РефератыПромышленность, производствоКоКожухотрубчатые теплообменные аппараты

Кожухотрубчатые теплообменные аппараты

ВВЕДЕНИЕ

Развитие силовых установок во всех областях техники в настоящее время характеризуется резким увеличением мощности в одном агрегате, повышением эффективного к.п.д. установок. Успешное решение этих задач не возможно без применения совершенных теплообменных устройств.


В зависимости от назначения аппараты используют как нагреватели и как охладители. Теплообменники по способу передачи теплоты подразделяют на поверхностные, где отсутствует непосредственный контакт теплоносителей, а передача тепла происходит через твёрдую стенку, и смесительные где теплоносители контактируют непосредственно. Поверхностные теплообменники в свою очередь подразделяются на рекуперативные и регенеративные, в зависимости от одновременного или поочерёдного контакта теплоносителей с разделяющей их стенкой.


Рекуперативными называют теплообменники, в которых теплообмен между теплоносителями происходит через разделяющую их стенку. Они могут работать как в непрерывном, так и в периодических режимах. Большинство рекуперативных теплообменников работают в непрерывном режиме.


Кожухотрубчатые теплообменники получили наибольшее распространение, они предназначены для работы с теплоносителями жидкость-жидкость, газ-газ и представляют собой аппараты выполняемые из пучков труб. По количеству ходов все кожухотрубчатые теплообменники делят на: одна, двух, четырёх и шестиходовые.


Пластинчатые теплообменники имеют плоские параллельные поверхности теплообмена, которые образуют каналы для прохода теплоносителей. Такие теплообменники применяют для теплоносителей с примерно равными коэффициентами теплоотдачи. Для интенсивности процесса теплообмена и для увеличения площади поверхности теплообмена пластинам придают различный профиль.


Выполнение курсовой работы по курсу «Тепломассообмен» позволит закрепить знания по основным разделам дисциплины.


Курсовая работа состоит из расчётной части и графической и выполняется по следующим разделам:


1. Тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника.


2. Тепловой расчёт пластинчатого теплообменника.


1. ТЕПЛОВОЙ КОНСТРУКТИВНЫЙ РАСЧЕТ РЕКУПЕРАТИВНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА


Кожухотрубчатые теплообменные аппараты могут использоваться в качестве теплообменников, холодильников, конденсаторов и испарителей. Теплообменники предназначены для нагрева и охлаждения, а холодильники для охлаждения (водой или другим нетоксичным, непожаро- и невзрывоопасным хладагентом) жидких и газообразных сред. Кожухотрубчатые теплообменники могут быть следующих типов: ТН – теплообменники с неподвижными трубными решетками; ТК – теплообменники с температурными компенсаторами на кожухе и жестко закрепленными трубными решетками; ТП – теплообменники с плавающей головкой, жестким кожухом и жестко закрепленной трубной решеткой; ТУ – теплообменники с U-образными трубками, жестким кожухом и жестко закрепленной трубной решеткой; ТС – теплообменники с сальником на плавающей головке, жестким кожухом и жестко закрепленной трубной решеткой (рисунок 1, Приложение 1).


Наибольшая допускаемая разность температур кожуха и труб для аппаратов типа Н может составлять 20–60 ºС, в зависимости от материала кожуха и труб, давления в кожухе и диаметра аппарата.


Теплообменники и холодильники могут устанавливаться горизонтально или вертикально, быть одно-, двух-, четырех- и шестиходовыми по трубному пространству. Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали, а трубы холодильников – из латуни. Распределительные камеры и крышки выполняют из углеродистой стали.


Данный расчет проводится для определения площади поверхности теплообмена стандартного водо-водяного рекуперативного теплообменника, в котором греющая вода поступает в трубы, нагреваемая вода – в межтрубное пространство.


Задание: Выполнить тепловой конструктивный расчет водоводяного рекуперативного подогревателя производительностью Q. Температура греющего теплоносителя на входе в аппарат ºС. Температура нагреваемого теплоносителя на входе в теплообменник ºС, изменение температуры нагреваемого теплоносителя в аппарате К. Массовый расход греющего теплоносителя – кг/с, нагреваемого теплоносителя – кг/с. Поверхность нагрева выполнена из труб диаметром мм.


