Разработка технологического процесса термической обработки детали
Разработать технологический процесс термической обработки стальной детали: Червяк руля.
Марка стали: Ст. 20ХНР
Твердость после окончательной термообработки:
HRC 56-62 (пов.).
Цель задания: практическое ознакомление с методикой разработки технологического процесса термической обработки деталей (автомобилей, тракторов и сельскохозяйственных машин); приобретение навыков самостоятельной работы со справочной литературой, более глубокое усвоение курса, а также проверка остаточных знаний материала, изучаемого в 1 семестре.
Порядок выполнения задания:
Расшифровать марку заданной стали, описать ее микроструктуру, механические свойства до окончательной термообработки и указать, к какой группе по назначению она относится.
Описать характер влияния углерода и легирующих элементов заданной стали на положение критических точек Ас1 и Ас3, Асm. Рост зерна аустенита, закаливаемость и прокаливаемость, на положение точек Мн и Мк, на количество остаточного аустенита и на отпуск. При отсутствии легирующих элементов в заданной марке стали описать влияние постоянных примесей (марганца, кремния, серы, фосфора, кислорода, азота и водорода) на ее свойства.
Выбрать и обосновать последовательность операции предварительной и окончательной термообработки деталей, увязав с методами получения и обработки заготовки (литье, ковка или штамповка, прокат, механическая обработка).
Назначить и обосновать режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда).
Описать микроструктуру и механические свойства материала детали после окончательной термообработки.
1. Расшифровка марки стали
Сталь марки 20ХНР: хромоникелевая сталь с содержанием углерода 0,20%, до 1% хрома, никеля и бора. Хромоникелевые стали являются высококачественными конструкционными сталями.
В хромоникелевые стали вводят хром и никель. Никель является дорогой смесью. Хромоникелевые стали являются наилучшими конструкционными сталями; они обладают высокой прочностью и вязкостью, что особо важно для деталей, работающих в тяжелых условиях. Хромоникелевые стали имеют высокую прокаливаемость.
К недостаткам хромоникелевых сталей относятся плохая обрабатываемость их резанием, обусловленная присадкой никеля, и большая склонность к отпускной хрупкости второго рода. Хромоникелевые стали подвергают как цементации с последующей термообработкой обработкой, так и улучшению. Хромоникелевые стали широко применяют в авиа- и автотракторостроении.
Хром является легирующим элементом, он широко применяется для легирования. Содержание его в конструкционных сталях составляет 0,7 – 1,1%. Присадка хрома, образующего карбиды, обеспечивает высокую твердость и прочность стали. После цементации и закалки получается твердая и износоустойчивая поверхность и повышенная по сравнению с углеродистой сталью прочностью сердцевины. Эти стали применяются для изготовления деталей, работающих при больших скоростях скольжения и средних давлениях (для зубчатых колес, кулачковых муфт, поршневых пальцев и т.п.). Хромистые стали с низким содержанием углерода подвергают цементации с последующей термической обработкой, а со средним и высоким содержанием углерода – улучшению (закалке и высокому отпуску). Хромистые стали имеют хорошую прокаливаемость. Недостатком хромистых сталей является их склонность к отпускной хрупкости второго рода.
Вид поставки:
Сортовой прокат, в том числе фасонный: ГОСТ 4543-71. Калиброванный пруток ГОСТ 7417-75.Шлифованный пруток и серебрянка ГОСТ 14955-77. Полоса ГОСТ 103-76. Поковки и кованые заготовки ГОСТ 1133-71.Трубы ОСТ 14-21-77.
Таблица 1. Массовая доля элементов, % по ГОСТ 4543-71
C | Si | S | Mn | P | Ni | Cr | Cu |
0,18 – 0,21 | 0,17 – 0,37 | ≤ 0,025 | 0,30 – 0,60 | 0,8 – 1,1 | 0,8 – 1,1 | 0,8 – 1,1 | ≤ 0,30 |
Температура критических точек, 0
С.
