РефератыПромышленность, производствоЗаЗакон Вебера Фахнера

Закон Вебера Фахнера

План:


1. Воздействие факторов среды обитания на организм человека: раздражители и ощущения, связь между ними (закон Вебера-Фехнера). Краткая характеристика сенсорных систем (анализаторов) человека: зрительной, слуховой и др.


2. Сухие и мокрые методы очистки атмосферных выбросов от пыли.


3. Микроклимат помещений: его параметры и нормирование. Влияние отклонения параметров микроклимата от нормативных значений на эффективность деятельности и здоровье человека.


4. Способы и средства защиты человека от ионизирующих излучений.



1. Воздействие негативных факторов на человека и среду обитания.


Вредный фактор –
негативное воздействие на человека, которое приводит к ухудшению самочувствия или заболеванию.


Вредное воздействие на человека –
воздействие факторов среды обитания, создающее угрозу жизни и здоровью будущих поколений.


Совокупность и уровень различных факторов производственной среды существенно влияют на условия труда, состояние здоровья и заболеваемость работающих. Особенности возникающих при этом негативных изменений в организме и мер по их предупреждению определяются характером воздействующего вредного фактора производственной среды.


При оценке воздействия негативных факторов на человека следует учитывать степень влияния их на здоровье и жизнь человека, уровень и характер изменений функционального состояния и возможностей организма, его потенциальных резервов, адаптивных способностей и возможности развития последних.


При оценке допустимости воздействия вредных факторов на организм человека исходят из биологического закона субъективной количественной оценки раздражителя Вебера – Фехнера. Он выражает связь между изменением интенсивностью раздражителя и силой вызванного ощущения.


На базе закона Вебера – Фехнера построено нормирование вредных факторов. Чтобы исключить необратимые биологические эффекты, воздействие факторов ограничивается предельно допустимыми концентрациями.


Предельно допустимый уровень (ПДУ) или предельно допустимая
концентрация (ПДК) –
это максимальное значение фактора, которое, воздействуя на человека (изолированно или в сочетаниями с другими факторами), не вызывает у него и у его потомства биологических изменений даже скрытых и временно компенсируемых, в том числе заболеваний, изменений реактивности, адаптационно-компенсаторных возможностей, иммунологических реакций, нарушений физиологических циклов, а также психологических нарушений (снижения интеллектуальных и эмоциональных способностей, умственной работоспособности).


ПДК и ПДУ устанавливают для производственной и окружающей среды. При их принятии руководствуются следующими принципами:


- Приоритет медицинских и биологических показаний к установлению санитарных регламентов перед прочими подходами (технической достижимостью, экономическими требованиями);


- Пороговость действия неблагоприятных факторов (в том числе химических соединений с мутагенным или канцерогенным эффектом действия, ионизирующего излучения);


- Опережение разработки и внедрения профилактических мероприятий до появления опасного и вредного фактора.


Для воздуха рабочей зоны производственных помещений в соответствии с ГОСТ 12.1.001-89 устанавливают предельно допустимые концентрации (ПДК) вредных веществ, которые выражаются в миллиграммах вредного вещества, приходящегося на 1 кубический метр воздуха.


В соответствии с указанным выше стандартом установлены ПДК для более чем 1300 вредных веществ. Ещё приблизительно для 500 вредных веществ установлены ориентировочно безопасные уровни воздействия (ОБУВ).



Вредные вещества и их действие на человека.

Вредное вещество –
это вещество, которое при контакте с организмом человека (в условиях производства или быта) может вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как непосредственно в процессе контакта с веществом, так и в отдалённые сроки жизни настоящего и последующих поколений.


Вещество вредное –
1. Химическое соединение, которое при контакте с организмом человека может вызвать произвольные травмы, профессиональные заболевания или отклонения в состоянии здоровья (ГОСТ 12.1.007-76). 2. Химическое вещество, вызывающее нарушение в росте, развитии или состоянии здоровья организмов, также может влиять на эти показатели со временем, в том числе в цепи поколений.


По ГОСТ 12.1.001-89 все вредные вещества по степени воздействия на организм человека подразделяются на следующие классы:


1. Чрезвычайно опасные


2. Высокоопасные


3. Умеренно опасные


4. Малоопасные


Опасность устанавливается в зависимости от величины ПДК, средней смертельной дозы и зоны острого или хронического действия.