Трубы в трубной решетке расположены по вершинам равносторонних треугольников. L – длина труб, предварительно принимается равной 3,0 м. Схема движения теплоносителей – противоток. Материал труб теплообменного аппарата выбирается в соответствии с вариантом. Потерями тепла в окружающую среду пренебречь.


1.1 Расчет количества передаваемого тепла


Уравнение теплового баланса для теплообменного аппарата имеет вид:


(1.1)


где – количество теплоты в единицу времени, отданное греющим теплоносителем, Вт;


– количество теплоты в единицу времени, воспринятое нагреваемым теплоносителем, Вт;


– потери теплоты в окружающую среду, Вт.


Так как по условию, то количество передаваемого тепла в единицу времени через поверхность нагрева аппарата, Вт, ([7]):


(1.2)



где и – средние удельные массовые теплоёмкости греющего и агреваемого теплоносителей, в интервале изменения температур от до и от до , соответственно, кДж/кг ×К.


Температура нагреваемого теплоносителя на выходе из теплообменника, ºС, ([7])


(1,3)


(ºС)


Средняя температура нагреваемого теплоносителя, ºС:


(1.4)


(ºС)


По температуре определяется значения методом линейной интерполяции ([3])


(кДж/кг ×К)


Количество теплоты в единицу времени, воспринятое нагреваемым теплоносителем, Вт, ([7]):


(1.5)


(кВт)


Методом линейной интерполяции определяется средняя удельная массовая теплоёмкость греющего теплоносителя при температуре


(кДж/кг ×К)


Для условия, , определяется температура греющего теплоносителя на выходе из теплообменника, ºС:


, (1.6)


(ºС)


Средняя температура греющего теплоносителя, ºС, ([7]):


(1.7)


(ºС)


По температуре определяется значения . Уточняется количество теплоты, отданное греющим теплоносителем в единицу времени, Вт, ([7]):


(1.8)


(кВт).


Величина относительной погрешности, %


, % (1.9)


%.


1.2 Определение интенсивности процессов теплообмена


В основу расчёта коэффициентов теплоотдачи между теплоносителями и поверхностью стенки положены критериальные уравнения, полученные в результате обработки многочисленных экспериментальных данных и их обобщения на основе теории подобия.


1.2.1 Расчёт интенсивности теплоотдачи со стороны греющего теплоносителя


По среднеарифметическому значению температуры определяются значения физических свойств греющего теплоносителя:


– плотность, кг/м³, (кг/м³);


– кинематический коэффициент вязкости, м²/с, (м²/с);


– коэффициент теплопроводности, Вт/(м· К), (Вт/(м· К));


– критерий Прандтля, .


В первом приближении температура стенки, ºС:


(1.10)


(ºС)


По определяется


,


Критерий Рейнольдса для потока греющего теплоносителя, ([7]):


(1.11)



где – средняя скорость греющего теплоносителя, м/с, ([7], стр.6) , (м/с).


В результате сравнения вычисленного значения = с критическим числом = 2300 устанавливаем, что режим течения жидкости турбулентный и выбираем критериальное уравнение для расчета числа Нуссельта. Интенсивность теплоотдачи в круглых трубках зависит от режима движения теплоносителя.


При турбулентном режиме течения жидкости (Re > 2300) в круглых трубах и каналах число Нуссельта определяется по критериальной зависимости, ([7]):


(1.12)



Коэффициент теплоотдачи от горячего теплоносителя к стенке трубы, Вт/(м²· К), ([7]):


(1.16)


(Вт/(м²· К)).


1.2.2. Расчёт интенсивности теплоотдачи со стороны нагреваемого теплоносителя


По среднеарифметическому значению температуры определяются значения физических свойств нагреваемого теплоносителя ([3]):


– плотность теплоносителя, кг/м³, (кг/м³);


– кинематический коэффициент вязкости, м²/с, (м²/с);


– коэффициент теплопроводности, Вт/(м· К), (Вт/(м· К));


– критерий Прандтля,.


Число Рейнольдса для потока холодного теплоносителя, ([7]):


(1.17)



где – средняя скорость нагреваемого теплоносителя, м/с, ([7], стр. 8), (м/с).


В результате сравнения вычисленного значения с критическим числом = 1000 выбираем критериальное уравнение, по которому подсчитывается число Нуссельта.


