Давид Гильберт
Вступление
Давид Гильберт был одним из истинно великих математиков своего времени. Его труды и его вдохновляющая личность ученого оказали глубокое влияние на развитие математических наук в первой половине двадцатого века. Давид Гильберт был универсальным математиком, широта его научных исследований поражает: теория инвариантов, теория алгебраических числовых полей, основания геометрии и математики в целом, интегральные уравнения, физика. Но та роль, которую сыграл Гильберт в развитии математики, заключается даже не в его трудах, а в том влиянии, которое он оказал на своих современников, в созданной им математической школе. Работы многих математиков вплоть до нашего времени несут отпечаток его мышления, во всех математических достижениях нашего времени есть немалая заслуга Давида Гильберта.
Детство и юность
Давид Гильберт родился 23 января 1862 года ровно в час дня в городке Велау вблизи Кенигсберга. Автобиография и семейная хроника, оставленные основателем кенигсбергской ветви семьи Гильбертов, знакомят нас с родословной Давида по отцовской линии. Уже в семнадцатом веке Гильберты были известны в Саксонии. В начале восемнадцатого столетия некто Иоганн Христиан Гильберт, начав с медика, стал преуспевающим оптовым торговцем кружевами. К несчастью, он умер, оставив своих детей совсем маленькими, а его наследство было промотано опекунами. Нужда заставила его сына Христиана Давида Гильберта пойти в ученики к цирюльнику. Служба военным цирюльником забросила его в Кенигсберг. Один из многочисленных детей Христиана Давида — Давид Фюрхтготт Леберехт был дедом Давида. Он был судьей. Его сын Отто занимал к моменту рождения Давида должность окружного судьи.
Немного известно о родословной Давида по материнской линии. Карл Эрдтман был купцом из Кенигсберга, его дочь Мария Тереза стала матерью Давида. Это была необычайная женщина — “оригинал“ в немецком понимании этого слова. Она интересовалась философией, астрономией и была очарована простыми числами.
Раннее обучение Давида носило отпечаток прусских черт пунктуальности, бережливости, преданности долгу, усердия, дисциплины и уважения к закону. Должность судьи отцу Давида досталась продвижением по гражданской службе. Это была удобная и надежная карьера для консервативного человека. По рассказам, судья Гильберт был довольно ограниченным человеком, со строгими взглядами на добропорядочное поведение.
Давид начал ходить в школу с восьми лет. Обычным возрастом для поступления в школу было шесть лет, и опоздание на два года указывает, что, по-видимому, первые уроки Давид получил дома от своей матери. Она была уже почти инвалидом и, как говорят, большую часть времени проводила в постели.
В подготовительной школе королевского Фридрихсколлега Давид получил первые уроки, необходимые для гуманитарной гимназии. В нее он должен был поступить, если бы пожелал получить специальность, духовный сан или стать университетским профессором. Эти уроки включали чтение и письмо на латинском и греческом, правописание, части речи, анализ простых предложений, важные библейские истории и простую арифметику, включавшую сложение, вычитание, умножение и деление небольших чисел.
Упоминаний о том, что в это время на кого-нибудь произвели впечатления способности Гильберта, нет. Позже он вспоминал себя как тупого и глупого в юности. Наверное, это было преувеличением, ибо, как позже заметил один из его друзей, “за всем, что ни говорил Гильберт, как бы парадоксально это ни звучало, всегда чувствовалось его страстное и трогательное стремление к истине”.
Гимназия, которую выбрали для Давида его родители, считалась лучшей в Кенигсберге. Это была старинная частная школа, основанная в начале семнадцатого столетия и имевшая в числе своих выпускников самого Канта. Тем не менее, этот выбор был весьма неудачным. В то время в Кенигсберге было редкостное сосредоточение будущих научных талантов. Альштадскую гимназию одновременно посещали Макс и Вилли Вины, Арнольд Зоммерфельд и Герман Минковский. Однако Давиду, посещавшему Фридрихсколлег, не пришлось в свои школьные годы познакомиться ни с одним из этих мальчиков.