Нерациональное применение химических веществ, синтетических материалов неблагоприятно влияет на здоровье работающих. Вредное вещество (промышленный яд), попадая в организм человека во время его профессиональной деятельности, вызывает патологические изменения. Основными источниками загрязнения воздуха производственных помещений вредными веществами могут являться сырьё, компоненты и готовая продукция. Заболевания, возникающие при воздействии этих веществ, называют профессиональными отравлениями (интоксикациями).


Токсические вещества поступают в организм человека через дыхательные пути (ингаляционное проникновение), желудочно-кишечный тракт и кожу. Степень отравления зависит от их агрегатного состояния и от характера технологического процесса (нагрев вещества, измельчение и др.). Основным путём поступления токсических веществ являются лёгкие. Помимо острых и профессиональных хронических интоксикаций промышленные яды могут быть причиной понижения устойчивости организма и повышенной общей заболеваемости.


Бытовые отравления чаще всего возникают пи попадании яда в желудочно-кишечный тракт (ядохимикатов, бытовых химикатов, лекарственных веществ). Возможны острые отравления при попадании яда непосредственно в кровь, например при укусах змеями, насекомыми, при инъекциях лекарственных веществ.


Ядовитые свойства могут проявить все вещества, даже такие, как поваренная соль в больших дозах или кислород при повышенном давлении. Однако к ядам принято относить лишь те, которые своё вредное воздействие проявляют в обычных условиях и в относительно небольших количествах.


К промышленным ядам относится большая группа химических веществ и соединений, которые в виде сырья, промежуточных или готовых продуктов встречаются в производстве.


Токсическое действие вредных веществ характеризуется показателями токсикометрии, в соответствии с которыми вещества классифицируют на чрезвычайно токсичные, высокотоксичные, умеренно токсичные и малотоксичные. Эффект токсичного действия различных веществ зависит от количества попавшего в организм вещества, его физических свойств, длительности поступления, химизма взаимодействия с биологическими средами (кровью, ферментами). Кроме того, эффект зависит от пола, возраста, индивидуальной чувствительности, путей поступления и выведения, распределения в организме, а также метеорологических условий и других сопутствующих факторов окружающей среды.


Показатели токсиметрии и критерии токсичности вредных веществ –
это количественные показатели токсичности и опасности вредных веществ. Токсический эффект при действии различных доз и концентраций ядов может проявиться функциональными и структурными (патоморфологическими) изменениями или гибелью организма. В первом случае токсичность принято выражать в виде действующих, пороговых и недействующих доз и концентраций.


Негативное воздействие вредных веществ на среду обитания.

Регионы техносферы и природные зоны, примыкающие к очагам техносферы, постоянно подвергаются активному загрязнению различными веществами и их соединениями.



1.3.1 Загрязнение атмосферы.

Атмосферный воздух всегда содержит некоторое количество примесей, поступающих от естественных и антропогенных источников. К числу примесей, выделяемых естественными источниками, относят:


- Пыль (растительного, вулканического, космического происхождения, возникающую при эрозии почвы, частицы морской соли);


- Туман; дым и газы от лесных и степных пожаров;


- Газы вулканического происхождения;


- Различные продукты растительного, животного происхождения.


Основное антропогенное загрязнение атмосферного воздуха создают автотранспорт, теплоэнергетика и ряд отраслей промышленности. Самые распространенные токсичные вещества, загрязняющие атмосферу, являются: оксид углерода СО, диоксид серы SO2
, оксиды азота NOx
, углеводороды Cn
Hm
и пыль.



1.3.2 Воздействие вибраций и акустических колебаний на человека.

Вибрация, шум и ультразвук имеют общую природу, источниками их являются колебания твёрдых, газообразных или жидких сред. Звуковая волна является носителем энергии, которую называют силой звука
.


Вибрацией
называют малые механические колебания, возникающие в упругих телах или телах, находящихся под воздействием переменного физического поля. Источники вибрации: транспортёры сыпучих грузов, перфораторы, пневмомолотки, двигатели внутреннего сгорания, электромоторы и т.д. Основные параметры вибрации: частота (Гц), амплитуда колебания (м), период колебания (с), виброскорость (м/с2
).


Частота заболеваний определяется величиной дозы, а особенности клинических проявлений формируется под влиянием спектра вибраций.


Производственный шум –
совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работающих неприятные субъективные ощущения. Влияние шума на слух проявляется в возникновении кохлеарного неврита различной степени выраженности, в повреждении многих органов и систем организма.


