РефератыПромышленность, производствоРаРазработка регулятора температуры обратной воды калорифера

Разработка регулятора температуры обратной воды калорифера

Министерство науки и образования Украины


Донбасская государственная машиностроительная академия


Кафедра АПП


Лабораторная работа №1


Основы компьютерно-интегрированного управления


Разработка регулятора температуры обратной воды калорифера


Краматорск


Создание первого проекта


Цель работы
: получение студентами навыков работы в ИС программирования КОНГРАФ.














№ п/п Датчик температуры

Диапазон


регулирования


температур


Постоянная


Времени, сек


Гистерезис,


°С


9 T100 ohm Ni (3 wires) От +7°С до +86°С 1,9 34

Ход работы


В процессе выполнения лабораторной работы был разработан небольшой проект регулятора температуры обратной воды калорифера в зависимости от температуры наружного воздуха. В данном случае объектом управления является калорифер, с помощью которого обогревается помещение. Теплоносителем служит горячая вода, подаваемая в калорифер. Возмущающим воздействием является температура наружного воздуха, поступающего в калорифер. Необходимо автоматически поддерживать заданную температуру воздуха в помещении в зависимости от температуры приточного воздуха с помощью автоматического регулятора. Структурная схема алгоритма регулятора температуры горячей воды калорифера в зависимости от температуры наружного воздуха представлена на рисунке 1.



Рисунок 1- Структурная схема алгоритма регулятора температуры обратной воды калорифера в зависимости от температуры наружного воздуха


Шаг1. Создание структуры проекта


Главный блок проекта алгоблок MC8-Controller представлен на рисунке 2.



Рисунок 2- Главный блок проекта алгоблок MC8-Controller


Совокупность блоков MC8 и MR8 представлена на рисунке 3.



Рисунок 3 - Блоки приборов MC8 и MR8


Шаг 2. Построение алгоритма работы контроллера MC8


После удаления неиспользуемых входов и выходов блок прибора примет такой вид приведенный ниже.



Рисунок 4 - Блок прибора MC8 после удаления избыточных деталей


Произведем настройку алгоритма работы котроллера МС8.



Рисунок 5 - Алгоритм работы контроллера MC8 (открытое окно блока прибора MC8)


Внутренняя функциональность блоков ОбрВода и НаружВоздух представлена на рис.6.



Рисунок 6 - Комплексные ФБ “ОбрВода” и “НаружВоздух”


Шаг 3. Настройка алгоритма работы контроллера MC8


После того как алгоритм проекта построен, нужно ввести настроечные параметры в необходимые функциональные блоки.


Так, для компараторов верхнего уровня в комплексных блоках “Обр.вода” и “Наруж.возд.” значение верхнего предела установить равным 88°C (открыть комплексный блок “Обр.вода” (“Наруж.возд.”) Properties блока UP CMP вкладка Parameters установить параметр Value переменной XUP в значение, равное 88. Можно проставить галочку в поле Constant
, но тогда этот параметр нельзя будет ввести в какой-либо список и, соответственно, нельзя наблюдать/изменять из программы Console или SCADA-системы). Значение гистерезиса HYS на этой же вкладке установить, равным константе 33. 


Аналогично, для компараторов нижнего уровня в комплексных блоках “Обр.вода” и “Наруж.возд.” значение нижнего предела установить равным +8°C и значение гистерезиса HYS - константе 33.


Постоянные времени фильтров установить, равными 1.8 сек. (открыть комплексный блок “Обр.вода” (“Наруж.возд.”) Properties блока FILTER вкладка Parameters установить параметр Value переменной TF в значение 1.8, можно поставить галочку в поле Constant, Units = sec). 


Настроим блок задания температуры обратной воды от температуры наружного воздуха PLAN. Для этого нужно ввести точки графика: температуре X1 = -26°C соответствует Y1 = 84°C, температуре X2 = 8°C соответствует Y2 = 37°C, а при температуре X0 = 4°C величина излома графика Y0 = 5°C.


Шаг 4. Построение алгоритма работы модуля релейного MR8


По аналогии с изменением изображения модуля MC8 изменим изображение блока релейного модуля MR8 для большей наглядности. В результате алгоблок модуля релейного MR8 примет следующий вид (рис.7).