К несчастью для Гильберта, Фридрихсколлег был очень традиционным заведением со строго установленной учебной программой. Слово “гимназия” объяснялось тем, что такая школа была предназначена для гимнастики ума ребенка. С этой целью изучению латинского и греческого языков придавалось особое значение. По традиции после древних языков математика больше всего ценилась как средство укрепления силы ума. Однако во Фридрихсколлеге ее преподавание велось на значительно худшем уровне, чем преподавание латинского и греческого. Естественные науки вообще не преподавались.
У Давида были очень плохие способности к заучиванию наизусть, а в Фридрихсколлеге запомнить и изучить было одно и то же. Не особенно быстро он усваивал и новый материал. Казалось, он никогда не мог понять то, чего предварительно не проработал в собственном мозгу. Наконец, он нашел школьный предмет, соответствовавший его наклонностям и доставлявший ему нескончаемое удовольствие. Позже он вспоминал, что впервые почувствовал тягу к математике потому, что она была легкой, не требовавшей усилий.
В сентябре 1879 года, в начале последнего учебного года в гимназии, Давид перешел из Фридрихсколлега в Вильгельм-гимназию. Это была государственная школа, в которой уделялось значительно большее внимание математике, даже затрагивались некоторые новые достижения в геометрии. В той же гимназии учился юный вундеркинд и будущий большой друг Гильберта — Герман Минковский.
Учеба в университете
Осенью 1880 года Гильберт поступил в университет. Большой удачей для него было то, что университет его родного города, хотя и отдаленный от основного центра событий в Берлине, по своим научным традициям являлся одним из самых выдающихся в Германии. Якоби преподавал в Кенигсберге тогда, когда во времена Гаусса он считался вторым математиком в Европе. Его преемнику Ришело принадлежит заслуга открытия гения Вейерштрасса в работах неизвестного учителя гимназии. Разносторонний Франц Нейман организовал в Кенигсберге первый институт теоретической физики при германском университете и ввел семинарскую форму занятий.
Гильберт почувствовал себя в университете настолько же свободным, насколько стесненным он чувствовал себя в гимназии. Преподаватели факультета сами выбирали предметы, которым они хотели учить, а студенты выбирали те предметы, которые они хотели изучать. Не было никаких особых требований, минимальных количеств баллов, перекличек, никаких экзаменов до тех пор, пока не наступала пора получать степень. Естественно, что на такую неожиданную свободу многие реагировали тем, что проводили первые университетские годы в традиционных занятиях — попойках и дуэлях. Однако для 18-летнего Гильберта университет представлял нечто более привлекательное — долгожданную свободу сконцентрироваться на математике. Никаких сомнений по поводу будущих занятий у Гильберта не было. Вопреки желаниям отца он записался не на юридический, а на математический курс.
Во время своего первого семестра в университете Гильберт слушал лекции по интегральному исчислению, теории определителей и кривизне поверхностей. Во втором семестре, следуя популярному обычаю странствовать по университетам, он отправляется в Гельдельберг. Там Гильберт посещал лекции Лазаруса Фукса, имя которого стало синонимом теории линейных дифференциальных уравнений. Его лекции были очень впечатляющими, но с довольно необычной стороны. Редко готовясь к лекциям, он, как правило, импровизировал на месте. Благодаря этому его студенты имели возможность наблюдать в действии мышление математика высочайшего уровня. В следующем семестре Гильберт мог бы переехать в Берлин, где находилось настоящее созвездие ученых: Вейерштрасс, Куммер, Кронекер и Гельмогольц. Однако будучи, подобно отцу, глубоко привязанным к городу своего детства, он вернулся в Кенигсбергский университет.
В это время в Кенигсберге был только один полный профессор математики. Это был Генрих Вебер, исключительно одаренный и многогранный человек. Ему принадлежат значительные вклады в столь различные области как теория чисел и математическая физика. У Вебера Гильберт слушал лекции по теории чисел и теории функций и впервые познакомился с теорией инвариантов, самой модной математической теорией того времени. В следующем семестре — весной 1882 года — Гильберт снова решил остаться в родном университете.
