Введение
Важнейшей проблемой, стоящей перед отечественной металлургией, является повышение эффективности производства и коренное улучшение качества выпускаемой металлопродукции. В области непрерывной разливки стали это, прежде всего, создание современных конкурентоспособных МНЛЗ, расширение типоразмерного и марочного сортамента непрерывнолитой заготовки, по форме и профилю близкой к конечной продукции и обеспечение гарантированного качества металла при наименьших затратах по переделу. Разработка комплекса мер по реализации поставленной задачи требует решения широкого спектра вопросов, включающих в себя исследование роли и регламентацию характеристик процесса во всем значимом диапазоне изменения конструктивных и технологических параметров МНЛЗ. На базе всестороннего исследования влияния технологических и конструктивных параметров процесса на его эффективность необходимо разработать комплексный базовый регламент производства бездефектной непрерывнолитой заготовки, обеспечивающий воспроизводимость достигаемых результатов в условиях различных комбинаций параметров. Системная регламентация конструктивных и технологических факторов процесса, исследование их взаимосвязи и ранжирование допустимых диапазонов изменения позволит создавать конкурентоспособные МНЛЗ на базе обоснованных технологических заданий (ТЛЗ) на их проектирование и строительство, а также разработать типовую технологическую инструкцию на промышленную реализацию технологии получения непрерывнолитой заготовки заданного качества. Процесс создания современных конкурентоспособных МНЛЗ требует постоянного совершенствования методов прогноза получаемых результатов и теоретического анализа эффективности принимаемых технологических и технических решений. Прорыв в области разработки передовых технологий и конструктивных решений в непрерывной разливке невозможен без математического моделирования процесса на базе современных средств вычислительной техники. За последние годы на ряде отечественных и зарубежных УНРС введен контроль качества литых заготовок, позволяющий в ряде случаев приблизиться к созданию систем управления качеством. Как правило, автоматизированный контроль направлен на своевременное выявление дефектов поверхности и реже на определение дефектов макроструктуры. Поверхностные и внутренние-дефекты возникают в непрерывнолитых слитках по целому ряду причин, которые нередко комбинируются и усиливают взаимодействие друг друга. Часть таких причин связана с недостатками в работе УНРС: износ и механическая несоосность оборудования, неадекватная конусность кристаллизатора и т.д. В то время как другие причины связаны с особенностями химического состава разливаемых сталей, их прочностныими и пластическими характеристиками или теплофизическими условиями затвердевания слитков. Для исключения возможности образования дефектов, обусловленных характером работы УНРС, требуется анализ влияния металлургических факторов на качество непрерывнолитых слитков. Последнее не может быть реализовано без существенного совершенствования методов и средств, позволяющих в автоматическом режиме получать, накапливать и обрабатывать информацию о влиянии технологических параметров процесса непрерывной разливки стали на качество непрерывнолитых заготовок и готовой продукции. Одним из важнейших современных направлений развития и совершенствования непрерывной разливки стали является установление непосредственной связи между УНРС и станами горячей прокатки путем «горячего посада» или «прямой прокатки», что позволяет существенно сократить расход энергии, а длительность цикла производства при «горячем посаде» сократить ~ в 3 раза, а при «прямой прокатке» ~ в 10 раз. Однако на настоящее время не существует такой технологии, которая гарантировала бы получение достаточно высококачественных заготовок. Практическая реализация «горячего посада» или «прямой прокатки» возможна только при условии оснащения УНРС автоматизированной системой контроля качества непрерывнолитых заготовок, способной в режиме реального времени без дополнительной проверки и обработки определять в горячем слитке наличие дефектов, недопустимых для дальнейшей прокатки. Существует два основных подхода к созданию автоматизированной системы контроля качества заготовок. Первый подход связан с созданием аппаратурных дефектоскопов, способных определять наличие дефектов в заготовке при температурах поверхности порядка 800-1000°С, а второй базируется на использовании математических моделей, устанавливающих взаимосвязи между параметрами процесса разливки, характеризующими условия формирования заготовки и бальными оценками дефектов. Эти подходы не исключают друг друга, совместное их использование в практике непрерывной разливки значительно повысит ее эффективность. Особое внимание уделено второму подходу, ввиду появления в последние годы совершенно новых методов решения многофакторных задач, называемых системами искусственного интеллекта или нейронными сетями. Они находят успешное применение в самых различных областях - бизнесе, медицине, технике, геологии, физике и т.д. Нейронные сети вошли в практику везде, где нужно решать задачи прогнозирования, классификации или управления. Нейронные сети применимы практически в любом многофакторном процессе, когда существует причинно-следственная связь между переменными-предикторами (входами) и прогнозируемыми переменными (выходами), даже если эта связь имеет очень сложную природу, которую обычно трудно выразить в терминах корреляций и различий между рассматриваемыми группами параметров. Использование нейронных сетей, как и применение методов математической статистики, требует предварительной систематизации и накопления базы данных большого объема, состоящих из отдельных записей, каждая из которых включает в себя значения технологических или конструктивных параметров УНРС с возможностью увязки по ключевым полям с базами данных смежных переделов от сырья до реализации готовой продукции.. Энерго - и материапосбережение являются одним из основных направлений развития современной металлургической технологии, поскольку повышают конкурентоспособность металлопродукции. Вопросы управления качеством непрерывнолитой заготовки рассматриваются в аспекте номинальных расходов