При движении теплоносителя в межтрубном пространстве коэффициент теплоотдачи рассчитывают по уравнению ([7]):


(1.18)


.


За определяющий геометрический размер принимают наружный диаметр теплообменных труб.


Коэффициент теплоотдачи от стенок трубного пучка к нагреваемому теплоносителю
, Вт/(м²· К)
, ([7]):


(1.20)


(Вт/(м²· К)).


1.3 Определение коэффициента теплопередачи


Если (/) < 2, то коэффициент теплопередачи для плоской поверхности теплообмена с достаточной точностью определяется по формуле, Вт/(м²· К), ([7]):


(1.21)


(Вт/(м²·К))


где , – термические сопротивления слоев загрязнений с обеих сторон стенки, (м2
· К)/Вт ([1]), ((м2
· К)/Вт), ((м2
· К)/Вт);


– толщина стенки, м;


– коэффициент теплопроводности материала трубок ([7], таблица П.1.3), Вт/(м· К);


(Вт/(м· К));


Толщина стенки трубки вычисляется по формуле, ([7]):


(1.22)


(мм)


Вычисленное значение коэффициента теплопередачи сравнивается с ориентировочными значениями k для соответствующих теплоносителей ([1]).


1.4. Определение расчетной площади поверхности теплообмена


В аппаратах с прямо- или противоточным движением теплоносителей средняя разность температур потоков определяется как среднелогарифмическая между большей и меньшей разностями температур теплоносителей на концах аппарата, ([7]):


(1.23)


(ºС);


где – большая разность температур, ºС, (ºС)(см. рис1),


– меньшая разность температур, ºС, (ºС)(см. рис1).


График изменения температур теплоносителей при противотоке, ([7], рис. П1.2)



Рис.1. Графическая зависимость для определения большей и меньшей разности температур теплоносителей


При сложном взаимном движении теплоносителей, например при смешанном и перекрестном токе в многоходовых теплообменниках, средняя разность температур теплоносителей определяется с учетом поправки ([7]):


(1.24)


(ºС)


Для нахождения поправочного коэффициента вычисляются вспомогательные коэффициенты P и R ([7]):


(1.25)



(1.26)



По полученным значениям коэффициентов P и R определяем поправочный коэффициент ([5]).


Поверхностная плотность теплового потока, Вт/м², ([7]):


(1.28)


(Вт/м²)


Из основного уравнения теплопередачи определяется необходимая поверхность теплообмена, м², ([7]):


(1.29)


(м²)


По рассчитанной площади и заданному диаметру труб выбирается стандартный теплообменный аппарат ([1]):


Параметры кожухотрубчатого теплообменника сварной конструкции с неподвижными трубными решетками (ГОСТ 15118-79,ГОСТ 15120-79,ГОСТ 15122-79).


Таблица 1






































Диаметр кожуха, мм


Диаметр труб, мм


Число ходов


Общее число труб, шт.


Поверхность теплообмена(в м2
) при длине труб, м


Площадь сечения потока 10-2
м2


Площадь сечения одного хода по трубам, 10-2
м2


В вырезе перегородок


Между перегородками


3


400


20×2


2


166


31


1,7


3


1,7



Пересчитываются скорости движения и критерий Рейнольдса для греющего и нагреваемого теплоносителей, м/с, ([7]):


(1.30)


(м/с)


(1.31)


(м/с)


где – площадь сечения одного хода по трубам, м2
, (м2
)


– площадь сечения межтрубного пространства между перегородками, м2
, (м2
)


(1.32)



(1.33)



1.5 Конструктивный расчет теплообменного аппарата


Определяется число труб в теплообменнике, ([7]):


(1.34)


(шт.)


где – площадь поверхности теплообмена стандартного теплообменника, м2
, (м2
);


– длина труб одного хода стандартного теплообменного аппарата, м, (м).


По условию трубы по сечению трубной решетки расположены по вершинам равносторонних треугольников. Количество трубок, расположенных по сторонам большего шестиугольника, ([7]) :


(1.35)


(шт.)


Количество трубок, расположенных по диагонали шестиугольника, ([7]):


(1.36)


(шт.).