Окончив восьмисеместровый университетский курс, необходимый для получения докторской степени, Гильберт начал обдумывать возможные темы для диссертации. В ней он должен был получить какие-нибудь оригинальные результаты в математике. Сначала он намеревался заняться исследованием одного обобщения непрерывных дробей. С этим он подошел к своему научному руководителю Линдеману. Тот сообщил, что, к сожалению, такое обобщение уже было сделано Якоби, и порекомендовал вместо этого взять задачу из теории алгебраических инвариантов. Проблема, которую Линдеман предложил Гильберту для диссертации, касалась вопроса о свойствах инвариантов некоторых алгебраических форм. Она была довольно трудной для докторской диссертации, однако не настолько, чтобы нельзя было ожидать ее решения. Проявив оригинальность, Гильберт решил ее способом, отличным от того, который, по общему мнению, мог привести к успеху. Это была очень хорошая работа. Линдеман был удовлетворен.
Этим Гильберт вступил на первую ступень академической карьеры. Если бы его карьера сложилась удачно, он смог бы добиться конечной цели — стать полным профессором. Будучи же просто доктором философии, он не имел права даже читать лекции студентам. Для этого ему нужно было выполнить еще одно оригинальное математическое исследование и представить его в качестве хабилитации. В случае одобрения факультетом, ему было бы присуждено звание приват-доцента и право без оплаты читать лекции под поручительством университета. Будучи таким доцентом, он должен был существовать на средства, получаемые с оплаты за обучение от студентов, изъявивших желание слушать его лекции. Так как курсы, посещаемые всеми студентами, читались членами факультета, Гильберту, в лучшем случае, пришлось бы вести класс из пяти или шести студентов и испытать большие трудности. В качестве спасения от превратностей такой карьеры молодой доктор мог сдавать государственный экзамен, дающий право стать учителем гимназии. Учтя это, Гильберт начал готовиться к государственному экзамену, который сдал в мае 1885 года.
Первые научные шаги
Вскоре после сдачи экзамена Гильберт отправляется в свое первое научное путешествие в Лейпциг к Феликсу Клейну, там он посещает лекции Клейна и принимает участие в его семинаре. Личность Клейна не могла не произвести на Гильберта впечатление. Это был красивый человек с темными волосами и черной бородой, со светящимися глазами. Его лекции по математике почитались всеми и распространились даже в Америке. Что касается реакции Клейна на молодого доктора из Кенигсберга, то он заботливо хранил его доклад, с которым Гильберт выступал на семинаре, и позже писал: “Когда я услышал его доклад, я сразу же понял, что у этого человека большое будущее в математике”. В Лейпциге Гильберт познакомился с рядом других математиков. Одним из них был Георг Пик, а другим Эдуард Штуди, основным интересом которого, как и у Гильберта, была теория инвариантов.
В Лейпциге было значительно больше людей, интересующихся теорией инвариантов, однако Клейн направил все свои усилия, чтобы уговорить Штуди и Гильберта ехать на юг в Эрланген навестить своего друга Пауля Гордона, который в то время был известен как “король инвариантов”.
Летом 1886 года Гильберт совершает поездку в Париж, где знакомится с крупными французскими математиками: Пуанкаре, Жорданом, Эрмитом и другими. Возвращаясь обратно, Гильберт впервые посещает Геттингем — маленький уютный городок, в котором ему будет суждено жить и работать большую часть своей жизни. Вернувшись в Кенигсберг, он серьезно занялся хабилитацией. Работа, которую он готовил, была также посвящена теории инвариантов, однако ставила более серьезные цели, чем обычные докторские диссертации. Соискатель хабилитации должен был также прочитать лекцию на одну из выбранных им тем, которая была одобрена факультетом. Гильберт предложил две темы: “Самые общие периодические функции” и “Понятие группы”. Факультет выбрал первую из них, что больше устраивало и Гильберта. Этой лекцией остались довольны все; также успешно прошел и устный экзамен. 8 июля 1886 года Гильберт получил хабилитацию.
Гильберт решил, что, став доцентом, он будет читать лекции на разные темы, не повторяясь, как это делали многие другие, и тем самым будет образовывать не только своих студентов, но и себя самого. В первом семестре Гильберт подготовил лекции по теории инвариантов, определителям и гидродинамике.
Проблема Гордона
В начале 1888 года Гильберт предпринимает еще одно математическое путешествие, его маршрут включает посещение 21 видного математика. Поскольку в то время основной специальностью Гильберта была теория инвариантов, то первым делом он направляется в Эрланген, чтобы повстречаться со знаменитым “королем инвариантов“ — Паулем Горданом.