основных материалов и энергоресурсов. Глава 1. Анализ современных направлений повышения эффективности процесса непрерывной разливки стали (НРС) 1.1. Информационная интеграция процесса непрерывной разливки стали в управление качеством готовой продукции и СУБД производства Внедрение систем глобальной информационной интеграции производства, направленных на минимизацию затрат и обеспечение качества выпускаемой продукции, обеспечивает наибольшую эффективность в интеграции с процессами Concurrent Engineering в локальных доменах корпоративной сети предприятия на базе единого информационного пространства. В настоящее время технология моделирования и анализа достаточно формализована. Для разработки функциональных моделей процессов рекомендовано использовать методологию и нотацию SADT, регламентированную под названием IDEF0 федеральным стандартом США FIPS 183 и официально принятую в РФ. Анализ опыта внедрения и эксплуатации на российских предприятиях ERP-систем, относящихся к категории тяжелых (от класса R/3 SAP AG и др.), показал необходимость детальной предварительной проработки концепции и реинжиниринга всей системы управления предприятием. Возникающие организационные и методологические проблемы сдерживают эффективное использование автоматизированных систем, они быстро морально стареют и, с учетом современных тенденций развития вычислительной техники и информационных технологий, делают дальнейший upgrade их ядра и логистику бесперспективными. В настоящее время на российском рынке появились технические средства современной платформы и архитектуры для автоматизации технологических процессов. Они обладают достаточной надежностью, не требуют больших эксплуатационных затрат, на порядок дешевле предлагаемых комплектных поставок по импорту и в соответствии с введенным в РФ статусом государственных международных стандартов ISO 10303 (ГОСТ Р ИСО 10303 -К45) поддерживают Business Processes Reengineering, Workflow Management, Manufacturing Resource Planning, Quality Management, Integrated Logistic Support, Product Data Management. Как правило, на металлургических комбинатах в России на уровне участков и цехов уже внедрены локальные системы класса MRP II (Manufacturing Resource Planning) и ERP (Enterprise Resource Planning), соответствуют стандарту ISO/IEC 238-24 или осуществляется их модернизация для совмещения стандартов и форматов с глобальной интегрированной системой. Обслуживающий персонал обладает достаточной квалификацией для внедрения компьютерного 10 моделирования на базе самых современных достижений в области информатики, нейро - и геноинформатики. Быстро внедряются в промышленность системы искусственного интеллекта (MIQ- Machine Intelligent Quotient). Поскольку и способность, и сложность модульных систем искусственного интеллекта существенно возросли, для того, чтобы применять их во взаимодействии и в более гибких интегрированных системах, необходимо понимать принципы, в которых такие модули задуманы, для чего предназначены, как изготовлены. В частности, при проектировании систем для сложных динамических процессов есть особые требования, связанные со сложностью и неуверенностью в информационной среде, к которым обычно не апеллирует обычная теория систем. Имея дело с такими особенностями информационной среды, система часто прибегает к человекоподобному рассуждению и принятию решения с привлечением изучения прошлого опыта и использованием эвристики. Изучение опыта требуется, когда сложность задачи или неуверенность в информационной среде исключает априорную спецификацию удовлетворительного решения. Степень эффективности решения нарастает при накоплении информации о процессе, использование которой для расчета лучшего решения осуществляется в динамике протекания самого исследуемого процесса. Интеллектуальные технологии базируются на автоматизированном многофакторном анализе информационной среды. Управление единым организмом металлургического предприятия не может эффективно функционировать без единой информационной среды. Репозиторий предприятия должен интегрировать объектно-ориентированные и реляционные СУБД. Структура базы данных непрерывной разливки должна предусматривать возможность использования современных достижений и теоретических разработок в области интеллектуальных систем, реляционную увязку по ключевым полям с базами данных внепечной обработки стали, сталеплавильного и аглодоменного производств, возможность отслеживать металл от сырья до реализации готовой продукции, а также динамику его эксплуатационных свойств у потребителя [1]. Это особенно актуально, поскольку на настоящее время для непрерывной разливки не разработано сколь либо унифицированных обобщенных теоретических моделей, увязывающих качество непрерывнолитой 11 заготовки с параметрами разливки и свойствами подаваемого на разливку жидкого металла, трансформацией его качества на последующих переделах. Для оценки дефектов заготовки обычно используются номинальные переменные без количественных характеристик и без увязки этих переменных с параметрами («историей») происхождения металла, а также логистикой дальнейшего жизненного пути. 1.2. Применение интеллектуальных технологий в непрерывной разливке стали. Природа процессов разливки стали сложна, изменчива и нелинейна, что по современным представлениям предопределяет использование интеллектуальных систем [2]. Под интеллектуальными системами, прежде всего, понимают искусственные нейронные сети, которые строятся по принципам организации и функционирования их биологических аналогов. Сети эмулируют из большого числа очень простых элементов - нейронов, организованных в регулярные слои. Каждый из нейронов берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный пороговый уровень, дальше передает двоичный сигнал. Они способны решать практически любые многофакторные задачи - распознавания образов, идентификации, оптимизации, прогнозирования и управления сложными объектами. Дальнейшее повышение производительности и эффективности моделирования сложных производственных процессов все больше связывают с нейрокомпьютерами [3]. В качестве универсальных пакетов прикладных программ для построения нейронных сетей следует отметить Neural Networks Toolbox, Statistica Neural Networks, Neur