7. Классы твердых фаз в металлических сплавах. Химические соединения. Твердые растворы. Промежуточные фазы.
C
Химические соединения.
|
8.Метод построения диаграмм состояния. Элементы диаграммы состояния двойных сплавов (линии, точки). Правило отрезков ("рычага").
Диаграмма состояния показывает изменение состояния в зависимости от температуры (давление постоянно для всех рассматриваемых случаев) и концентрации. Один компонент: Шкала температур, точки показывают равновесную температуру изменения агрегатного состояния. Два компонента: По оси ординат - температура, по оси абсцисс - концентрацию. Крайние ординаты соответствуют чистым компонентам, а между ними - двойным сплавам. Три компонента: две оси концентрационные, одна - температурная. Каждая точка показывает состояние сплава данной концентрации при данной температуре. Вертикаль соответствует изменению температуры определённого сплава. Изменение фазового состояния отмечается на диаграмме точкой. Линии, соединяющие точки аналогичных превращений, разграничивают на диаграмме области аналогичных фазовых состояний. Правило отрезков.
|
9. Диаграмма состояния сплавов, с полной нерастворимостью компонентов в твердом состоянии.
Диаграммы состояния строятся в координатах t-оси ординат и концентрация компонентов – ось абсцисс. Линия АДВ – линия ликвидус. а представляет собой геометрическое место точек соответствующих температурам, при которых из жидкости начинают выпадать кристаллы, следовательно выше линии ликвидус сплав находится в жидком состоянии. Линия СДЕ называется солидус. Она представляет собой геометрическое место точек, соответствующих температурам, при которых жидкая фаза исчезает, следовательно ниже линии солидус сплав находится в твердом состоянии. Между линиями ликвидус и солидус сплав находится в жидко- твердом состоянии, и чем ниже температура относительно линии ликвидус, тем больше кристаллов и меньше жидкой фазы в сплаве. |
10. Диаграмма состояния сплавов, с полной растворимостью компонентов в твердом состоянии.
Два компонента: компонент А и компонент В. АаВ - линия ликвидус. АвВ – линия солидус. Выше линии ликвидус сплав находится в жидком состоянии, ниже линии солидус – в твердом. При кристаллизации сплавов по диаграмме этого типа из жидкости будут выделятся не жидкие компоненты, а твердые растворы. Это обусловлено тем, что при сплавлении компонентов А и В образуется непрерывный ряд твердых растворов, т.е. растворов неограниченной растворимости. Отсюда a- твердый раствор компонента В в компоненте А. |
11. Диаграмма состояния сплавов эвтектического типа (с ограниченной растворимостью компонентов в твердом состоянии)
Эвтект. превращ. происх при пост. тем-ре и закл. в одновр. кристаллиз. 2-х твердых фаз. Не образ. фазы, представл. собой чистые компоненты.Из жидк. могут выдел только тв. р-ры α или β.Предельн. р-римость В в А определ. линией DF, а предельн. р-римость А в В – линией CG.Сплавы между этими линиями – явл. 2-ч фазными, сост. из α+β. Линия АЕВ – линия ликвидус, ADCB – солидус. Кристаллы β выделивш. из тв. р-ра α назв. вторичн. |
12. Диаграмма состояния сплавов перитектического типа (с ограниченной растворимостью компонентов в твердом состоянии)
Возможен такой тип нонвариантного превращ. (трехфазного равновесия), когда жидк. реагир. с ранее выпавш. кристаллами и образ нов. вида кристаллов. Подобн. реакц назв. перетектической. Линия АСВ – ликвидус, APDB - солидус |
13. Фазовые превражения в твердом состоянии в металлах и сплавах. Магнитные превращения. Полиморфное превращение. Упорядочивание твердых растворов. Распад пересыщенных твердых растворов. Эвтектоидное и перетектоидное превращения.