Пауль Гордан ярко выделялся своей личностью среди математиков того времени. Будучи на двадцать лет старше Гильберта, он довольно поздно занялся наукой. Большой удачей для Гордона было то, что время его первых занятий теорией инвариантов совпало с началом нового этапа в ней. Первые годы ее развития были посвящены исследованию общих законов, которым подчиняются инварианты; на следующем этапе началось методическое построение и классификация инвариантов, что и послужило пищей для Гордана. В начале своей карьеры он сделал первый прорыв в знаменитой проблеме инвариантов. За это ему и присвоили титул “короля инвариантов“. Общая проблема, все еще не решенная и ставшая самой знаменитой в этой теории, была названа в его честь “Проблемой Гордана“.
“Проблема Гордана“ была совсем не похожа на задачи типа “найти x”, с которых начиналась алгебра много веков назад. Это была абстрактная, чисто математическая проблема, вызванная не окружающим нас физическим миром, а развитием самой математики. К этому времени стала известна внутренняя структура всех инвариантных форм. Существовал метод, который позволял выписать все различные инвариантные формы заданной степени от заданного числа неизвестных. Новая проблема имела совершенно другой характер, так как относилась к множеству всех инвариантов. Существует ли базис, т. е. конечная система инвариантов, через которые рационально или полиноминально выражается любой другой из бесконечного числа инвариантов.
Выдающимся достижением Гордана явилось его доказательство, ровно за 20 лет до встречи с Гильбертом, существования конечного базиса для бинарных форм простейших из всех алгебраических форм. Характерно, что оно было основано на вычислениях и использовало структуру некоторых элементарных операций, с помощью которых получались инварианты. В дальнейшие 20 лет, несмотря на усилия многих видных математиков, решение проблемы не сдвинулось с мертвой точки.
Гильберт уже был некоторое время знаком с проблемой Гордана; однако теперь, слушая самого Гордана, он почувствовал ее гораздо глубже, чем раньше. Проблема заняла его воображение почти со сверхъестественной силой.
Здесь налицо была проблема, обладающая всеми чертами великой глубокой проблемы, к которым Гильберт причислял следующие:
· ясная и легко понимаемая (“в то время как ясное и простое привлекает, сложное отталкивает“);
· трудная (“чтобы нас привлекать“) и в то же время не полностью недоступная (“чтобы не сделать безнадежными наши усилия“);
· важная (“путеводная звезда на извилистых тропах к сокрытым истинам“).
Мысли об этой проблеме не оставляли Гильберта во время всего его математического путешествия. Дома, в Кенигсберге, эти мысли не покидали его ни во время работы, ни на отдыхе, ни даже на танцах, которые он так любил посещать. 6 сентября 1888 года Гильберт послал короткую заметку в журнал Геттингенского научного общества. В этой заметке он дал набросок совершенно неожиданного и оригинального способа доказательства теоремы Гордана, годного одновременно для форм от любого числа неизвестных. Эта работа была первым примером черты, характерной для мышления Гильберта, как выразился позже один из его учеников: “Естественная наивность мысли, не покоящаяся на авторитете или предшествующем опыте”. Вскоре после опубликования полного доказательства теоремы знаменитый ”король инвариантов” Гордан изумленно воскликнул: “Это не математика. Это теология!”
Решение Гильберта не было конструктивным, оно лишь доказывало существование базиса, но не давало явной конструкции для его построения. В последующие два года Гильберт не оставляет проблему Гордана, пытаясь дать ей конструктивное доказательство. В 1892 году ему удалось предложить метод, позволяющий за конечное число шагов получить искомую конструкцию.
Хотя Гильберт не был первым, кто использовал косвенные, неконструктивные доказательства, он был первым, кто осознал их глубокое значение и силу, а также смог воспользоваться ими в драматических и чрезвычайно красивых ситуациях.
При решении проблемы Гордана Гильберт нашел себя и свой метод атаки знаменитой проблемы, решение которой по своему значению намного превосходило саму проблему.
В заключении своей работы по теории инвариантов он писал: “Тем самым мне кажется, что важнейшие цели теории функциональных полей инвариантов достигнуты”. После этого Гильберт покидает теорию инвариантов.
