чЗадание 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Параметры электрической цепи:
R1 = 1.1 кОм L = 0,6 · 10-3
Гн E = 24 В
R2 = 1.8 кОм C = 5.3 · 10-10
Ф I = 29 · 10-3
A
R3 = 1.6 кОм ω = 6.3 · 105
Гц
1). Используя метод узловых напряжений, определить комплексные действующие значения токов ветвей и напряжений на элементах цепи:
Составляем систему уравнений методом узловых напряжений:
Для узла U(10)
имеем :
Для узла U(20
)
имеем:
Для узла U(30)
имеем :
0
Вычисления полученной системы уравнений проводим в программе MATCAD 5.0 имеем :
Ů
(10
)
=
Ů
(20)
=
Ů
(30)
=
Находим действующие комплексные значения токов ветвей (используя программу MATCAD 5.0) :
Определяем действующие напряжения на єэлементах:
2). Найти комплексное действующее значение тока ветви, отмеченной знаком *, используя метод наложения:
Выключая поочередно источники электрической энергии с учетом того, что ветви содержащие источник тока представляют собой разрыв ветви, а источники напряжения коротко замкнутые ветви имеем:
После исключения источника напряжения составим цепь представленную ниже:
Для полученной схемы составляем уравнения определяющее значение тока İ1.
Имеем:
После исключения источника тока имеем следующую схему:
Для полученной схемы определим ток İ 2
Результирующий ток ветви отмеченной звездочкой найдем как сумму İ1 и İ2 :
İветви = İ1 + İ2 = 0,005 + 0,007j=
Топологический граф цепи:
Полная матрица узлов:
ветви узлы |
1 | 2 | 3 | 4 | 5 | 6 |
0 | -1 | 0 | 0 | -1 | -1 | 0 |
I | 1 | -1 | 0 | 0 | 0 | 1 |
II | 0 | 1 | 1 | 0 | 0 | -1 |
III | 0 | 0 | -1 | 1 | 1 | 0 |
Сокращенная матрица узлов
ветви узлы |
1 | 2 | 3 | 4 | 5 | 6 |
I | 1 | -1 | 0 | 0 | 0 | 1 |
II | 0 | 1 | 1 | 0 | 0 | -1 |
III | 0 | 0 | -1 | 1 | 1 | 0 |
Сигнальный граф цепи:
ЗАДАНИЕ 2
|
|
Параметры электрической цепи
С = 1.4 ·10-8
Ф Rn = 316,2 Ом
L = 0.001 Гн
R = 3.286 Ом
Рассчитать и построить в функции круговой частоты АЧХ И ФЧХ комплексного коэффициента передачи цепи по напряжению:
Находим комплексный коэффициент передачи по напряжению
Общая формула:
Определяем АЧХ комплексного коэффициента передачи цепи по напряжению:
Строим график (математические действия выполнены в MATCAD 5.0)
Определяем ФЧХ комплексного коэффициента передачи цепи по напряжению, по оси ординат откладываем значение фазы в градусах, по оси обцис значения циклической частоты
Найти комплексное входное сопротивление цепи на частоте источника напряжения:
|
<
Определяем активную мощность потребляемую сопротивлением Rn:
Pактивная = 8,454·10-13
Задание 3
|
|
Параметры электрической цепи:
L = 1.25·10-4
Гн
С = 0,5·10-9
Ф
R = 45 Ом Rn = R0
R0
= 5,556·103
– 7,133j Ri
= 27780 – 49,665j
1. определить резонансную частоту, резонансное сопротивление, характеристическое сопротивление, добротность и полосу пропускания контура.
Резонансная частота ω0
= 3,984·106
(вычисления произведены в MATCAD 5.0)
Резонансное сопротивление:
Характеристическое сопротивление ρ в Омах
Добротность контура
Полоса пропускания контура
Резонансная частота цепи
ω0
= 3,984·106
Резонансное сопротивление цепи
Добротность цепи
Qцепи = 0,09
Полоса пропускания цепи
2.