Ас1
|
Ас3
|
Аr1
|
Ar3
|
730 | 810 | 615 | 700 |
Назначение:
Шестерни, валы, втулки, силовые шпильки, болты, червяки, муфты и другие цементируемые детали, к которым предъявляются требования высокой прочности, пластичности и вязкости сердцевины и высокой поверхностной твердости, работающие под действием ударных нагрузок и при отрицательных температурах.
Таблица 2. Механические свойства.
Термообработка, состояние поставки | Сечение, мм | s 0,2 , МПа | s B , МПа | d 5 , % | y , % | KCU, Дж/м 2 | HB | HRC | |||||||
Пруток. Закалка 820 °С, масло. Отпуск 500 °С. вода или масло. | |||||||||||||||
15 | 735 | 930 | 12 | 55 | 108 | 15 | |||||||||
Цементация 920-950 °С. Нормализация 870-890 °С, воздух. Отпуск 630-660 °С, воздух. Закалка 790-810 °С, масло. Отпуск 180-200 °С, воздух. | |||||||||||||||
100 | 690 | 830 | 11 | 50 | 69 | 59 | 63 |
2. Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки и полученные результаты
Хром – очень распространенный легирующий элемент. Он повышает точку А3
и понижают точку А4
(замыкает область γ-железа). Температура эвтектоидного превращения стали (точку А1
) в присутствии хрома повышается, а содержание углерода в эвтектоиде (перлите) понижается. С углеродом хром образует карбиды (Cr7
C3
,Cr4
C) более прочные и устойчивые, чем цементит. При содержании хрома 3 - 5% в стали одновременно присутствуют легированный цементит и карбид хрома Cr7
C3
, а если более 5% хрома, то в стали находится только карбид хрома. Растворяясь в феррите, хром повышает его твердость и прочность и прочность, незначительно снижая вязкость. Хром значительно увеличивает устойчивость переохлажденного аустенита.
В связи с большой устойчивостью переохлажденного аустенита и длительностью его распада, изотермический отжиг и изотермическую закалку хромистой стали проводить нецелесообразно.
Хром значительно уменьшает критическую скорость закалки, поэтому хромистая с
Карбидообразующими элементами являются хром и марганец. При растворении карбидообразующих элементов в цементите образующиеся карбиды называются легированным цементитом. При повышении содержания карбидообразующего элемента образуются самостоятельные карбиды данного элемента с углеродом, так называемые простые карбиды, например, Cr7
C3
, Cr4
C, Mo2
C. Все карбиды очень тверды (HRC 70 - 75) и плавятся при высокой температуре (Cr7
C3
примерно при 1700°С).
Введение легирующих элементов оказывает влияние на перлитное превращение. Температура перлитного превращения под влиянием различных легирующих элементов может понижаться или повышаться, а концентрация углерода в перлите уменьшается-. В связи с этим точка S на диаграмме Fe—Fe3
C понижается или повышается и одновременно сдвигается влево. Следовательно, при введении легирующих элементов происходит смещение равновесных точек на диаграмме Fe—Fe3
C.
При наличии карбидообразующих элементов кривая изотермического распада не сохраняет свой обычный С-образный вид, а становится как бы двойной С-образной кривой. На такой кривой наблюдаются две зоны минимальной устойчивости аустенита и между ними – зона максимальной устойчивости аустенита. Верхняя зона минимальной устойчивости аустенита расположена в интервале температур 600 - 650°С. В этой зоне происходит распад переохлажденного аустенита с образованием феррито-цементитной смеси.
Нижняя зона минимальной устойчивости аустенита расположена в интервале температур 300 - 400°С. В этой зоне происходит распад переохлажденного аустенита с образованием игольчатого троостита.
Микроструктура игольчатого троостита
Необходимо иметь в виду, что карбидообразующие элементы только в том случае повышают устойчивость аустенита, если они растворены в аустените. Если же карбиды находятся вне раствора в виде обособленных карбидов, то аустенит, наоборот, становится менее устойчивым. Это объясняется тем, что карбиды являются центрами кристаллизации, а также тем, что наличии нерастворенных карбидов приводит к обеднению аустенита легирующим элементом и углеродом.