Ультразвук
представляет собой механические колебания упругой среды с частотой выше 16-20 кГц, которые не воспринимаются человеческим ухом. Источники ультразвука: пьезоэлектрические и магнитострикционные преобразователи. В производственных условиях низкочастотный ультразвук нередко образуется при аэродинамических процессах и сопутствует шуму – работа реактивных двигателей, газовых турбин и др. У работающих на низкочастотных ультразвуковых установках при интенсивности шума и ультразвука выше установленных норм могут развиваться функциональные изменения центральной и периферической нервной системы, сердечно-сосудистой системы, слухового и вестибулярного анализаторов и др.


2. Сухие и мокрые методы очистки атмосферных выбросов от пыли.


Аэрозоли воздушных выбросов промышленных предприятий характеризуются большим разнообразием дисперсного состава и других физико-химических свойств. В связи с этим разработаны различные методы очистки и типы пылеуловителей - аппаратов, предназначенных для очистки выбросов от пыли (и других аэрозолей).


Методы очистки промышленных газовых выбросов от пыли можно разделить на две группы: методы улавливания пыли «сухим» способом
и методы улавливания пыли «мокрым» способом
. Аппараты обеспыливания газов включают: пылеосадительные камеры, циклоны, пористые фильтры, электрофильтры, скрубберы и др.


Сухие механические обеспыливающие аппараты
. К таким аппаратам относятся пылеосадительные камеры, циклоны, пористые фильтры.


Пылеосадительные камеры и циклоны большой пропускной способности применяют для улавливания пыли первой и второй групп (крупнодисперсной), тканевые фильтры - для улавливания пыли третьей и четвертой групп (средне- и мелкодисперсной), электрофильтры эффективны для улавливания пыли пятой группы (очень мелкодисперсной).


Пылеосадительные камеры. Аппарат этого типа представляет собой пустотелый или с горизонтальными полками во внутренней полости короб, в нижней части которого имеется бункер для сбора пыли. Поток запыленного газа вводится в камеру через отверстие сравнительно небольшого диаметра, но при этом газ должен полность заполнять поперечное сечение камеры. Для соблюдения этого условия в конструкции камеры предусматриваются специальные устройства (полки, перегородки). Загрязненный пылью газ пропускается через камеру со скоростью 0,2 – 1,5 м/с, частицы пыли оседают под действием силы тяжести в нижней части аппарата. Степень очистки газа в камерах не превышает 40 – 50%.


Мокрые пылеулавливающие аппараты работают по принципу улавливания частиц пыли поверхностью или объемом
жидкости (воды). Эти аппараты характеризуются вы

сокой степенью очистки от мелкодисперсной пыли. С их помощью можно очищать от пыли горячие и взрывоопасные
газы. Эффективность работы аппаратов мокрой очистки зависит от смачиваемости пыли, площади соприкосновения запыленного потока газа с поверхность жидкости. Если пыль плохо смачивается водой, то в воду добавляют поверхностно активные вещества (ПАВ).
Для увеличения поверхности контакта в аппараты мокрой очистки вводят специальные насадки из материалов инертных по отношению к воде и загрязнениям (в промывных башнях) или воду распыляют при помощи форсунок ( форсуночные скрубберы). Промывная башня является простейшим аппаратом мокрой очистки газов от пыли. Она представляет собой колонну, заполненную кольцами Рашига или каким-либо другим инертным материалом. К недостаткам мокрых пылеулавливающих аппаратов относятся: образование шлама, требующего дополнительных специальных систем для его переработки; вынос в атмосферу водяных паров; повышенная коррозия аппаратов и газоходов; ухудшение условий рассеивания загрязнений через заводские трубы.


3. Микроклимат помещений: его параметры и нормирование. Влияние отклонения параметров микроклимата от нормативных значений на эффективность деятельности и здоровье человека.