Теория чисел
В последующие три года Гильберт повышался в академических рангах и делал то, что делает в этот период времени большинство молодых людей: женился, стал отцом, получил важное назначение. Наряду с переменами в личной жизни и общественном положении Гильберт начал проявлять и новый математический интерес. “Отныне я целиком посвящу себя теории чисел”, — писал он своему другу Минковскому вскоре после окончания последней работы об инвариантах. Теперь он занялся этой новой областью.
Хорошо известно, что Гаусс с
В последующие годы Гильберт интенсивно занимается теорией чисел. Ему удалось найти чрезвычайно легкие и простые доказательства трансцендентности чисел e и pi, а также теорем о разложении алгебраических чисел на простые идеалы. В то время Германское математическое общество ежегодно публиковало обширные обзоры в различных областях математики. Очередной обзор по теории чисел было решено поручить подготовить Гильберту и Минковскому. Гильберт с усердием принимается за новую и интересную для него работу. Хотя до сих пор он не питал склонности к изучению теории по книгам, теперь он прочитал все изданное по теории чисел со времен Гаусса. Доказательства всех известных теорем надо было обдумать. Затем ему следовало отобрать из них те, “идеи которых поддаются обобщению и наиболее перспективны для дальнейших исследований”. Однако для этого необходимо было провести эти “дальнейшие исследования”. Кроме того, нужно было устранять те трудности стиля и мышления предшествующих исследователей, которые ставили преграду для общего понимания и признания их работ. На проведение всех этих обширных работ Гильберту понадобилось три года (Минковский вскоре выбыл из участия в этом проекте). Монументальный обзор Гильберта появился в 1896 году. Представленный Гильбертом труд в бесконечное число раз превосходил все то, на что могло рассчитывать Общество. На самом деле его обзор представляет собой жемчужину литературы. Заполнив пробелы большим количеством своих собственных исследований, Гильберт придал этой теории величественную унифицированную форму.
В 1895 году по приглашению Клейна Гильберт приезжает работать в Геттингенский университет. Великая научная традиция Геттингена идет от Карла Фридриха Гаусса, который всю свою жизнь провел в этом городе, оставив след во всех областях чистой и прикладной математики. В конце жизни, заняв в истории своей науки место наряду с Архимедом и Ньютоном, он всегда вспоминал свои первые годы в Геттингене как счастливые. Гильберт приехал в Геттинген через сто лет после Гаусса, знаменитый университет получил еще одного великого математика, который продолжил традицию.
За восемь с половиной лет в Кенигсберге Гильберт не повторил ни одного предмета, сделав только “одно небольшое исключение” — одночасовой курс по определителям. Теперь в Геттингене ему было легко выбирать темы своих лекций, согласованных с пожеланиями Клейна. В первом семестре он читал курсы по теории определителей и эллиптических функций, а также вместе с Клейном каждое утро по средам вел семинар по действительным функциям.
Закончив свой обзор, Гильберт занялся давно задуманными собственными исследованиями. Главным его интересом было обобщение закона взаимности на поля алгебраических чисел. В классической теории чисел квадратичный закон взаимности, известный еще Лежандру, был вновь открыт и впервые строго доказан Гауссом, когда тому было 18 лет. Гаусс всю жизнь считал его жемчужиной теории чисел и возвращался к нему много раз, найдя пять различных доказательств. Этот закон описывает замечательные соотношения между парой простых чисел и остатками от деления квадратов целых чисел на них.
Изучая классический закон взаимности Гаусса, Гильберт смог переформулировать его в простой и красивой форме, которая имела смысл и для полей алгебраических чисел. Это позволило ему с необычайной ясностью угадать формулировку закона взаимности для степеней, больших 2, хотя он и не смог доказать его во всех случаях. Венцом его работы в этой области была статья ”О теории относительно абелевых полей”. В этой работе, программной по своему характеру, он дал набросок обширной теории, получившей известность как теория полей классов, и развил методы и понятия, необходимые для дальнейших исследований. Будущим математикам это казалось “божественным откровением” — ни в одной из работ Гильберта не была так явно продемонстрирована его математическая интуиция. В отличие от работы, положившей конец развитию теории инвариантов, работе по полям алгебраических чисел было суждено стать началом исследований. Сам Гильберт неожиданно перешел в другую область.