При большом содержании хрома в стали находятся специальные карбиды хрома. Твердость такой стали при нагревании до более высокой температуры 400 - 450°С почти не изменяется. При нагревании до более высокой температуры (450 - 500°С) происходит повышение твердости.
3. Последовательность операции предварительной и окончательной термообработки деталей
Таблица 4. Режимы термообработки
Операция
|
t
, °С |
Охлаждающая среда
|
HRC
|
Цементация Закалка Отпуск |
930 820 – 840 180 - 200 |
Охлаждение медленное в колодцах или ящиках Масло Воздух |
сердцевина 36 – 46 Поверхность 56 -62 |
4. Режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда)
Последовательность операций обработки червяк руля, изготовленного из стали 20ХНР:
Цементация - механическая обработка - закалка - высокий отпуск - механическая обработка;
При цементации деталь нагревают без доступа воздуха до 930 - 950°С в науглероживающей среде – карбюризаторе., выдерживают при этой температуре в течение нескольких часов, а затем медленно охлаждают. В результате цементации поверхностный слой деталей науглероживается (0,8 – 1% С), а в сердцевине остается 0,12 – 0,32% С, т.е. получается как бы двухслойный металл. Поэтому для получения нужной структуры и свойств в поверхностном слое и в сердцевине необходима двойная термическая обработка.
В результате длительной выдержки при высокой температуре цементации происходит перегрев, сопровождающийся ростом зерна. Для получения высокой твердости цементованного слоя и достаточно высоких механических свойств сердцевины, а также для получения в поверхностном слое мелкоигольчатого мартенсита, деталь после цементации подвергнем последующей термической обработке.
Основная цель закалки стали это получение высокой твердости, и прочности что является результатом образования в ней неравновесных структур – мартенсита, троостита, сорбита. Заэвтектоидную сталь нагревают выше точки Ас1
на 30 - 90 0
С. Нагрев заэвтектоидной стали выше точки Ас1
производится для того, чтобы сохранить в структуре закаленной стали цементит, является еще более твердой составляющей, чем мартенсит.
Закалка с самотпуском состоит в то, что нагретую деталь рабочей частью погружают в закалочную среду и выдерживают в ней не до полного охлаждения. За счет тепла нерабочей части детали, которая не погружалась в закалочную жидкость, рабочая часть детали нагревается. Температура отпуска при этом способе закалки определяют по цветам побежалости, возникающие на поверхности детали при температурах 220 – 300 0
С.
Отпуск при 180 - 200°С проводится для снятия внутренних напряжений и получение более устойчивого структурного состояния, повышение вязкости и пластичности, а также понижение твердости и уменьшение хрупкости закаленной стали.
Он выполняется с целью получения структуры мартенсита отпуска и для частичного снятия внутренних напряжений в закаленной стали с целью повышения вязкости без заметного снижения твердости. После такого режима термической обработки структура поверхностного слоя – мелкоигольчатый мартенсит с вкраплениями избыточного цементита, а сердцевины – мелкозернистый феррит+перлит.
Микроструктура мартенсита
Механические свойства стали после термической обработки:
- Твердость HRC 56-62 (пов.), HRC 36-46 (серд.)
- Предельная прочность (σв
) равна 578 Н/мм2
;
Использованная литература
1. Гуляев А.П. Металловедение. - М.: Металлургия, 1977.
2. Самохоцкий А.И. Технология термической обработки металлов, М., Машгиз, 1962.
3. Пожидаева С.П. Технология конструкционных материалов: Уч. Пособие для студентов 1 и 2 курса факультета технологии и предпринимательства. Бирск. Госуд. Пед. Ин-т, 2002.
4. Марочник сталей и сплавов. 2-е изд., доп. и испр. / А.С. Зубченко, М.М. Колосков, Ю.В. Каширский и др. Под общей ред. А.С. Зубченко – М.: Машиностроение, 2003.
5. Металловедение и термическая обработка стали. Справочник. / Под ред. Л.М. Бернштейна, А.Г. Рахштадта, М.: Металлургия, 1987.