Рисунок 7 - Блок прибора MR8 после удаления избыточных деталей


Модуль MR8 применяется здесь в качестве обыкновенного усилителя входных сигналов для их подачи непосредственно на КЗР. Входы модуля DI[1] и DI[2] нужно передать без изменения
на выходы DO[1] и DO[2], соответственно. Для этого между входами и выходами вставлены простейшие ФБ цифровых уставок SET B (рис.8).



Рисунок 8 - Алгоритмический блок модуля релейного MR8.


Шаг 5. Создание списков переменных для их отображения в программе console и/или scada-системе


Введем основные переменные нашего проекта в списки. Тогда эти списки, как и переменные, сгруппированные в них, можно просмотреть при помощи программы Console. При использовании SCADA-системы списки и переменные можно также просмотреть на технологической мнемосхеме проекта (возможно, по сети Internet или Intranet).


Для этого проделаем следующие шаги:


Создадим два списка: “Температуры” и “PID-регулятор”.


Нажать правой кнопкой мыши на блоке контроллера MC8 Properties Lists;


Добавить списки “Температуры”
[Add (Ctrl+A) Name: Температуры, Comment: Температуры наруж.воздуха и обр.воды], “Heating Schedule”
[Add (Ctrl+A) Name: Heating Schedule, Comment: Планировщик темп. воды в зависимости от темп. наруж. воздуха] и “PID-регулятор”
[Add (Ctrl+A) Name: PID-регулятор, Comment: Параметры ПИД-регулирования].


Составить список “Температуры”
.


Открыть комплексный ФБ “Обр.вода”. Выделить ФБ FILTER.


o Properties Parameters Для выхода Y этого ФБ заполнить поля (Name: Tbackwater, List: Температуры, Precision: 1, Units: °C);


Аналогичные действия проделаем в комплексном ФБ “Наруж.воздух” для ФБ FILTER.


o Properties Parameters Для выхода Y этого ФБ заполнить поля (Name: Tair, List: Температуры, Precision: 1, Units: °C).


Составить список “Heating Schedule
”.


Правая кнопка мыши на ФБ “PLAN”.


o Properties Parameters Длявхода X заполнитьполя (Name: Tair, List: Heating Shedule, Precision: 1, Units: °C));


o Properties Parameters Длявыхода Y заполнитьполя (Name: Twater, List: Heating Shedule, Precision: 1, Units: °C));


o Properties Parameters Длявхода X1 заполнитьполя (Name: X1, List: Heating Shedule, Precision: 0, Units: °C, Value: -26));


o Properties Parameters Длявхода X2 заполнитьполя (Name: X2, List: Heating She

dule, Precision: 0, Units: °C, Value: 8));


o Properties Parameters Длявхода X0 заполнитьполя (Name: X0, List: Heating Shedule, Precision: 0, Units: °C, Value: 4));


o Properties Parameters Длявхода Y1 заполнитьполя (Name: Y1, List: Heating Shedule, Precision: 0, Units: °C, Value: 84));


o Properties Parameters Длявхода Y2 заполнитьполя (Name: Y2, List: Heating Shedule, Precision: 0, Units: °C, Value: 37));


o Properties Parameters Длявхода Y0 заполнитьполя (Name: Y0, List: Heating Shedule, Precision: 0, Units: °C, Value: 5)).


Все параметры ФБ PLAN введены в список “Heating Schedule
” и все входные параметры этого ФБ могут быть изменены или из программы Console или из SCADA-системы.


Составить список “PID-регулятор
”.


Правая кнопка мыши на ФБ “DIFF”.


o Properties Parameters Для переменной X1 (Subtrahend) заполнить поля (Name: Tfb.backwater, List: PID-регулятор, Precision: 1, Units: °C);


o Properties Parameters Для переменной X2 (Subtracter) заполнить поля (Name: Tset.backwater, List: PID-регулятор, Precision: 1, Units: °C).