Число рядов труб, омываемых теплоносителем в межтрубном пространстве, приближенно можно принять равным 0,5 · b , т.е., ([7])


(1.37)



Для стандартных труб с наружным диаметром равным 20мм, размещенных по вершинам равносторонних треугольников, при развальцовке принимают шаг между трубами ([7], стр.12) :


t = (1,31,6),


t = 1,4·20 = 28 (мм)


Рассчитанную величину шага между отверстиями в трубной решетке сравнивают со стандартными значениями ([1])


Внутренний диаметр кожуха двухходового теплообменника, мм, ([7]):


(1.38)


(мм)


где – коэффициент заполнения трубной решетки, принимается равным 0,6 – 0,8.


1.6 Определение температуры поверхности стенок трубы


Термическое сопротивление теплоотдачи от греющего теплоносителя к поверхности загрязнений, (м²· К)/Вт, ([7]):


(1.40)


((м²· К)/Вт)


Термическое сопротивление слоя отложений со стороны греющего теплоносителя, (м²· К)/Вт, ([7])


(1.41)


((м²· К)/Вт)


где – тепловая проводимость слоя отложений со стороны греющего теплоносителя ([1]), ((м2
· К)/Вт).


Термическое сопротивление стенки трубы, (м²· К)/Вт, ([7]):


(1.42)


((м²· К)/Вт)


где – толщина стенки трубки, м, (м);


– коэффициент теплопроводности стенки, Вт/м·К, (Вт/м·К).


Термическое сопротивление слоя отложений со стороны нагреваем

ого теплоносителя, (м²· К)/Вт, ([7]):


(1.43)


((м²· К)/Вт)


где – тепловая проводимость слоя отложений со стороны нагреваемого теплоносителя, Вт/(м²· К), ([1])


(Вт/(м²· К))


Термическое сопротивление теплоотдачи от стенки загрязнений к нагреваемому теплоносителю, (м²· К)/Вт, ([7], формула 1.44):



((м²· К)/Вт)


Аналитически температура стенок трубы определяется по формулам, ([7], формулы 1.45, 1.46):



(ºС)



(ºС)


Для проверки температуру стенки определим графическим способом, ([7], рис П.1.4).




Рис.4. Графический способ определения температуры поверхности стенки трубы со стороны греющего и нагреваемого теплоносителей


1.7 Гидравлический расчет теплообменника


Целью гидравлического расчёта является определение величины потери давления теплоносителей при их движении через теплообменный аппарат.


Полное гидравлическое сопротивление при движении жидкости в трубах теплообменного аппарата определяется выражением, Па, ([7]):


(1.47)


где – гидравлическое сопротивление трения, Па, ([7]);


– потери давления, обусловленные наличием местных сопротивлений; складываются из сопротивлений, возникающих в связи с изменением площади сечения потока, обтекания препятствий, Па, ([7]);


(1.48)


(Па)


где – коэффициент трения, ([7]);


z – число ходов теплоносителя по трубному пространству, z=2.


Коэффициент трения определяется по формуле:


(1.49)



где – относительная шероховатость труб, ([7],стр.14);



– высота выступов шероховатостей ,принимаем = 0,2 мм, ([7],стр.14).


Потери давления, обусловленные наличием местных сопротивлений, Па,([7]):


(1.50)


(Па)


где – сумма коэффициентов местных сопротивлений трубного


пространства, ([7]):


(1.51)



где , – коэффициенты сопротивлений входной и выходной камер ([1]), ,;


, – коэффициенты сопротивлений входа в трубы и выхода из них ([1]), , ;


– коэффициент сопротивления поворота между ходами, ([1]), .


Величина потерь давления греющего теплоносителя в теплообменном аппарате, Па,([7]):


(1.52)


(Па)


Величина потерь давления нагреваемого теплоносителя в межтрубном пространстве теплообменника, Па, ([7]):


(1.53)


(Па)


где – сумма коэффициентов местных сопротивлений межтрубного пространства, ([7]):


(1.54)



где , – коэффициент сопротивления входа и выхода жидкости ([1]), ,


– коэффициент сопротивления пучка труб, ([7]):


(1.55)



х – число сегментных перегородок ([1]);


– коэффициент, определяющий поворот через сегментную перегородку ([1]),


1.8 Определение толщины тепловой изоляции аппарата


Тепловая изоляция представляет собой конструкцию из материалов с малой теплопроводностью, покрывающую наружные поверхности оборудования, трубопроводов для уменьшения тепловых потерь.