Атомы данного элемента могут образовать, если исходить только из геометрических соображений, любую кристаллическую решетку. Однако устойчивым, а следовательно, реально существующим типом является решетка, обладающая наиболее низким запасом свободной энергии. Так, например, в твердом состоянии литий, натрий, калий, рубидий, цезий, молибден, вольфрам и другие металлы имеют объем -ноцентрированную кубическую решетку; алюминий, кальций, медь серебро, золото, платина и др. — гранецентрированную, а бериллий магний, цирконий, гафний, осмий и некоторые другие — гексаго нальную. Однако в ряде случаев при изменении температуры или давления может оказаться, что для того же металла более устойчивой будет другая решетка, чем та, которая была при другой температуре или давлении. Так, например, существует железо с решетками объемно центрированного и гранецентрированного кубов; обнаружен кобальт с гранецентрированной и с гексагональной решетками. В раз личных решетках кристаллизуются также олово, марганец, титан и некоторые другие металлы. Существование одного металла (вещества) в нескольких кристал лических формах носит название полиморфизма, или аллотропии Различные кристаллические формы одного вещества называются: полиморфными, или аллотропическими модификациями. Явление полиморфизма основано на едином законе об устойчивости состояния с наименьшим запасом энергии.Запас свободной энергии зависит от температуры. Поэтому в одном интервале температур более устойчивой является модификация альфа, а в другом — модификация бетта. Температура, при которой осуществляется переход из одной модификации в другую, носит название температуры полиморфного (аллотропического) превращения. Так, железо имеет две температуры полиморфного превращения: 911 и 1392°С.Новые аллотропические формы образуются в результате зарождения центров и роста кристаллов аналогично кристаллизации из жидкого состояния. |
14. Диффузионный и мартенситный механизм перекристаллизации.
Мартенситное превращение происходит только тогда, когда быстрым охлаждением аустенит(А
|
15. Диаграмма состояния системы «Железо – углерод». Компоненты, Фазы и структурные составляющие. Реакции фазовых превращений.
При кристаллизации чистого железа при температуре 1539о
Аустенит(А) – твердый раствор углерода в γ-Fe, придельная концентрация углерода при t = 1447 о
Ферид(Ф) – твердый раствор углерода в низкотемпературном α-Fe, максимальное содержание углерода при t = 727 о
Цементит(Ц) – хим. Соединение железа и углерода. Перлит(П) – эвтектойдная смесь ерритной и цементнитной фаз, образованных из аустенита при охлаждении до t = 727 о
Ледебурит – эвтектойдная смесь аустенита и цементита, образуется при охлаждении сплавов от 2,14 до 6,67 при t = 1147 о
|
16.Углеродистые стали. Структура, свойства и области их применения. Влияние углерода на свойство стали. Влияние постоянных примесей на свойство стали. Классификация и маркировка углеродистых сталей.
Углерод сильно влияет на свойства стали даже при незначительном изменении его содержания. Поэтому при малом содержании всех прочих возможных примесей основным элементом, при помощи которого изменяются свойства сплава железа, является углерод. Поэтому эти сплавы называются углеродистыми сталями (при С<2%). Классификация по структуре: 1.Эвтектоидные(около 0.8%С, структура—перлит) 2. Доэвтектоидные (<0.8%С, структура—феррит + перлит) 3. Заэвтектоидные (0.8—2%С. структура—перлит + цементит) Увеличение содержания углерода
Постоянные примеси
|
17. Чугуны. Структура, свойства и области их применения. Классификация и маркировка чугунов. Белый чугун. Серый чугун. Ковкий чугун. Графитизирующий отжиг. Высокопрочный чугун.
Чугун отличается от стали по составу – более высоким содержанием углерода, по технологическим свойствам—лучшими литейными качествами, малой способностью к пластической деформации. Чугун дешевле стали. Поскольку структура чугуна состоит из металлической основы и графита, то и свойства чугуна будут зависеть как от свойств металлической основы, так и от количества и характера графитных включений. Графит по сравнению со сталью обладает низкими механическими свойствами , и поэтому графитные включения можно считать просто пустотами, трещинами. Чем больше в чугуне графита, тем ниже его механические свойства, чем грубее включения графита, тем больше они разобщают металлическую основу, тем хуже свойства чугуна. По механическим свойствам чугун характеризуется низким сопротивлением развитию трещины. Если растягивающие напряжения имеют минимальные значения, свойства чугуна оказываются достаточно высокими и практически очень близкими к свойствам стали того же состава и структуры, что и металлическая основа чугуна. Такие свойства чугуна
|
|
19. Влияние пластической деформации на структуру и свойства металлов. Упругая и пластическая деформация. Механизмы пластической деформации. Текстура деформации. Наклеп.