Основания геометрии
Новым увлечением Гильберта стала геометрия. Начав читать курс лекций по этой науке, Гильберт предложил положить в основания геометрии простой и полный список независимых аксиом, позволяющий доказать давно известные теоремы классической геометрии Евклида. Его подход — оригинальное сочетание абстрактной точки зрения и конкретного традиционного языка — был особенно эффективным. Выбрав систему аксиом евклидовой геометрии, немногим отличавшуюся по духу от аксиом самого Евклида, Гильберт смог менее формально и с большей убедительностью и ясностью, чем Пеано или Паш, продемонстрировать существо аксиоматического метода.
Одно дело — построить геометрию на прочном основании, и совсем другое — исследовать логическую структуру построенного сооружения. Гильберт систематически изучает взаимную независимость своих аксиом и устанавливает независимость некоторых из самых фундаментальных геометрических теорем от той или иной ограниченной группы аксиом. Его метод основан на построении моделей: показывается, что модель противоречит одной из аксиом и удовлетворяет требованиям всех остальных, из чего следует, что первая не может быть следствием остальных. Вопрос о непротиворечивости тесно связан с вопросом о независимости. Относящиеся сюда общие идеи кажутся нам теперь почти банальными, настолько радикальным оказалось их влияние на наше математическое мышление. В 1899 году публикуется классическая книга Гильберта “Основания геометрии”, в которой он систематически излагает все полученные им результаты.
Принцип Дирихле
Летом 1899 года, сразу после издания “Оснований геометрии“, Гильберт обратился к одной старой знаменитой проблеме, известной как принцип Дирихле. Суть этой проблемы составляла одна логическая трудность, на которую стали обращать внимание только со времен Вейерштрасса. Гаусс, Дирихле, Риман и другие предполагали, что всегда существует решение так называемой краевой задачи для уравнения Лапласа. Это предположение было основано на физической интуиции, позволяющей всегда считать, что в соответствующей реальной ситуации, описываемой этой краевой задачей, должен быть определенный физический результат, а значит, и решение. Кроме того, с чисто математической стороны Гаусс заметил, что краевая задача для этого же уравнения может быть сведена к задаче минимизации некоторого двойного интеграла от функций с непрерывными частными производными, имеющих заданные граничные значения. В силу положительности этого двойного интеграла должна была существовать наибольшая нижняя грань для его значений, из чего он делал вывод, что для одной из рассматриваемых функций этот интеграл принимал значение этой грани. Рассуждение такого рода стало известно под названием принципа Дирихле. Однако позже Вейерштрасс подверг критике принцип Дирихле. Как указывал Вейерштрасс, предположение о том, что среди допустимых функций должна существовать та, на которой интеграл принимает наименьшее значение, не является обоснованным с математической точки зрения. Более того, Вейерштрасс построил пример, в котором нельзя было найти функции, минимизирующей интеграл, при заданных граничных значениях. Это могло бы означать конец принципа Дирихле, но этого не случилось. К тому времени, когда Гильберт обратился к принципу Дирихле, математики потеряли всякую надежду на его спасение. В сентябре 1899 года Гильберт смог предъявить Германскому математическому обществу первую попытку того, что он назвал “воскрешением принципа Дирихле“. Основная идея Гильберта заключалась в том, что при более сильных ограничениях на функции, участвовавшие в задаче, можно добиться того, что принцип Дирихле будет выполняться.
23 математические проблемы
Именно в период этой необычайно разнообразной деятельности к Гильберту прибыло предложение выступить с одним из основных докладов на втором Международном конгрессе математиков в Париже летом 1900 года. Открывающееся перед ним новое столетие манило, как чистый лист бумаги. Ему хотелось произнести речь, которая соответствовала бы важности этого события. Гильберт решает сделать доклад о будущем математики в двадцатом столетии. В своем знаменитом докладе Гильберт сформулировал 23 отдельные проблемы, решения которых, по его убеждению, сыграют важную роль в прогрессе математики в наступающем столетии. Первые шесть проблем относились к основаниям математики, к тому, что, по его мнению, явилось великим достижением только что окончившегося столетия: открытие неевклидовой геометрии и прояснение арифметической природы континуума. Другие проблемы были более специальны и индивидуальны, частью старые и хорошо известные, частью новые, однако все они затрагивали прошлые, настоящие или будущие интересы Гильберта. Доклад Гильберта полностью захватил воображение всего математического мира. Его практический опыт давал основание надеяться, что эти проблемы удовлетворяют сформулированным Гильбертом критериям великих математических проблем и что настанет время, когда они будут полностью решены. Его быстро растущая слава, уступавшая теперь лишь славе Пуанкаре, обещала всеобщее признание любому математику, который решит хотя бы одну из парижских проблем.