Толщину тепловой изоляции находят из равенства удельных тепловых потоков через слой изоляции и от поверхности изоляции в окружающую среду, ([7]):


(1.56)


где – температура изоляции со стороны окружающей среды, которая не должна превышать 45°C, согласно требований техники безопасности, ([7],стр.16), принимаем (°C);


– коэффициент теплоотдачи от внешней поверхности изоляционного материала в окружающую среду, Вт/м²·К, ([7],стр.16), принимаем = 25 (Вт/м²·К);


– температура изоляции со стороны аппарата; ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции, принимают равной средней температуре нагреваемого теплоносителя, °C, ([7],стр.16), принимаем (°C) ;


– температура окружающей среды; для изолируемых поверхностей, расположенных в помещении принимается 20°С [6];


– коэффициент теплопроводности изолятора, Вт/(м· К);


Если в качестве изолятора принять полотно стеклянное теплоизоляционное марки ИПС-T-l000, ТУ 6-11-570-83, то коэффициент теплопроводности изолятора [6]:


= 0,047+0,00023 tm
,


(Вт/(м· К));


где tm
– средняя температура теплоизоляционного слоя, °С;


На открытом воздухе в летнее время, в помещении, в каналах, тоннелях, технических подпольях, на чердаках и в подвалах зданий: ([7]):


tm
= (1.59)


(°С)


где tw
– средняя температура теплоносителя, омывающего стенку, °С.


При расчетах задать температурный напор = (12 – 25) °С.


Толщина тепловой изоляции, м, ([7]):


(1.60)


(см)


2.ТЕПЛОВОЙ РАСЧЕТ ПЛАСТИНЧАТОГО ТЕПЛООБМЕННИКА


В пластинчатых теплообменниках поверхность теплообмена образована набором тонких штампованных гофрированных пластин. Эти аппараты могут быть разборными, полуразборными и неразборными (сварными). В пластинах разборных теплообменников (рисунок 1, Приложение 2) имеются угловые отверстия для прохода теплоносителей и пазы, в которых закрепляются уплотнительные и компонующие прокладки из специальных термостойких резин. Пластины сжимаются между неподвижной и подвижной плитами таким образом, что благодаря прокладкам между ними образуются каналы для поочередного прохода горячего и холодного теплоносителей. Плиты снабжены штуцерами для присоединения трубопроводов. Неподвижная плита крепится к полу, пластины и подвижная плита закрепляются в специальной раме.


Группа пластин, образующих систему параллельных каналов, в которых теплоноситель движется только в одном направлении (сверху вниз или наоборот), составляет пакет. Пакет по существу аналогичен одному ходу по трубам в многоходовых кожухотрубчатых теплообменниках. На рисунках 1 и 2 Приложения 2 даны примеры компоновки пластин. При заданном расходе теплоносителя увеличение числа пакетов приводит к увеличению скорости теплоносителя, что интенсифицирует теплообмен, но увеличивает гидравлическое сопротивление. Дополнительный канал со стороны хода нагреваемой воды предназначен для охлаждения плиты и уменьшения теплопотерь
.


В соответствии с ка
талогом ЦИНТИхимнефтемаш (М., 1
990) в
ыпускаются теплообменники пластинчатые следующих типов: полуразборные (РС)
с пластинами типа 0,5Пр и разборные (Р)
с пластинами типа 0,3р и 0,6р
.


Технические характеристики указанных пластин и основные параметры теплообменников, собираемых из этих пластин, даны в таблицах 1 и 2 Приложения 2.


Допускаемые температуры теплоносителей определяются термостойкостью резиновых прокладок. Для теплообменников, используемых в системах теплоснабжения, обязательным является применение прокладок из термостойкой резины, марки которой приведены в табл. 3, приложения 2. Условное обозначение теплообменного пластинчатого аппарата: первые буквы обозначают тип аппарата – теплообменник Р (РС) разборный (полусварной), следующее обозначение – тип пластины, цифры после ти
ре – толщина пластины, далее – площад
ь поверхности теплообмена аппарата (м2
),
затем – конструкти
вное исполнение (в соответствии с табл. 1 Приложения 2), марка материала плас
тины и марка матери
ала прокладки (в соответствии с табл. 3 Приложения 2). После условного обозначения приводится схема компоновки пластин.