Микроклимат помещений – микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда. Исследования показали, что человек может жить при атмосферном давлении 560-950 мм ртутного столба. Атмосферное давление на уровне моря 760 мм ртутного столба. При данном давлении человек испытывает комфортность. Как повышение, так и понижение атмосферного давления на большинство людей оказывает негативное влияние. С понижением давления ниже 700 мм ртутного столба наступает кислородное голодание, что сказывается на работе головного мозга и центральной нервной системы. Различают абсолютную и относительную влажность.Абсолютная влажность – это количество водяных паров, содержащихся в 1 м3
. воздуха. Максимальная влажность Fmax – количество водяных паров (в кг), которое полностью насыщает 1 м3
воздуха при данной температуре (упругость водяных паров). Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах. Когда воздух полностью насыщен водяными парами, то есть A=Fmax (во время тумана), относительная влажность воздуха φ =100%. На организм человека и условия его работы оказывает влияние также средняя температура всех поверхностей, ограничивающих помещение, она имеет важное гигиеническое значение. Другим важным параметром является скорость воздуха. При повышенной температуре скорость воздуха способствует охлаждению, а при низких температурах переохлаждению, поэтому она должна быть ограниченной, в зависимости от температурной среды. Санитарно-гигиенические, метеорологические и микроклиматические условия не только влияют на состояние организма, но и определяют организацию труда, то есть, продолжительность и периодичность отдыха работника и обогрева помещения. Таким образом, санитарно-гигиенические параметры воздуха рабочей зоны могут быть физически опасными и вредными производственными факторами, оказывающими существенное влияние на технико-экономические показатели производства. Санитарные нормы микроклимата производственных помещений, по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года. Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда. Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации. При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности. Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека. Оптимальные условия микроклимата создаются для постоянных рабочих мест.


4. Способы и средства защиты человека от ионизирующих излучений.


Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства. Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 30-60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.


При изучении действия излучения на организм были выявлены следующие особенности:


1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.


2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.


3. Действие от малых доз может суммироваться или накапливаться.


4. Генетический эффект - воздействие на потомство.


5. Различные органы живого организма имеют свою чувствительность к облучению.


6. Не каждый организм (человек) в целом одинаково реагирует на облучение.


7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.


Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь ИИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.


Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.


Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно отмирание тканей (некрозы).


Смертельные поглощённые дозы для отдельных частей тела следующие:


· голова - 20 Гр;


· нижняя часть живота - 50 Гр;


· грудная клетка -100 Гр;


· конечности - 200 Гр.


При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время облучения ("смерть под лучом").


Биологические нарушения в зависимости от суммарной поглощённой дозы излучения представлены в табл 3.


В зависимости от типа ионизирующего излучения могут быть разные меры защиты: уменьшение времени облучения, увеличение расстояния до источников ионизирующего излучения, ограждение источников ионизирующего излучения, герметизация источников ионизирующего излучения, оборудование и устройство защитных средств, организация дозиметрического контроля, меры гигиены и санитарии.


В России, на основе рекомендаций Международной комиссии по радиационной защите, применяется метод защиты населения нормированием. Разработанные нормы радиационной безопасности учитывают три категории облучаемых лиц:


А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;


Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;


В - всё население.


Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.


Каждый житель Земли (категория В) на протяжении всей своей жизни ежегодно облучается дозой в среднем 250-400 мбэр. Полученная доза складывается из природных и искусственных источников ионизирующего излучения.


Защита от ионизирующих излучений


Ниже предлагаются рекомендации общего характера по защите от ионизирующего излучения разного типа.


От альфа-лучей можно защититься путём:


· увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;


· использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;


· исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.


В качестве защиты от бета-излучения используют:


· ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;


· методы и способы, исключающие попадание источников бета-излучения внутрь организма.


Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):


· увеличение расстояния до источника излучения;


· сокращение времени пребывания в опасной зоне;


· экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);


· использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;


· использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;


· дозиметрический контроль внешней среды и продуктов питания.


При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл
). Некоторые величины Косл
приведены в табл.5.


Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации.


· УКРЫТЬСЯ В ЖИЛЫХ ДОМАХ. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз табл. 5.


· ПРИНЯТЬ МЕРЫ ЗАЩИТЫ ОТ ПРОНИКНОВЕНИЯ В КВАРТИРУ (ДОМ) РАДИАКТИВНЫХ ВЕЩЕСТВ С ВОЗДУХОМ: закрыть форточки, уплотнить рамы и дверные проёмы.


· СДЕЛАТЬ ЗАПАС ПИТЬЕВОЙ ВОДЫ: набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны.


· ПРОВЕСТИ ЭКСТРЕННУЮ ЙОДНУЮ ПРОФИЛАКТИКУ (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается 100%-ная степень защиты от накопления радиоактивного йода в щитовидной железе. Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток:


- детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси;


- детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды.


Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Закон Вебера Фахнера

Слов:3035
Символов:25973
Размер:50.73 Кб.