Интегральные уравнения
Зимой 1900 – 1901 гг. один студент из Швеции принес на семинар Гильберта недавно опубликованную работу по интегральным уравнениям, принадлежавшую его соотечественнику Ивару Фредгольму.
Интегральные уравнения — это функциональные уравнения специального типа, история которых тесно связана с задачами математической физики, в частности с проблемой колебания твердого тела. Теория таких уравнений развивалась очень медленно. Однако теперь Фредгольм дал красивое и оригинальное решение одного класса таких уравнений, которое открывало соблазнительную аналогию между интегральными уравнениями и алгебраическими линейными уравнениями.
Интегральные уравнения полностью захватили Гильберта. Отныне он говорил со своими студентами только об интегральных уравнениях. Начало его исследований напоминало прежний подход Гильберта к нерешенным задачам. В первой работе, опубликованной в виде сообщения Геттингенского научного общества, он предложил один простой и оригинальный вариант теории Фредгольма, который раскрывал ее основную идею более отчетливо, чем работа самого Фредгольма. В ней также можно было найти намеки на его будущие свежие и плодотворные идеи. Обладая интуитивным пониманием связей, лежащих в основе различных частей математики, а также между математикой и физикой, Гильберт пришел к выводу, что уравнения Фредгольма смогут приоткрыть завесу над целой серией ранее недоступных проблем анализа и математической физики. Теперь он поставил перед собой цель объединить на единообразной теоретической основе как можно больший круг вопросов, связанных с линейными задачами анализа.
В 1904 году Гильберт посылает второе сообщение научному обществу, в котором существенно развивает идею Фредгольма. В своей классической работе Фредгольм открыл аналогию между интегральными уравнениями и линейными алгебраическими уравнениями. Гильберт пошел теперь дальше и нашел аналог приведения квадратичной формы от n переменных к главным осям. Используя связанную с этим комбинацию идей анализа, алгебры и геометрии, он развил свою теорию собственных функций и собственных значений. Эта теория, как выяснилось позже, оказалась тесно связанной с физической теорией собственных колебаний.
Гильберт идет дальше и работает над теорией бесконечно многих переменных, которой суждено будет стать венцом его занятий анализом. Эта теория широко известна как теория гильбертова пространства. Из-за своей крайней общности проблема, которой он теперь занимался, казалась почти недоступной даже для Гильберта. Но он смело принялся за нее. В результате всех усилий через несколько лет Гильберт представил Германскому научному обществу свою теорию бесконечно многих переменных. В ней он последовательно развивает общую теорию таких пространств, а также доказывает одну из самых великих своих теорем — спектральную. Эта теорема, подобно теореме о приведении квадратичной формы к сумме квадратов в конечномерных пространствах, позволяет классифицировать так называемые самосопряженные операторы в бесконечномерных пространствах.
Физика
В 1912 году, несмотря на свой пятидесятилетний возраст, Гильберт начинает заниматься совершенно новой для него наукой — физикой. Как математика, его сильно беспокоило отсутствие порядка в триумфальных успехах физиков. Главной целью Гильберта было поставить на прочную аксиоматическую основу все достижения, которых добилась физика за последние годы.
Гильберт занимается физикой вплоть до 1922 года. Урожай, собранный им на этом поле, вряд ли может сравниться с его достижениями в чистой математике. Многообразие экспериментальных фактов, которым приходится принимать во внимание физику, является огромным, их увеличение происходит слишком быстро, а значение и относительный вес слишком изменчивы, чтобы аксиоматический метод смог найти здесь себе твердую опору, разве что это возможно в каких-нибудь прочно установившихся областях физической науки. Поэтому обширным планам Гильберта в области физики так и не суждено было свершиться.