Пластическая деформация остаётся после снятия нагрузки. При пластическом деформировании одна часть кристалла сдвигается относительно другой. Если нагрузку снять, то перемешённая часть кристалла не возвращается на старое место, деформация остаётся. При значительной деформации наблюдается заметное изменение форм зерна и их расположения в пространстве, между зёрнами возникают пустоты. Т.к. пластическое деформирование представляет собой процесс сдвига, то естественно предположить, что все атомы выше плоскости скольжения АА сдвигаются одновременно под действием силы Р. Усилие, которое надо приложить, чтобы осуществить такой сдвиг, можно подсчитать. , где G –модуль сдвига, a – межатомное расстояние в направлении скольжения, b – межплоскостное расстояние. Но значения, полученные данной формулой, значительно отлич от теоретич, для объясн этого была предлож теор дислокаций. Дислокация под действием силы Р перемещается вправо только вследствие того, что изменяется «соседство » атомов по обе стороны плоскости АА. В конце концов дислокация выйдет на поверхность кристалла и исчезнет. Этот процесс происходит значительно легче, т.е. при значительно меньшем напряжении, чем одновременный сдвиг всех атомов и фактически только так и осуществляется пластическая деформация. Процесс сдвига будет происходить тем легче, чем больше дислокаций в металле. В металле, в котором нет дислокаций, сдвиг возможен только за счёт одновременного смещения всей части кристалла. В случае, если под действием напряжений дислокации не зарождаются, то прочн бездислокационного мет должна быть = теор. Опыт показт, что способность металла к пластической деформации является одним из важнейших и полезнейших его свойств. Это свойство используют при различных технологических процессах. Большое значение оно имеет и для обеспечения конструкционной прочности или надёжности металлических конструкций. Если металл находится в хрупком состоянии, то он в изделиях склонен к внезапным хрупким разрушениям, которые происх даже при пониж нагрузках на изделие. |
20. Влияние нагрева на структуру и свойства
Пластическая деформация приводит металл в структурно неустойчивое состояние. Самопроизвольно должны происходить явления, возвращающие металл в более ус
тойчивое структурное состояние. К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки и другие внутризеренние процессы и образование новых зерен. Первое не требует высокой температуры, так как при этом происходит незначительное перемещение атомов. Уже небольшой нагрев (для железа 300—400 °С) снимает искажения решетки (как результат многочисленных субмик-ропроцессов — уменьшение плотности дислокаций в результате их взаимного уничтожения, так называемая аннигиляция,
слияния блоков, уменьшение внутренниз напряжений, уменьшение количества вакансий и т, д.). Линии на рентгенограммах деформированного металла, размытые вследствие искажений решетки и нарушени! ее правильности, вновь становятся четкими. Снятие искажений ре шетки в процессе нагрева деформированного металла называется возвратом, или отдыхом. В результате этого процесса твердость я прочность несколько понижаются (на 20—30 % по сравнению с исходными), а плас-тичность возрастает. Наряду с этим, т. е, с отдыхом (возвратом), может происходить еще так называемый процесс полигонизации,
|
21. Аустенизация /превращения при нагреве/. Рост зерна аустенита.
Образов аустен.
Скорость гомогенизации аyстенита в значительной степени определяется исходной стрyктyрой стали — степенью дисперсности цементита и его формой. Чем мельче частицы цементита и, следовательно, больше их сyммарная поверхность, тем быстрее происходят описанные превращения.
|
22. Перлитное превращение. Свойства перлитных структур. Диаграмма изотермического распада переохлажденного аустенита.
Распад аyстенита.
Как только созданы надлежащие yсловия, зарождаются центры кристаллизации и из них растyт кристаллы. Начал период хар-тся весьма малой скоростью превращ — это так называемый инкyбационный nериод,
|
|
В точке Д из жидкости одновременно начинают выпадать кристаллы компонентов (фаз). Для диаграмм этого типа компонент и фаза являются синонимами. Для диаграмм другого типа необходимо говорить только о фазах, поскольку компонент и фаза не являются синонимами. Механическая смесь, состоящая из двух или более фаз, одновременно кристаллизующаяся в жидкости называется эвтептикой. Ниже точки Д на диаграмме структура представляет собой чисто эвтептической. |
Твердые р-ры.