Рассчитать и построить в функции круговой частоты модуль полного сопротивления:
3. Рассчитать и построить в функции круговой частоты активную составляющую полного сопротивления цепи:
4. Рассчитать и построить в функции круговой частоты реактивную составляющую полного сопротивления цепи:
5. Рассчитать и построить в функции круговой частоты АЧХ комплексного коэффициента передачи по току в индуктивности:
6. Рассчитать и построить в функции круговой частоты ФЧХ комплексного коэффициента передачи по току в индуктивности:
7. Рассчитать мгновенное значение напряжение на контуре:
Ucont =229179·cos(ω0
t + 90˚)
8. Рассчитать мгновенное значение полного тока на контуре:
Icont = 57,81cos(ω0
t + 90˚)
9. Рассчитать мгновенное значение токов ветвей контура:
ILR
= 646cos(ω0
t + 5˚)
IC
= 456,5cos(ω0
t - 0,07˚)
Определить коэффициент включения Rn в индуктивную ветвь контура нагрузки с сопротивлением Rn = Ro, при котором полоса пропускания цепи увеличивается на 5%.
|
|
|
Данную схему заменяем на эквивалентную в которой параллельно включенное сопротивление Rn заменяется сопротивлением Rэ включенное последовательно:
Выполняя математические операции используя программу MATCAD 5.0 находим значение коэффициента включения KL
:
Задание 4
Параметры цепи:
e(t) = 90sinωt = 90cos(ωt - π/2
)
Q = 85
L = 3.02 · 10-3
Гн
С = 1,76 • 10-9
Ф
Рассчитать параметры и частотные характеристики двух одинаковых связанных колебательных контуров с трансформаторной связью, первый из которых подключен к источнику гармонического напряжения.
1. определить резонансную частоту и сопротивление потерь R связанных контуров:
2. Рассчитать и построить в функции круговой частоты АЧХ И ФЧХ нормированного тока вторичного контура при трех значениях коэффициента связи Ксв = 0.5Ккр (зеленая кривая на графике), Ксв = Ккр (красная кривая на графике), Ксв = 2Ккр (синяя кривая на графике), где Ккр – критический коэффициент связи.
ФЧХ нормированного тока вторичного контура при трех значениях коэффициента связи Ксв = 0.5Ккр (зеленая кривая на графике), Ксв = Ккр (красная кривая на графике), Ксв = 2Ккр (синяя кривая на графике), где Ккр – критический коэффициент связи.
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = 0,5Ккр
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = Ккр
Графически определить полосу пропускания связанных контуров при коэффициенте связи Ксв = 2Ккр, а так же частоты связи.
Задание5
Рассчитать переходный процесс в электрической цепи при включении в нее источника напряжения e(t) амплитуда которого равна E = 37 и временной параметр Т = 0,46 мс, сопротивление цепи R = 0.9 кОм, постоянная времени τ = 0.69.
Определить индуктивность цепи, а так же ток и напряжение на элементах цепи
|
Так как данная цепь представляет собой последовательное соединение элементов, ток в сопротивлении и индуктивности будет одинаковым следовательно для выражения тока цепи имеем:
Исходное уравнение составленное для баланса напряжений имеет вид:
Заменяя тригонометрическую форму записи напряжения е(t) комплексной формой
Имеем:
Используя преобразования Лапласа заменяем уравнение оригинал его изображением имеем:
Откуда
Используя обратное преобразование Лапласа находим оригинал I(t):
Переходя от комплексной формы записи к тригонометрической имеем
Определяем напряжение на элементах цепи
Задание 6
Параметры четырехполюсника
С = 1.4 ·10-8
Ф
L = 0.001 Гн
R = 3.286 Ом
ω = 1000 рад/с
Рассчитать на частоте источника напряжения А параметры четырехполюсника:
Параметры А11 и А21 рассчитываются в режиме İ 2 = 0
Параметры А12 и А22 рассчитываются в режиме Ŭ 2 = 0
|
Исходная матрица А параметров четырехполюсника:
Оглавление
Задание 1 стр.1-7
Задание 2 стр.8-11
Задание 3 стр.12-18
Задание 4 стр.13-23
Задание 5 стр.14-27
Задание 6 стр.27-30