Пример условного обозначения пластинчатого разборного теплообменного аппарата: теплообменник Р 0,6р-0,8-16-1К-01 – теплообменник разборный (Р) с пластинками типа 0,6р, толщиной 0,8 мм, площадью поверхности теплообмена 16 м2
, на консольной раме, в коррозионно-стойком исполнении, материал пластин и патрубков – сталь 12Х18Н10Т; материал прокладки – теплостойкая резина 359; схема компоновки



что означает над чертой – число каналов в каждом ходу для греющей воды, под чертой – то же, для нагреваемой воды.


При оптимальной компоновке пластин число пакетов для горячего и холодного теплоносителя может быть неодинаковым. В условном обозначении схемы компоновки число слагаемых в числителе соответствует числу пакетов (последовательных ходов) для горячего теплоносителя, в знаменателе – для холодного; каждое слагаемое означает число параллельных каналов в пакете.


Из рассматриваемых трех теплообменников наиболее
целесообразно применение теплообменников РС 0,5Пр, поскольку эти теплообменники надежно работают при рабочем давлении до 1,6 МПа (16 кгс/см2
). Пластины попарно сварены по контуру образуя блок. Между двумя сваренными пластинами имеется закрытый (сварной) канал для теплофикационной греющей воды. Разборные каналы допускают давление в них до 1 МПа.


Теплообменники т
ипа Р 0,3р могут применяться в системах теплоснабжения при отсутствии теплообменников типа РС 0,5Пр и параметрах теплоносителей до 1,0 МПа (до 10 кгс/см2
), до 150 °С и перепаде давлений между теплоносителями не более 0,5 МПа (5 кгс/см2
).


Применение теплообменников типа Р 0,6р (титан) в системах теплоснабжения ограничено и допустимо только при отсутствии теплообменников РС 0,5Пр и Р 0,3р при параметрах теплоносителей не более 0,6 МПа (6 кгс/см2
) до 150 °С и перепаде давлений теплоносителей не более 0,3 МПа (3 кгс/см2
).


Задание: Рассчитать однопакетный
пластинчатый теплообменник для системы горячего в
одоснабжения ЦТП
если известны параметры: нагрузка на отопление (ГВС) – Q = 1282 кВт; температуры греющей (сетевой) и нагреваемой воды на входе и выходе теплообменника, соответственно: – °C, °C, °C, °C. Принять равное число параллельных каналов в пакете для греющего и нагреваемого теплоносителей.


2.1 Определение расходов и скоростей движения греющего и нагреваемого теплоносителей


Средняя температура теплоносителей, ([7])


(2.1)


(°C)


(2.1)


(°C)


По среднеарифметическому значению температур , определяются значения физических свойств греющего и нагреваемого теплоносителей ([3]):


, – плотность, кг/м³, (кг/м³), (кг/м³);


, – кинематические коэффициенты вязкости, м²/с, (м²/с), (м²/с);


, – коэффициенты теплопроводности, Вт/(м· К), (Вт/(м· К)), (Вт/(м· К));


, – критерии Прандтля, ,


Массовые расходы теплоносителей, кг/с, ([7]):


(2.2)


(кг/с)


(2.3)


(кг/с)


(м3
/ч)


По максимальному расходу выбирается тип пластин. Параметры пластин, ([7], таблица П.2.1 и П.2.2):


– толщина стенки пластины, м, (м);


– площадь поверхности теплообмена пластины, м2
, (м2
);


– площадь поперечного сечения канала между пластинами, м2
, (м2
);


– смачиваемый периметр в поперечном сечении канала, м, (м) .


Эквивалентный диаметр сечения канала, м, ([7]):


(2.4)


(м)


При расчете пластинчатого водоподогревателя
оптимальная скорость теплоносителя принимаем исходя из получения таких же потерь давления в установке по нагреваемой воде, как при применении кожухотрубного водоподогревателя
(100–150 кПа), что соответствует скорости воды в каналах (0,3 – 0,5) м/c [4], (м/c)


Число каналов в пакете, ([7]):


(2.5)


(шт.)