|
|
Кривые зависимости с. к. и ч. ц. от степени переохлаждения для аллотропического превращения имеют тот же вид, что и для кристаллизации из жидкого состояния. Следует отметить большую склонность к переохлаждению при аллотропических превращениях в твердом состоянии. В качестве общей закономерности можно указать, что высокотемпературная модификация, как правило, имеет более простое атомно-кристаллическое строение и более высокую пластичность. Некоторые металлы (железо, кобальт, никель) отличаются специфическими магнитными свойствами, например способностью хорошо намагничиваться. Эти свойства называются ферромагнитными. Однако при нагреве ферромагнитные свойства металла постепенно теряются. П. Кюри показал, что полная потеря ферромагнитных свойств получается при определенной температуре, названной в дальнейшем точкой Кюри Во-первых, магнитные свойства постепенно падают по мере приближения к точке превращения, и эта точка не отвечает скачкообразному изменению свойств. Во-вторых, магнитное превращение не имеет температурного гистерезиса. Увеличение скорости охлаждения не снижает температуры превращения. В-третьих, механические и некоторые физические свойства при превращении не изменяются (изменяются многие электрические магнитные и тепловые свойства). Наконец, в-четвертых, самое важное, магнитное превращение не сопровождается перекристаллизацией— образованием новых зерен и изменением решетки. Эти особенности существенно отличают магнитное превращение от аллотропического. Типичными для аллотропического превращения являются изменение кристаллической решетки, переристаллизация и тепловой гистерезис превращения. Магнитное превращение не сопровождается ни одним из этих явлений. Сл-но, магнитное превращение есть особый вид превращения, принципиально отличный от аллотропического. Согласно современным представлениям при магнитных превращениях происходит изменение не в кристаллической структуре металла, а во взаимодействии внешних и внутренних электронных оболочек атомов. |
|||
По мере скругления графитных включений отрицательное влияние графитных включений уменьшается. Чугун с шаровидным графитом имеет значительно более высокую прочность при растяжении и изгибе, чем чугун с пластинчатым графитом. В ряде случаев именно благодаря наличию графита чугут имеет преимущества
Белый чугун
Серый чугун
C
Ковкий чугун
Износостойкий чугун
|
Кислород, азот и водород
Случайные примеси
По назначению:
В зависимости от способа раскисления
|
||
Максимyм скорости превращ соответствyет примерно тому времени, когда превратилось -50 % аyст. В дальнейшем скорость превращ yменьш и превращ заканчив. Скорость nревращ зависит от степени переохлаж, при малых и значит переохлаж превращение происходит медленно, так как малы значения скорости роста кристаллов и число центров образования, в первом слyчае из-за малой разности свободных энергий, во втором из-за малой диффyзионной подвижности атомов. На рис. показ время превращ аyс в перлит в завис от степени переохлаж, т. е. превращ переохлаж аyстенита при постоянной температyре. Поэтомy такие диаrраммы обычно называют диаграммами изотермического nревращения аyстенита.
Свойства и строение
|
Рост аyстенитного зерна
|
Процесс рекристаллизации можно разделить на два этапа: 1) первичная рекристаллизация, или рекристаллизация обработки, когда вытянутые вследствие пластической деформации зерна превращаются в мелкие округлой формы беспорядочно ориентированные зерна; 2) вторичная, или собирательная рекристаллизация, заключающаяся в росте зерен и протекающая при более высокой температуре. Процессы первичной и вторичной рекристаллизации имеют ряд особенностей. Первичная рекристаллизация заключается в образовании новых зерен. Это обычно мелкие, можно даже сказать очень мелкие зерна, возникающие на поверхностях раздела крупных деформированных зерен. Хотя в процессе нагрева и происходили внутризеренные процессы устранения дефектов (возврат, отдых), все же они, как правило, полностью не заканчиваются, с другой стороны, вновь образовавшееся зерно уже свободно от дефектов. К концу первой стадии рекристаллизации можно получить структуру, состоящую только из таких зерен, т. е. очень мелких зерен, в поперечнике имеющих размер в несколько микрон. Но в этот момент наступает процесс вторичной рекристализации, заключающийся в росте зерен. Возможны 3 существенно различных механизма роста зерна: 1) зародышевый – состоящий в том, что после первичной рекристализациивновь возникают зародешивые центры новых кристаллов, и их рост приводит к образованию новых зерен, но их меньше, чем зерен в исходном состоянии, и поэтому послезавершения процесса зерна в среднем станут крупнее. 2) Миграционный – состоящий в перемещении границы зерна и увеличении его размеров. Так как крупное зерно термодинамически устойчивее мелкого, то растут крупные зерна за счет “поедания” мелких зерен. 3) Слияние зерен – состоящее в постепенном “растворении” гранц зерен и объединении многих мелких зерен в одно крупное
|
Наклёп
В рез-те деф-ции зёрна выстраиваются (вытягиваются в направлении действующей нагрузки. Развивается анизотропия в металле. Под анизотропией понимают различие св-в по различным направлениям в металле. Выше св-ва в направлении пластической деформации (действующей нагрузки). При холодной пластической деформации прочностные хар-ки (твёрдость, предел прочности и растяжений) увеличиваются в 2-3 раза, тогда как хар-ки пластичности (относит. удлинение, относит. сужение) снижаются 30-40 раз. Упрочнение металлов при холодной пластической деф-ции обусловлена увелич. дефектов кристаллич. решётки (вакансий, дислакаций), увеличением числа дислокаций одного знака, а также увеличением угла разориентации м/у блоками. |