РефератыПромышленность, производствоСтСтатика. Кинематика точки

Статика. Кинематика точки

Министерство образования и науки Российской Федерации


Кафедра «Теоретическая механика и сопротивление материалов»


Расчетная работа по теоретической механике №1


По теме: «Статика. Кинематика точки»


Вариант 15


Выполнил:


Проверил:


2011


С-1 Вариант 15.



Дано: Р=10 кН


М=5 кН*м


q=2кН/м


Найти: Хa, Ya, Yb.







Решение.


1. Разложим силы.


Px=P*cos45


Py=P*cos45


Q1=q*2


Q2=q*4


2. Покажем реакции в опорах.


ХA
, УA
, УB
.


3. Составим уравнения равновесия.


1) ∑x=0; Xa+Q1+Px=0.


2) ∑y=0; Ya-Py-Q2+Yb=0.


3) ∑Ma(Fk)=0; -Q1*1-Q2*2+Yb*4-Px*2-M=0.


4. Расчет


Из 1) Xa= -Q1-P*cos45= -4-10*0,707= -11,07


Из 3) Yb= (Q1+Q2*2+2*P*cos45+M)/4 = (4+8*2+2*10+0,707+5)/4=9,78


Из 2) Ya= P*cos45+Q2-Yb= 10*0,707+8-9,78=5,29


5.Проверка


∑Md(Fk)=0; -Ya*4+Xa*2+Q1*1+P*cos45*4+Q2*2-M=0.


-5,29*4+(-11,07*2)+4+7,07*4+16-5=-21,15-22,13+4+28,28+16-5=0.


0=0.


Ответ: Xa=-11,07. Ya=5,29. Yb=9,78.


C-3. Вариант 15.


Дано: Р1=5 кН


P2=8 кН


М=22 кН*м


q=3,6 кН/м


Найти: Mb.







Решение.


1. Укажем систему отсчета из точки А, (х,у).


2. Разобьем схему на 2 части.



3. Разложим силы и покажем реакции в опорах.


P2x=P2*cos45


P2y=P2*cos45


Q=q*2


Rax=Ra*cos30


Ray=Ra*cos60


Mb – реактивный момент.


Xc=X1
c; Yc=Y1
c



4. Составим уравнения равновесия по частям.


I


1) ∑x=0; Rax+Xc=0.


2) ∑y=0; Ray-Q+Yc=0.


3) ∑Ma(Fk)=0; M-2*Q+3*Yc=0.


II


4) ∑x=0; -X1
c-P2x+Xb=0.


5) ∑y=0; -Y1
c-P1+Yb-P2y=0.


6) ∑Mc(Fk)=0; -P1*2-P2y*4-P2x*3+Yb*4+Mb=0.


5. Расчет


Из 3) Yc= (2*Q-M)/3= (14,4-22)/3= -2,53


Из 2) Ra=(Q-Yc)/cos60=(7,2-(-2,53))/0,5=19,46


Из 1) Xc= -Ra*cos30=-16,85


Из 4) Xb=X1
c+P2x=-16,85+5,656=-11,19


Из 5) Yb=Y1
c+P1+P2y=-2,53+5+5,656=8,126


Из 6) Mb=P1*2+P2y*4+P2x*3-Yb*4=10+22,62+16,968-32,504=17,084.


5.Проверка по I части.


∑Mc(Fk)=0; -Ray*3+q+m=0.


--29.2+7,2+22=0.


0=0.


Ответ: Mb=17,084.


С-7. Вариант 15.



Дано: Q=3 кН


G=2 кН


R=0,20 м


а=0,6 м


b=0,2 м


c=0,4 м


r=0,05 м


Найти: Za, Xa,


Zb,Xb,P.







Решение.


1. Разложим силы.


Qx=Q*cos60


Qz=Q*cos30


Px=P*cos30


Pz=P*cos60


2. Покажем реакции в опорах.