Правая кнопка мыши на ФБ “PID P”.


o Properties Parameters Дляпеременной X заполнитьполя (Name: Terr, List: PID-регулятор, Precision: 1, Units: °C);


o Properties Parameters Дляпеременной Z1 заполнитьполя (Name: PIDP_Z1, List: PID-регулятор);


o Properties Parameters Дляпеременной Z2 заполнитьполя (Name: PIDP_Z2, List: PID-регулятор);


o Properties Parameters Дляпеременной MANUAL заполнитьполя (Name: PIDP_A/M, List: PID-регулятор);


o Properties Parameters Дляпеременной DZONE заполнитьполя (Name: DeadZone, List: PID-регулятор, Precision: 1, Units: °C);


o Properties Parameters Дляпеременной KP заполнитьполя (Name: KP, List: PID-регулятор, Precision: 1, Value: 1);


o Properties Parameters Дляпеременной TI заполнитьполя (Name: TI, List: PID-регулятор, Precision: 1, Units: sec, Value: 1);


o Properties Parameters Дляпеременной D заполнитьполя (Name: D, List: PID-регулятор, Precision: 1, Units: sec, Value: 0);


o Properties Parameters Дляпеременной B заполнитьполя (Name: B, List: PID-регулятор, Value: 0).


Далее определим параметры, входящие в дополнительный встроенный список “ALARMS
” (в список могут входить только булевы переменные).


Открыть комплексный ФБ “Обр.вода”.


o В ФБ OR:
Properties Parameters Для выхода Z ФБ OR
проставить галочку в поле “Alarms List” и ввести название переменной “Tbw_is_out_of_range” (в поле ниже введенной галочки).


Открыть комплексный ФБ “Наруж.воздух”.


o В ФБ OR:
Properties Parameters Для выхода Z ФБ OR
проставить галочку в поле “Alarms List” и ввести название переменной “Tair_is_out_of_range” (в поле ниже введенной галочки).


Открыть алгоблок модуля MC8.


o В ФБ OR:
Properties Parameters Для выхода Z ФБ OR
проставить галочку в поле “Alarms List” и ввести название переменной “Temperature_Alarm” (в поле ниже введенной галочки).


Аналогично, определим параметры, входящие в дополнительный встроенный список “SItePlayer List
”.


Открыть алгоблок модуля MC8.


o В ФБ OR:
Properties Parameters Для выхода Z ФБ OR
проставить галочку в поле SitePlayer List
и ввести название переменной “Temperature_Alarm” (в поле ниже введенной галочки).


Открыть комплексный ФБ “Обр.вода”.


o В ФБ OR:
Properties Parameters Для выхода Z ФБ OR
проставить галочку в поле SitePlayer List
и ввести название переменной “Tbw_is_out_of_range” (в поле ниже введенной галочки).


Открыть комплексный ФБ “Наруж.воздух”.


o В ФБ OR:
Properties Parameters Для выхода Z ФБ OR
проставить галочку в поле SitePlayer List
и ввести название переменной “Tair_is_out_of_range” (в поле ниже введенной галочки).


Открыть комплексный ФБ “Обр.вода”. Выделить ФБ FILTER.


o Properties Parameters Для выхода Y этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. Tbackwater;


Аналогичные действия проделаем в комплексном ФБ “Наруж.воздух” для ФБ FILTER.


o Properties Parameters Для выхода Y этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. Tair;


Правая кнопка мыши на ФБ “PLAN”.


o Properties Parameters Для выхода Y этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. Twater;


Правая кнопка мыши на ФБ “PID P”.


o Properties Parameters Для переменной X этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. Terr;


o Properties Parameters Для переменной Z1 этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. PIDP_Z1;


o Properties Parameters Для переменной Z2 этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. PIDP_Z2;


o Properties Parameters Для переменной MANUAL этого ФБ проставить галочку в поле SitePlayer List
. По умолчанию в это поле автоматически занесутся данные из поля Name
, т.е. PIDP_A/M.


Шаг 6. Сопоставление входам и выходам функциональных блоков приборов физических входов и выходов этих приборов



Рисунок 9 - Окно I/O Connections модуля MC8 в примере проекта


Шаг 7. Создание “виртуальных” межприборных соединений


Соединим цифровые выходы DO[1] и DO[2] контроллера MC8 с цифровыми входами DI[1] и DI[2] модуля MR8. Это будет “виртуальное” соединение выводов приборов (реализуемое по сети RS-485), поскольку выводы блоков приборов не соединены физически (проводниками). Физические межблочные соединения не отображаются в ИС, отображаются только соединения, реализуемые программно (“виртуальные” межблочные связи).


Вывод


В ходе выполнения лабораторной работы №1 получил навыки работы в ИС программирования КОНГРАФ и самостоятельно разработал небольшой проект регулятора температуры обратной воды калорифера в зависимости от температуры наружного воздуха.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Разработка регулятора температуры обратной воды калорифера

Слов:1745
Символов:15848
Размер:30.95 Кб.