Однако применение им интегральных уравнений в кинетической теории газов и элементарной теории излучения представляет собой значительное достижение. В частности, его асимптотическое решение фундаментального уравнения Масквелла – Больцмана, интегрального уравнения второго порядка, четко разделило два слоя экспериментальных физических законов, к которым приводит эта теория. В своих исследованиях по общей теории относительности Гильберт соединил теорию гравитации Эйнштейна с программой по единой теории поля Г. Ми. Работа Гильберта может рассматриваться как предвестник единой теории гравитации и электромагнетизма.
Основания математики
Вновь вернуться к математике Гильберта заставил глубокий кризис, возникший в ее основаниях. Излюбленный Гильбертом аксиоматический подход начал давать сбои. Первыми предвестниками такого кризиса были парадоксы, открытые в теории множеств. Эти парадоксы были настолько глубокими и затрагивавшими самую суть теории, что среди математиков нашлись те, которые предлагали вообще отказаться от прежнего образа математического мышления. Среди таковых был молодой голландец Брауер. В трех статьях, вместе не занимавших 17 страниц, Брауер высказал сомнение в том, что законы классической логики имеют абсолютную истинность, не зависящую от того, к чему они применяются, и предложил решительную программу, призванную покончить с “кризисом оснований”. Для Брауера ни язык, ни логика не были неотъемлемо связаны с математикой, в основании которой, по его мнению, лежала интуиция, делавшая ее выводы и понятия непосредственно ясными. Брауер, например, отказался принимать логический принцип исключения третьего, т. е. что для любого утверждения A существует только две возможности — либо A, либо не A. В частности, Брауер не принимал принцип исключения третьего для бесконечных множеств, поскольку не существует никакой реальной процедуры, чтобы проверить утверждение за конечное число шагов. Подход Брауера к принципам математики получил название интуиционизм. Для Гильберта программа интуиционизма представляла абсолютно определенную и реальную угрозу математике. Многие из теорем классической математики можно было установить и интуиционистскими методами, более сложным и длинным путем, чем обычно. От многого же пришлось бы отказаться
Гильберт не желал принимать такое “увечье” математики. Ему казалось, что он видел путь, на котором смог бы восстановить элементарную математическую объективность, к которой стремился Брауер, не теряя при этом большую часть самой математики. Это была “теория доказательства”. Гильберт предложил превратить математику в формализованную систему, объекты которой — математические теоремы и их доказательства — выражаются на языке символической логики в виде предложений, имеющих только символическую, а не смысловую структуру. Эти объекты должны быть выбраны так, чтобы адекватно представлять данную математическую теорию, т. е. охватывать совокупность всех ее теорем. Непротиворечивость этой формальной системы (т. е. математики) будет доказываться с помощью методов, которые Гильберт назвал финитными. Под “финитностью” понималось то, что “рассматриваемые рассуждения, утверждения или определения должны находиться в рамках непосредственного общения с объектом, отличаться явной практичностью используемых методов и, в соответствии с этим, их можно было бы эффективно контролировать”. Таким образом можно было бы преодолеть кризис оснований математики и избавиться от него раз и навсегда.
К сожалению, планам Гильберта не суждено было сбыться. В 1930 году Курт Гедель, 25-летний специалист по математической логике, опубликовал статью, в которой был сделан вывод, нанесший смертельный удар по планам Гильберта. В своей статье Геделю удалось доказать со всей строгостью, на которую способна математика, неполноту формализованной теории чисел. Он также доказал теорему, из которой следует, что не существует финитного доказательства непротиворечивости формальной системы, достаточно полной, чтобы формализовать все финитные рассуждения. Тем не менее, подход Гильберта значительно обогатил и поднял на совершенно иной уровень всю математическую логику.
Давид Гильберт умер 14 февраля 1943 года в возрасте 81 года. С его смертью математика потеряла одного из своих великих мастеров. Работы Гильберта во многом послужили той счастливой гармонии, в которой развивается математика по сей день.
Библиографический список
1. Рид К. Гильберт. — М., 1977.
2. Рыбников К. А. История математики. — М.,1994.
3. Строик Д. Я. Краткий очерк истории математики.— М., 1969.
4. Клайн М. Математика. Утрата определенности. — М., 1984.