Za, Xa, Zb, Xb.


3. Составим уравнения равновесия.


1) ∑xк
=0; Xa+Xb-Qx+Px=0.


2) ∑zк
=0; Za+Zb+Qz-G-Pz=0.


3) ∑Mx(Fk)=0; Qz*(a+b)+Zb*(a+3b)-G*(a+3b+c)-Pz*(a+3b+c)=0.


4) ∑My(Fk)=0; -Qz*r+P*R=0.


5) ∑Mz(Fk)=0; Qx*(a+b)-Xb*(a+3b)-Px*(a+3b+c)=0.


4. Расчет.


Из 4) P=(Qz*r)/R=(3*0,866*0,05)/0,2=0,65


Из 3) Zb=(-Qz*(a+b)+G*(a+3b+c)+Pz*(a+3b+c))/(a+3b)=1

,6415/1,2=1,386


Из 5) Xb=(Qx*(a+b)-Px*(a+3b+c))/(a+3b)=(1,2-0,9)/1,2=0,25


Из 1) Xa= -Xb+Qx-Px=-0,25+3*0,5+0,65*0,866=1,8129


Из 2) Za= -Zb-Qz+G+Pz=-1,378-2,598+2+0,65*0,5=-1,641


5.Проверка


∑Mx1
(Fk)=0; -Za*0,8+Zb*0,4-G*0,8-Pz*0,8=0.


-1,3128+0,5472-1,6-0,26=0.


0=0.


Ответ: P=0,65 кН, Zb=1,368 кН, Xb=0,25 кН, Xa=1,8129 кН, Za= -1,641 кН.


К-1. Вариант 15.


Дано: x=4cos(πt/3)


y=-3sin(πt/3)


t1
= 1 c.


Задание: по заданным уравнениям движения точки М установить вид ее траектории и для момента времени t1
найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.


Решение.


1. Траектория движения точки y=f(x).


sin(πt/3)=-y/3 + cos(πt/3)=x/4


получаем


1=x2
/16+y2
/9 траектория движения точки – эллипс.


2. Найдем точку М в момент времени t1
= 1 c.


М: x1
=4cos(π/3)=2


y1
=-3sin(π/3)=-2,6


3. Найдем скорость точки в момент времени t1
:


Vx= х = (4cos(πt/3)) = 4π/3*(-sin(πt/3))


Vy= у = (-3sin(πt/3)) = -π*cos(πt/3)


Vx1
=(-4*3,14)/3*0.866=-3,622


Vy1
= -3,14*0,50=-1,57


Определим модуль скорости:


V= V2
x +V2
y= 13,12+2,46= 3,94 см/с


4. Найдем ускорение точки в момент времени t1
:


ax= x = (-4π/3*sin(πt/3)) =-4π2
/9*cos(πt/3)


ay= y = (-π*cos(πt/3)) =π2
/3*sin(πt/3)


ax1
=-2,191


ay1
=2,846


Определим полное ускорение:


a= ax2
+ay2
= 12,9 = 3,6 см/с2


Найдем касательное ускорение точки:


aT
= | (Vx*ax+Vy*ay)/V |= | (7,93-4,468)/3,94|=0,88 см/с2


Найдем нормальное ускорение точки:


an
= | Vx*ay-Vy*ax| / V= |-10,3 -3,43|/3,94=3,48 см/с2


5. Найдем радиус кривизны траектории


p=V2
/an
=15,52/3,48=4,46 см


Результат вычислений для заданного момента времени t1
.































Координаты точки, см


Скорость, см/с


Ускорение см/с2


Радиус кривизны траектории, см


x


y


Vx


Vy


V


ax


ay


a


aT


an


P


2


-2,6


-3,622


-1,57


3,94


-2,191


2,846


3,6


0,88


3,48


4,46


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Статика. Кинематика точки

Слов:723
Символов:8535
Размер:16.67 Кб.