Скорость второго теплоносителя, м/с, ([7]):


(2.6)


(м/с)


2.2 Расчет интенсивности теплообмена при движении теплоносителей между пластинами


Критерии Рейнольдса и Прандтля для каждого теплоносителя, ([7]):


; (2.7)



(2.7)



(2.8)



(2.8)



Определяется критерий Нуссельта для греющего и нагреваемого теплоносителей, ([7]):


– при турбулентном режиме (Re 50):


(2.9)



(2.10)



Где, ([1])


Коэффициенты теплоотдачи от греющего теплоносителя к поверхности стенки и от поверхности стенки к нагреваемому теплоносителю, соответственно, Вт/(м²· К), ([7]):


(2.13)


(Вт/(м²· К))


(2.13)


(Вт/(м²· К))


2.3. Определение площади поверхности теплообмена


Принимаются значения термических сопротивлений слоев загрязнений с двух сторон стенки, , , (м2
· К)/Вт; ([7], таблица П.1.2), ((м2
· К)/Вт), ((м2
· К)/Вт);


В качестве материала материал пластин и патрубков – сталь 12Х18Н10Т. По средней температуре стенки определяется коэффициент теплопроводности стенки , Вт/(м · К), ([7], таблица П.1.3), (Вт/(м · К)).


Суммарное термическое сопротивление, (м² · К)/Вт, ([7]):


(2.14)


((м² · К)/Вт)


Коэффициент теплопередачи, Вт/(м² · К), ([7]):


(2.15)


(Вт/(м² · К))


Среднелогарифмический температурный напор при противотоке возьмём из предыдущих расчетов.


Требуемая поверхность теплообмена, м²,([7]):


(2.16)


(м²)


Фактическая поверхность теплообмена, м²,([7]):


(2.17)


м²


Рассчитываем относительный запас площади поверхности теплообмена , %,([7]):


(2.18)


%


2.4. Расчет гидравлических сопротивлений при движении теплоносителей


Рассчитаем гидравлические сопротивления при движении нагревающего и нагреваемого теплоносителя, МПа, ([7]):


(2.19)


(МПа)


(МПа)


где – коэффициент общего гидравлического сопротивления, ([7], таблица П.2.2)


– – приведенная длина канала, м, ([7], таблица П.2.2), (м).





ЗАКЛЮЧЕНИЕ


В ходе выполнения курсовой работы были получены навыки применения теоретических знаний при решении теплотехнических задач. По расчёту и проектированию рекуперативных теплообменных аппаратов, а также закрепил знания по основным разделам курса «Тепломассообмен».


В данной курсовой работе был произведён тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника, а также тепловой расчёт пластинчатого теплообменника.


Были выполнены чертежи рекуперативного кожухотрубчатого теплообменника (формат А1) и пластинчатого рекуперативного теплообменного аппарата (формат А3).


ЛИТЕРАТУРА


1. Дытнерский, Ю.И. Основные процессы и аппараты химической технологии. Курсовое проектирование /Ю.И. Дытнерский, Г.С. Борисов, В.П. Брыков. – М.: Химия, 1991. – 412 с.


2. Копко, В.М. Пластинчатые теплообменники в системах централизованного теплоснабжения. Курсовое и дипломное проектирование: учебное пособие. /В.М. Копко, М.Г. Пшоник. – Мн.: БНТУ, 2005. – 199 с.


3. Нащокин, В.В. Техническая термодинамика и теплопередача /В.В. Нащокин. – М.: Высш. шк., 1980. – 469 с.


4. Проектирование тепловых пунктов. СП-41-101-95.


5. Промышленная теплоэнергетика и теплотехника: Справочник /под общей ред. В.А. Григорьева, В.М. Зорина. – М.: Энергоатомиздат, 1989. – Кн. 4. – 586 с.


6. Тепловая изоляция оборудования и трубопроводов. СНиП 2.04.14. – 88.


7. Тепломассообмен: метод. указания к курсовой работе по одноим. курсу для студентов специальностей 1 – 43 01 05 «Промышленная теплоэнергетика» и 1 – 43 01 07 «Техническая эксплуатация энергооборудования организаций» /авт.-сост.: А.В. Овсянник, М.Н. Новиков, А.В. Шаповалов. – Гомель: ГГТУ имени П.О. Сухого», 2007. – 37 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Кожухотрубчатые теплообменные аппараты

Слов:3689
Символов:32881
Размер:64.22 Кб.