшающий эксплуатационные характеристики основного.
Новая разновидность лазерного упрочнения — аморфизация поверхности сплава в условиях скоростного облучения (очень коротким импульсом или сканирующим лучом). Сверхвысокие скорости теплоотвода, достигаемые при этом, обеспечивают своеобразное «замораживание» расплава, образование металлических стекол (метгласса) или аморфного состояния поверхностного слоя. В результате достигаются высокая твердость, коррозионная стойкость, улучшенные магнитные характеристики и другие специфические свойства материала. Процесс лазерной аморфизации можно осуществить при обработке сплавов специальных составов (в том числе и на основе железа), а также других материалов, предварительно покрытых специальными составами, которые самостоятельно или совместно с матричным материалом склонны к аморфизации.
Шоковое упрочнение имеет место при воздействии на материал мощного импульса излучения наносскундной длительности. Предварительно на материал наносится тонкий слой легкоплавкого металла. Воздействие мощного импульса вызывает взрывообразное испарение легкоплавкого металла, что приводит к возникновению импульса отдачи, в свою очередь генерирующего мощную ударную волну в материале. В результате происходит пластическое деформирование материала, а при нагреве поверхностного слоя-— и соответствующие изменения в структуре. Первые четыре вида поверхностной лазерной обработки к настоящему времени получили наибольшее распространение. Для практической реализации аморфизации и шокового упрочнения требуются дополнительные исследования. Все эти виды обработки можно осуществить с помощью как импульсного, так и непрерывного излучения, причем упрочнение без фазового перехода более пригодно для прецизионной обработки поверхностей сравнительно небольших размеров, производительность процесса ограничивается сравнительно невысокой частотой следования импульсов выпускаемого оборудования. Непрерывное излучение позволяет производить обработку с высокой производительностью поверхностей больших размеров.
2.2. Обработка импульсным излучением
При фокусировании излучения сферической оптикой облученная. зона в плане имеет вид круга диаметром D. Тогда в случае однокоординатной (линейной) обработки скорость упрочнения определяется из выражения
, где D длина участка упрочнения; t -время обработки; п -число импульсов; K0 — коэффициент перекрытия; f — частота следования импульсов.
При двух координатной обработке одними из основных параметров является шаг s относительного перемещения по оси х и шаг s' перемещения по оси у. От соотношения этих шагов и диаметра зоны облучения зависят степень заполнения (упаковки) профиля, эффективность процесса. Обработка может быть реализована по одной из четырех схем (табл. 2). Эффективность обработки по схеме характеризуется коэффициентом использования импульсов Ки, который определяется из соотношения
где F' — площадь облученной поверхности.
Производительность процесса двухкоординатной обработки
Это выражение может быть использовано для ориентировочной оценки производительности, так как реальные условия вносят свои коррективы. Например, при D = 4 мм, Ки—0,74 (см. табл. 4, схема 3) и f =1 Гц производительность упрочнения составит 550 мм2/мин.
К технологическим характеристикам упрочнения импульсным излучением относятся размерные параметры (диаметр единичной зоны упрочнения, ширина линейного упрочнения, глубина упрочненной зоны), степень упрочнения (микротвердость), шероховатость обработанной поверхности и др. Па эти характеристики влияют вид обрабатываемого материала, схема обработки, энергетические параметры облучения, эффективность поглощения излучения, среда и т. п. Так, с увеличением плотности мощности излучения q возрастает - как ширина В (диаметр единичного пятна D), так и глубина И зоны линейного упрочнения. Однако для каждого вида материалов существует некоторое пороговое значение q, после которого начинается разрушение (эрозия) материала.
Схемы поверхностной обработки импульсным излучением Таблица 2
Номер схемы | схема | характеристика |
1 | Ки =1 Ки =0,78 s=s'=D |
|
2 | Ки =0,7 Ки =0,46 s=s'=0,7D |
|
3 | Ки =0,74 s=0,8D s'=0,74D |
|
4 | Ки =0,8 Ки =0,78 s=s'=0,8D |
Повышение эффективности упрочнения может быть достигнуто увеличением поглощательной способности материала при обработке импульсным инфракрасным излучением {X — 1,06 мкм). Для этого используют покрытие, например, коллоидный раствор графита, или предварительную химическую обработку облучаемой поверхности раствором па основе пикриновой кислоты. Глубина упрочнения зависит от вида материала (марки стали) и в меньшей степени от окружающей среды. В закаленных сталях глубина упрочнения при одних и тех же условиях облучения на 30 — 60% больше, чем в отожженных сталях. Степень упрочнения также зависит как от вида материала, так и от его исходного состояния. Для закаленных сталей уровень упрочнения выше, чем для отожженных.
При реализации линейного упрочнения обработка обычно ведется с перекрытием зон лазерного воздействия. В перекрытых участках происходит отпуск огнеупрочненного материала в результате действия последующего импульса. В результате в поперечном сечении упрочненный слой представляет собой характерную «чешуйчатую» структуру. При двухкоординатном упрочнении дополнительное перекрытие несколько усложняет происходящие в зоне обработки процессы. В частности, это проявляется в узловых точках, где материал четырежды подвергался облучению.
В фактуре поверхности также обнаруживается характерная «чешуйчатость». Центральную и основную часть каждого пятна занимает слаботравящаяся зона с твердостью до 13000 МПа. Отсутствие в этой зоне карбидов показывает, что температура нагрева здесь существенно превышала критическую точку, в результате чего все карбиды растворились в аустеннте. По окончании лазерного импульса при последующем быстром охлаждении за счет теплоотвода в массив материала в этой зоне произошла полная закалка с образованием мартеиситной структуры, обладающей высокой твердостью.
Значительная часть аустенита при этом сохранилась вследствие большого содержания и нем углерода и хрома, которые перешли в твердый раствор при нагреве до высоких температур. Однако этот остаточный аустенит испытал в процессе закалки фазовый наклеп, усиленный вследствие локального и импульсного характера термического никла, поэтому обладает высокой твердостью.
Концентрично с первой расположена вторая зона, занимающая периферийную часть пятим и обладающая более сильной травимостыо и несколько меньшей твердостью (8000—10000 МПа). Невозможна также обработка сканирующим излучением с амплитудой сканирования. Тогда производительность обработки будет зависеть от величины и скорости перемещения заготовки: . Другие закономерности упрочнения сталей непрерывным излучением во многом подобны рассмотренным закономерностям обработки импульсным излучением. Параметры (ширина, площадь упрочненной зоны, глубина упрочнения), имеющие размерность, степень упрочнения, шероховатость обработанной поверхности зависят как от плотности мощности излучения и скорости обработки, так и от вида обрабатываемого материала. Важную роль при этом также играет вид поглощающего покрытия, наносимого на поверхность для повышения эффективности обработки.На сегодняшний день разработано и используется большое многообразие поглощающих покрытий: фосфатные, хромовые, коллоидные растворы, графит, различные краски, оксиды металлов, силикаты и пр. Если для сравнительной оценки покрытий использовать критерий эффективности поглощения излучения kп= hu/ho , где hu ho, — глубина зоны термического влияния соответственно с покрытием и без него, то ряд предпочтительности покрытий будет иметь следующий вид:
Таблица 3
Покрытие | С r | Cd | С | ZnO | Zn3(PO4)2 | Si02 Al2O3 С |
FeO4 |
0,6 | 2,0 | 3.0 | 4.5 | 5,1 | 6.5 | 6.7 |
Слов: | 7466 |
Символов: | 65014 |
Размер: | 126.98 Кб. |
Вам также могут понравиться эти работы: