Наука в культуре техногенной цивилизации
Слово "культура" происходит от латинского слова colere, что означает культивировать, или возделывать почву. В средние века это слово стало обозначать прогрессивный метод возделывания зерновых, таким образом, возник термин agriculture или искусство земледелия. Но в XVIII и XIX вв. его стали употреблять и по отношению к людям, следовательно, если человек отличался изяществом манер и начитанностью, его считали "культурным". Тогда этот термин применялся главным образом к аристократам, чтобы отделить их от "некультурного" простого народа. Немецкое слово Kultur также означало высокий уровень цивилизации. В нашей сегодняшней жизни слово "культура" все еще ассоциируется с оперным театром, прекрасной литературой, хорошим воспитанием.
Современное научное определение культуры отбросило аристократические оттенки этого понятия. Оно символизирует убеждения, ценности и выразительные средства (применяемые в литературе и искусстве), которые являются общими для какой-то группы; они служат для упорядочения опыта и регулирования поведения членов этой группы. Верования и взгляды подгруппы часто называют субкультурой.
Усвоение культуры осуществляется с помощью обучения. Культура создается, культуре обучаются. Поскольку она, не приобретаемая биологическим путем, каждое поколение воспроизводит её и передает следующему поколению. Этот процесс является основой социализации. В результате усвоения ценностей, верований, норм, правил и идеалов происходят формирование личности ребенка и регулирование его поведения. Если бы процесс социализации прекратился в массовом масштабе, это привело бы к гибели культуры.
Культура формирует личности членов общества, тем самым она в значительной степени регулирует их поведение.
О том, насколько важна культура для функционирования индивида и общества, можно судить по поведению людей, не охваченных социализацией. Неконтролируемое, или инфантильное, поведение так называемых детей джунглей, которые оказались полностью лишенными общения с людьми, свидетельствует о том, что без социализации люди не способны усвоить упорядоченный образ жизни, овладеть языком и научиться добывать средства к существованию. В результате наблюдения за несколькими "существами, не проявлявшими никакого интереса к тому, что происходило вокруг, которые ритмично раскачивались взад и вперед, словно дикие звери в зоопарке", шведский натуралист XVIII в. Карл Линней сделал вывод, что они являются представителями особого вида. Впоследствии ученные поняли, что у этих диких детей не произошло развития личности, для которого необходимо общение с людьми. Это общение стимулировало бы развитие их способностей и становление их "человеческих" личностей.
Теоретическое знание и его развитие является неотъемлемой характеристикой современной науки, которая постоянно расширяет горизонты познавательного и практического освоения мира человеком. Как и сама наука, теоретическое знание является культурно-историческим феноменом. Оно возникло в контексте исторического развития цивилизации и культуры, на определенных стадиях этого развития, породивших теоретическую науку и ценность научной рациональности.
Современная цивилизация неразрывно связана с достижениями науки, основанными на систематическом развертывании теоретических исследований. Именно благодаря этим достижениям и их внедрению в производство стал возможен впечатляющий технологический прогресс ХХ века, приведший в развитых странах Запада и Востока к новому качеству жизни. Наука революционизирует не только сферу производства, но и оказывает влияние на многие другие сферы человеческой деятельности, начиная регулировать их, перестраивая их средства и методы.
Однако так было не всегда, и не во всех культурах наука занимала столь высокое место в шкале ценностных приоритетов. В этой связи возникает вопрос об особенностях того типа цивилизационного развития, который стимулировал широкое применение в человеческой деятельности научных знаний.
Традиционные и техногенные цивилизации
В развитии человечества, после того как оно преодолело стадию варварства и дикости, существовало множество цивилизаций - конкретных видов общества, каждое из которых имело свою самобытную историю. Известный философ и историк А.Тойнби выделил и описал 21 цивилизацию. Все они могут быть разделены на два больших класса, соответственно типам цивилизационного прогресса - на традиционные и техногенную цивилизации.
Техногенная цивилизация является довольно поздним продуктом человеческой истории. Долгое время эта история протекала как взаимодействие традиционных обществ. Лишь в XV-ХVII столетиях в европейском регионе сформировался особый тип развития, связанный с появлением техногенных обществ, их последующей экспансией на остальной мир и изменением под их влиянием традиционных обществ. Некоторые из этих традиционных обществ были просто-напросто поглощены техногенной цивилизацией; пройдя через этапы модернизации, они превращались затем в типичные техногенные общества. Другие, испытав на себе прививки западной технологии и культуры, тем не менее сохраняли многие традиционные черты, превратившись в своего рода гибридные образования.
Различия традиционной и техногенной цивилизации носят радикальный характер.
Традиционные общества характеризуются замедленными темпами социальных изменений. Конечно, в них также возникают инновации как в сфере производства, так и в сфере регуляции социальных отношений, но прогресс идет очень медленно по сравнению со сроками жизни индивидов и даже поколений. В традиционных обществах может смениться несколько поколений людей, заставая одни и те же структуры общественной жизни, воспроизводя их и передавая следующему поколению. Виды деятельности, их средства и цели могут столетиями существовать в качестве устойчивых стереотипов. Соответственно в культуре этих обществ приоритет отдается традициям, образцам и нормам, аккумулирующим опыт предков, канонизированным стилям мышления. Инновационная деятельность отнюдь не воспринимается здесь как высшая ценность, напротив, она имеет ограничения и допустима лишь в рамках веками апробированных традиций. Древняя Индия и Китай, Древний Египет, государства мусульманского Востока эпохи Средневековья и т.д. - все это традиционные общества. Этот тип социальной организации сохранился и до наших дней: многие государства третьего мира сохраняют черты традиционного общества, хотя их столкновение с современной западной (техногенной) цивилизацией рано или поздно приводит к радикальным трансформациям традиционной культуры и образа жизни.
Что же касается техногенной цивилизации, которую часто обозначают расплывчатым понятием “западная цивилизация”, имея в виду регион ее возникновения, то это особый тип социального развития и особый тип цивилизации, определяющие признаки которой в известной степени противоположны характеристикам традиционных обществ. Когда техногенная цивилизация сформировалась в относительно зрелом виде, то темп социальных изменений стал возрастать с огромной скоростью. Можно сказать, что экстенсивное развитие истории здесь заменяется интенсивным; пространственное существование - временным. Резервы роста черпаются уже не за счет расширения культурных зон, а за счет перестройки самих оснований прежних способов жизнедеятельности и формирования принципиально новых возможностей. Самое главное и действительно эпохальное, всемирно-историческое изменение, связанное с переходом от традиционного общества к техногенной цивилизации, состоит в возникновении новой системы ценностей. Ценностью считается сама инновация, оригинальность, вообще новое (в известном смысле символом техногенного общества может считаться книга рекордов Гиннеса в отличие, скажем, от семи чудес света - книга Гиннеса наглядно свидетельствует, что каждый индивид может стать единственным в своем роде, достичь чего-то необычного, и она же как бы призывает к этому; семь чудес света, напротив, призваны были подчеркнуть завершенность мира и показать, что все грандиозное, действительно необычное уже свершилось).
Техногенная цивилизация началась задолго до компьютеров, и даже задолго до паровой машины. Ее преддверием можно назвать развитие античной культуры, прежде всего культуры полисной, которая подарила человечеству два великих изобретения - демократию и теоретическую науку, первым образцом которой была Евклидова геометрия. Эти два открытия - в сфере регуляции социальных связей и в способе познания мира - стали важными предпосылками для будущего, принципиально нового типа цивилизационного прогресса.
Второй и очень важной вехой стало европейское Средневековье с особым пониманием человека, созданного по образу и подобию Бога; с культом человекобога и культом любви человека к человекобогу, к Христу; с культом человеческого разума, способного понять и постигнуть тайну божественного творения, расшифровать те письмена, которые Бог заложил в мир, когда он его создавал. Последнее обстоятельство необходимо отметить особо: целью познания как раз и считалась расшифровка промысла Божьего, плана божественного творения, реализованного в мире, - страшно еретическая мысль с точки зрения традиционных религий. Но это все - преддверие.последствии, в эпоху Ренессанса, происходит восстановление многих достижений античной традиции, но при этом ассимилируется и идея богоподобности человеческого разума. И вот с этого момента закладывается культурная матрица техногенной цивилизации, которая начинает свое собственное развитие в XVII веке. Она проходит три стадии: сначала - прединдустриальную, потом - индустриальную и наконец - постиндустриальную. Важнейшей основой ее жизнедеятельности становится прежде всего развитие техники, технологии, причем не только путем стихийно протекающих инноваций в сфере самого производства, но и за счет генерации все новых научных знаний и их внедрения в технико-технологические процессы. Так возникает тип развития, основанный на ускоряющемся изменении природной среды, предметного мира, в котором живет человек. Изменение этого мира приводит к активным трансформациям социальных связей людей. В техногенной цивилизации научно-технический прогресс постоянно меняет способы общения, формы коммуникации людей, типы личности и образ жизни. В результате возникает отчетливо выраженная направленность прогресса с ориентацией на будущее. Для культуры техногенных обществ характерно представление о необратимом историческом времени, которое течет от прошлого через настоящее в будущее. Отметим для сравнения, что в большинстве традиционных культур доминировали иные понимания: время чаще всего воспринималось как циклическое, когда мир периодически возвращается к исходному состоянию. В традиционных культурах считалось, что “золотой век “ уже пройден, он позади, в далеком прошлом. Герои прошлого создали образцы поступков и действий, которым следует подражать. В культуре техногенных обществ иная ориентация. В них идея социального прогресса стимулирует ожидание перемен и движение к будущему, а будущее полагается как рост цивилизационных завоеваний, обеспечивающих все более счастливое мироустройство.
Техногенная цивилизация существует чуть более 300 лет, но она оказалась весьма динамичной, подвижной и очень агрессивной: она подавляет, подчиняет себе, переворачивает, буквально поглощает традиционные общества и их культуры - это мы видим повсеместно, и сегодня этот процесс идет по всему миру. Такое активное взаимодействие техногенной цивилизации и традиционных обществ, как правило, оказывается столкновением, которое приводит к гибели последних, к уничтожению многих культурных традиций, по существу, к гибели этих культур как самобытных целостностей. Традиционные культуры не только оттесняются на периферию, но и радикально трансформируются при вступлении традиционных обществ на путь модернизации и техногенного развития. Чаще всего эти культуры сохраняются только фрагментарно, в качестве исторических рудиментов. Так произошло и происходит с традиционными культурами восточных стран, осуществивших индустриальное развитие; то же можно сказать и о народах Южной Америки, Африки, вставших на путь модернизации, - везде культурная матрица техногенной цивилизации трансформирует традиционные культуры, преобразуя их смысложизненные установки, заменяя их новыми мировоззренческими доминантами.
Эти мировоззренческие доминанты складывались в культуре техногенной цивилизации еще на прединдустриальной стадии ее развития, в эпоху Ренессанса, а затем и европейского Просвещения.
Они выражали кардинальные мировоззренческие смыслы: понимания человека, мира, целей и предназначения человеческой жизнедеятельности.
Человек понимался как активное существо, которое находится в деятельностном отношении к миру. Деятельность человека должна быть направлена вовне, на преобразование и переделку внешнего мира, в первую очередь, природы, которую человек должен подчинить себе. В свою очередь внешний мир рассматривался как арена деятельности человека, как если бы мир и был предназначен для того, чтобы человек получал необходимые для себя блага, удовлетворял свои потребности. Конечно, это не означает, что в новоевропейской культурной традиции не возникают другие, в том числе и альтернативные, мировоззренческие идеи.
Техногенная цивилизация в самом своем бытии определена как общество, постоянно изменяющее свои основания. Поэтому в ее культуре активно поддерживается и ценится постоянная генерация новых образцов, идей, концепций. Лишь некоторые из них могут реализовываться в сегодняшней действительности, а остальные предстают как возможные программы будущей жизнедеятельности, адресованные грядущим поколениям. В культуре техногенных обществ всегда можно обнаружить идеи и ценностные ориентации, альтернативные доминирующим ценностям. Но в реальной жизнедеятельности общества они могут не играть определяющей роли, оставаясь как бы на периферии общественного сознания и не приводя в движение массы людей.
Идея преобразования мира и подчинения человеком природы была доминантой в культуре техногенной цивилизации на всех этапах ее истории, вплоть до нашего времени. Если угодно, эта идея была важнейшей составляющей того “генетического кода”, который определял само существование и эволюцию техногенных обществ. Что же касается традиционных обществ, то здесь деятельностное отношение к миру, которое выступает родовым признаком человека, понималось и оценивалось с принципиально иных позиций.
Нам долгое время казалась очевидной активистская мировоззренческая установка. Однако ее трудно отыскать в традиционных культурах. Свойственный традиционным обществам консерватизм видов деятельности, медленные темпы их эволюции, господство регламентирующих традиций постоянно ограничивали проявление деятельностно-преобразующей активности человека. Поэтому сама эта активность осмысливалась скорее не как направленная вовне, на изменение внешних предметов, а как ориентированная вовнутрь человека, на самосозерцание и самоконтроль, которые обеспечивают следование традиции[1].
Принципу преобразующего деяния, сформулированному в европейской культуре в эпоху Ренессанса и Просвещения, можно противопоставить в качестве альтернативного образца принцип древнекитайской культуры “у-вэй”, предполагающий невмешательство в протекание природного процесса и адаптацию индивида к сложившейся социальной среде. Этот принцип исключал стремление к ее целенаправленному преобразованию, требовал самоконтроля и самодисциплины индивида, включающегося в ту или иную корпоративную структуру. Принцип “у-вэй” охватывал практически все главные аспекты жизнедеятельности человека. В нем было выражено определенное осмысление специфики и ценностей земледельческого труда, в котором многое зависело от внешних, природных условий и который постоянно требовал приноравливаться к этим условиям.
Но принцип “у-вэй” был и особым способом включения индивида в сложившийся традиционный порядок общественных связей, ориентируя человека на такое вписывание в социальную среду, при котором свобода и самореализация личности достигается в основном в сфере самоизменения, но не изменения сложившихся социальных структур.
Ценности техногенной культуры задают принципиально иной вектор человеческой активности. Преобразующая деятельность рассматривается здесь как главное предназначение человека. Деятельностно-активный идеал отношения человека к природе распространяется затем и на сферу социальных отношений, которые также начинают рассматриваться в качестве особых социальных объектов, которые может целенаправленно преобразовывать человек. С этим связан культ борьбы, революций как локомотивов истории. Стоит отметить, что марксистская концепция классовой борьбы, социальных революций и диктатуры как способа решения социальных проблем возникла в контексте ценностей техногенной культуры.
С пониманием деятельности и предназначения человека тесно связан второй важный аспект ценностных и мировоззренческих ориентаций, который характерен для культуры техногенного мира, - понимание природы как упорядоченного, закономерно устроенного поля, в котором разумное существо, познавшее законы природы, способно осуществить свою власть над внешними процессами и объектами, поставить их под свой контроль. Надо только изобрести технологию, чтобы искусственно изменить природный процесс и поставить его на службу человеку, и тогда укрощенная природа будет удовлетворять человеческие потребности во все расширяющихся масштабах.
Что же касается традиционных культур, то в них мы не встретим подобных представлений о природе. Природа понимается здесь как живой организм, в который органично встроен человек, но не как обезличенное предметное поле, управляемое объективными законами. Само понятие закона природы, отличного от законов, которые регулируют социальную жизнь, было чуждо традиционным культурам.
В свое время известный философ и науковед М.К. Петров предложил своеобразный мысленный эксперимент: как посмотрел бы человек, воспитанный в системе ценностей традиционной цивилизации, на идеалы новоевропейской культуры. Ссылаясь на работу С. Поуэла “Роль теоретической науки в европейской цивилизации”, он приводил свидетельства миссионеров о реакции китайских мудрецов на описания европейской науки. “Мудрецы нашли саму идею науки абсурдной, поскольку, хотя повелителю Поднебесной и дано устанавливать законы и требовать их исполнения под угрозой наказания, исполнять законы и подчиняться им дано лишь тем, кто способен эти законы “понять”, а “дерево, вода и камни”, о которых толкуют мистификаторы-европейцы, очевидно этим свойством “понятливости” не обладают: им нельзя предписывать законы и от них нельзя требовать их исполнения”[2].
Характерный для техногенной цивилизации пафос покорения природы и преобразования мира порождал особое отношение к идеям господства силы и власти. В традиционных культурах они понимались прежде всего как непосредственная власть одного человека над другим. В патриархальных обществах и азиатских деспотиях власть и господство распространялись не только на подданных государя, но и осуществлялись мужчиной, главой семьи над женой и детьми, которыми он владел так же, как царь или император телами и душами своих подданных.
В техногенном мире также можно обнаружить немало ситуаций, в которых господство осуществляется как сила непосредственного принуждения и власти одного человека над другим. Однако отношения личной зависимости перестают здесь доминировать и подчиняются новым социальным связям. Их сущность определена всеобщим обменом результатами деятельности, приобретающими форму товара.
Власть и господство в этой системе отношений предполагает владение и присвоение товаров (вещей, человеческих способностей, информации как товарных ценностей, имеющих денежный эквивалент).
В результате в культуре техногенной цивилизации происходит своеобразное смещение акцентов в понимании предметов господства силы и власти - от человека к произведенной им вещи. В свою очередь, эти новые смыслы легко соединяются с идеалом деятельностно-преобразующего предназначения человека.
Сама преобразующая деятельность расценивается как процесс, обеспечивающий власть человека над предметом, господство над внешними обстоятельствами, которые человек призван подчинить себе.
Человек должен из раба природных и общественных обстоятельств превратиться в их господина, и сам процесс этого превращения понимался как овладение силами природы и силами социального развития. Характеристика цивилизационных достижений в терминах силы (“производительные силы”, “сила знания” и т.п.) выражала установку на обретение человеком все новых возможностей, позволяющих расширять горизонт его преобразующей деятельности.
Изменяя путем приложения освоенных сил не только природную, но и социальную среду, человек реализует свое предназначение творца, преобразователя мира.
Идеал творческой, суверенной, автономной личности занимает одно из приоритетных мест в системе ценностей техногенной цивилизации. Мы, родившиеся и живущие в мире техногенной культуры, воспринимаем это как нечто само собой разумеющееся. Но человек традиционного общества не принял бы этих ценностей. В традиционном обществе личность реализуется только через принадлежность к какой-либо определенной корпорации, будучи элементом в строго определенной системе корпоративных связей. Если человек не включен в какую-нибудь корпорацию, он не личность.
В техногенной цивилизации возникает особый тип автономии личности: человек может менять свои корпоративные связи, он жестко к ним не привязан, может и способен очень гибко строить свои отношения с людьми, включатся в разные социальные общности, а часто и в разные культурные традиции.
Как подчеркивал М.К.Петров, поскольку индивид, формирующийся в лоне новоевропейской культуры и социальности, жестко не связан с семейно-корпоративной традицией передачи профессионального и социального опыта, то это было бы воспринято человеком традиционного общества как признак явной ущербности европейца, которому с детства “прививают вздорную мысль о том, что он способен стать всем, и, когда европеец взрослеет, включается в специализированную деятельность, он до конца жизни остается разочарованным человеком, носителем несбыточных и, естественно, несбывшихся надежд, озлобления и зависти к ближним, которые, по его мнению, заняты как раз тем, чем лучше их мог бы заняться он сам. Ни в юности, ни в зрелые годы европеец не знает ориентиров собственной жизни, не в состоянии понять ее цели, безрассудно мечется от одной специальности к другой, всю жизнь что-то осваивает...”[3].
Этот мысленный эксперимент, предложенный М.К.Петровым, можно продолжить, но уже поменяв систему отсчета, и посмотреть на систему ценностей традиционных культур глазами человека техногенной культуры. Тогда привязанность человека традиционного общества к строго определенным, консервативно воспроизводящимся видам деятельности и его жесткая принадлежность от рождения до смерти к некой корпорации, клану или касте будет восприниматься людьми, воспитанными в новоевропейской культуре, как признак несвободы, отсутствие выбора, растворения индивидуальности в корпоративных отношениях, подавления в человеке творческих, индивидуальных начал. Может быть, это отношение в несколько обостренной форме выразил А.Герцен, написав о традиционных восточных обществах, что человек здесь не знал свободы и “не понимал своего достоинства: оттого он был или в прахе валяющийся раб или необузданный деспот”[4].
Стабильность жизни традиционных обществ с позиций этой системы жизненных смыслов оценивается как застой и отсутствие прогресса, которым противостоит динамизм западного образа жизни. Вся культура техногенных обществ, ориентированная на инновации и трансформацию традиций, формирует и поддерживает идеал творческой индивидуальности.
Обучение, воспитание и социализация индивида в новоевропейской культурной традиции способствует формированию у него значительно более гибкого и динамичного мышления, чем у человека традиционных обществ. Это проявляется и в более сильной рефлексивности обыденного сознания, его ориентации на идеалы доказательности и обоснования суждений, и в традиции языковых игр, лежащих в основании европейского юмора, и в насыщенности обыденного мышления догадками, прогнозами, предвосхищениями будущего как возможными состояниями социальной жизни, и в его пронизанности абстрактно логическими структурами, организующими рассуждение.
Такого рода логические структуры часто вообще не присутствуют в сознании человека традиционных обществ. Исследование мышления традиционалистских групп в Средней Азии, проведенное в начале 1930-х годов А.Р.Лурия, обнаружили, что представители этих групп не могут решить задачи, требующие формального рассуждения по схеме силлогизма. Но те люди традиционных обществ, которые получили школьное образование, включающее обучение математике и другим наукам, решали эти задачи достаточно легко[5].
Сходные результаты были получены при исследованиях мышления человека традиционного общества других регионов (в частности, исследовании М.Коулом традиционалистских групп Либерии)[6].
Все эти особенности функционирования сознания в разных типах культур детерминированы свойственными данным культурам глубинными жизненными смыслами и ценностями.
В культуре техногенных обществ система этих ценностей базируется на идеалах креативной деятельности и творческой активности суверенной личности. И только в этой системе ценностей научная рациональность и научная деятельность обретают приоритетный статус.
Особый статус научной рациональности в системе ценностей техногенной цивилизации и особая значимость научно-технического взгляда на мир, определены тем, что научное познание мира является условием для его преобразования в расширяющихся масштабах. Оно создает уверенность в том, что человек способен, раскрыв законы природы и социальной жизни, регулировать природные и социальные процессы в соответствии со своими целями.
Поэтому в новоевропейской культуре и в последующем развитии техногенных обществ категория научности обретает своеобразный символический смысл. Она воспринимается как необходимое условие процветания и прогресса. Ценность научной рациональности и ее активное влияние на другие сферы культуры становятся характерным признаком жизни техногенных обществ.
Глобальные кризисы и проблема ценности научно-технического прогресса
Престижный статус науки стимулирует развертывание большого многообразия ее развитых форм. Исследуя их и анализируя, как менялись функции науки в социальной жизни, можно выявить основные особенности научного познания, его возможности и границы.
Проблема этих возможностей в настоящее время ставится особенно остро. Все дело в том, что само развитие техногенной цивилизации подошло к критическим рубежам, которые обозначили границы этого типа цивилизационного роста. Это обнаружилось во второй половине XX века в связи с возникновением глобальных кризисов и глобальных проблем.
Среди многочисленных глобальных проблем, порожденных техногенной цивилизацией и поставивших под угрозу само существование человечества, можно выделить три главных.
Первая из них - это проблема выживания в условиях непрерывного совершенствования оружия массового уничтожения. В ядерный век человечество оказалось на пороге возможного самоуничтожения, и этот печальный итог был “побочным эффектом” научно-технического прогресса, открывающего все новые возможности развития военной техники.
Второй, пожалуй, самой острой проблемой современности, становится нарастание экологического кризиса в глобальных масштабах. Два аспекта человеческого существования как части природы и как деятельного существа, преобразующего природу, приходят в конфликтное столкновение.
Старая парадигма, будто природа - бесконечный резервуар ресурсов для человеческой деятельности, оказалась неверной. Человек сформировался в рамках биосферы - особой системы, возникшей в ходе космической эволюции. Она представляет собой не просто окружающую среду, которую можно рассматривать как поле для преобразующей деятельности человека, а выступает единым целостным организмом, в который включено человечество в качестве специфической подсистемы. Деятельность человека вносит постоянные изменения в динамику биосферы и на современном этапе развития техногенной цивилизации масштабы человеческой экспансии в природу таковы, что они начинают разрушать биосферу как целостную экосистему. Грозящая экологическая катастрофа требует выработки принципиально новых стратегий научно-технического и социального развития человечества, стратегий деятельности, обеспечивающей коэволюцию человека и природы.
И наконец, еще одна - третья по счету (но не по значению!) проблема - это проблема сохранения человеческой личности, человека как биосоциальной структуры в условиях растущих и всесторонних процессов отчуждения. Эту глобальную проблему иногда обозначают как современный антропологический кризис. Человек, усложняя свой мир, все чаще вызывает к жизни такие силы, которые он уже не контролирует и которые становятся чуждыми его природе. Чем больше он преобразует мир, тем в большей мере он порождает непредвиденные социальные факторы, которые начинают формировать структуры, радикально меняющие человеческую жизнь и очевидно ухудшающие ее. Еще в 60-е годы философ Г. Маркузе констатировал в качества одного из последствий современного техногенного развития появление “одномерного человека” как продукта массовой культуры. Современная индустриальная культура действительно создает широкие возможности для манипуляций сознанием, при которых человек теряет способность рационально осмысливать бытие. При этом и манипулируемые и сами манипуляторы становятся заложниками массовой культуры, превращаясь в персонажи гигантского кукольного театра, спектакли которого разыгрывают с человеком им же порожденные фантомы.
Ускоренное развитие техногенной цивилизации делает весьма сложной проблему социализации и формирования личности. Постоянно меняющийся мир обрывает многие корни, традиции, заставляя человека одновременно жить в разных традициях, в разных культурах, приспосабливаться к разным, постоянно обновляющимся обстоятельствам. Связи человека делаются спорадическими, они, с одной стороны, стягивают всех индивидов в единое человечество, а с другой - изолируют, атомизируют людей.
Современная техника позволяет общаться с людьми различных континентов. Можно по телефону побеседовать с коллегами из США, затем, включив телевизор, узнать, что делается далеко на юге Африки, но при этом не знать соседей по лестничной клетке, живя подолгу рядом с ними.
Проблема сохранения личности приобретает в современном мире еще одно, совершенно новое измерение. Впервые в истории человечества возникает реальная опасность разрушения той биогенетической основы, которая является предпосылкой индивидуального бытия человека и формирования его как личности, основы, с которой в процессе социализации соединяются разнообразные программы социального поведения и ценностные ориентации, хранящиеся и вырабатываемые в культуре.
Речь идет об угрозе существования человеческой телесности, которая является результатом миллионов лет биоэволюции и которую начинает активно деформировать современный техногенный мир. Этот мир требует включения человека во всё возрастающее многообразие социальных структур, что сопряжено с гигантскими нагрузками на психику, стрессами, разрушающими его здоровье. Обвал информации, стрессовые нагрузки, канцерогены, засорение окружающей среды, накопление вредных мутаций - все это проблемы сегодняшней действительности, ее повседневные реалии.
Цивилизация значительно продлила срок человеческой жизни, развила медицину, позволяющую лечить многие болезни, но вместе с тем она устранила действие естественного отбора, который на заре становления человечества вычеркивал носителей генетических ошибок из цепи сменяющихся поколений. С ростом мутагенных факторов в современных условиях биологического воспроизводства человека возникает опасность резкого ухудшения генофонда человечества.
Выход иногда видят в перспективах генной инженерии. Но здесь нас подстерегают новые опасности. Если дать возможность вмешиваться в генетический код человека, изменять его, то этот путь ведет не только к позитивным результатам лечения ряда наследственных болезней, но и открывает опасные перспективы перестройки самих основ человеческой телесности. Возникает соблазн “планомерного” генетического совершенствования созданного природой “антропологического материала”, приспосабливая его ко все новым социальным нагрузкам. Об этом сегодня пишут уже не только в фантастической литературе. Подобную перспективу всерьез обсуждают биологи, философы и футурологи. Несомненно, что достижения научно-технического прогресса дадут в руки человечества могучие средства, позволяющие воздействовать на глубинные генетические структуры, управляющие воспроизводством человеческого тела. Но получив в свое распоряжение подобные средства, человечество обретет нечто, равнозначное атомной энергии, по возможным последствиям. При современном уровне нравственного развития всегда найдутся “экспериментаторы” и добровольцы для экспериментов, которые могут сделать лозунг совершенствования биологической природы человека реалиями политической борьбы и амбициозных устремлений. Перспективы генетической перестройки человеческой телесности сопрягаются с не менее опасными перспективами манипуляций над психикой человека, путем воздействия на его мозг. Современные исследования мозга обнаруживают структуры, воздействия на которые могут порождать галлюцинации, вызывать отчетливые картины прошлого, которые переживаются как настоящие, изменять эмоциональные состояния человека и т.п. И уже появились добровольцы, применяющие на практике методику многих экспериментов в этой области: вживляют, например, в мозг десятки электродов, которые позволяют слабым электрическим раздражением вызывать необычные психические состояния, устранять сонливость, получать ощущения бодрости и т.п.
Усиливающиеся психические нагрузки, с которыми все больше сталкивается человек в современном техногенном мире, способствуют накоплению отрицательных эмоций и часто стимулируют применение искусственных средств снятия напряжения. В этих условиях возникают опасности распространения как традиционных (транквилизаторы, наркотики), так и новых средств манипуляции психикой. Вообще вмешательство в человеческую телесность и особенно попытки целенаправленного изменения сферы эмоций и генетических оснований человека, даже при самом жестком контроле и слабых изменениях, могут привести к непредсказуемым последствиям. Нельзя упускать из виду, что человеческая культура глубинно связана с человеческой телесностью и первичным эмоциональным строем, который ею продиктован. Предположим, что известному персонажу из антиутопии Оруэлла “1984” удалось бы реализовать мрачный план генетического изменения чувства половой любви. Для людей, у которых исчезла бы эта сфера эмоций, уже не имеют смысла ни Байрон, ни Шекспир, ни Пушкин, для них выпадут целые пласты человеческой культуры. Биологические предпосылки - это не просто нейтральный фон социального бытия, это почва, на которой вырастала человеческая культура и вне которой невозможна была бы человеческая духовность.
Все это - проблемы выживания человечества, которые породила техногенная цивилизация. Современные глобальные кризисы ставят под сомнение тип прогресса, реализованный в предшествующем техногенном развитии.
По-видимому, на рубеже двух тысячелетий по христианскому летосчислению, человечество должно осуществить радикальный поворот к каким-то новым формам цивилизационного прогресса.
Некоторые философы и футурологи сравнивают современные процессы с изменениями, которые пережило человечество при переходе от каменного к железному веку. Эта точка зрения имеет глубокие основания, если учесть, что решения глобальных проблем предполагают коренную трансформацию ранее принятых стратегий человеческой жизнедеятельности. Любой новый тип цивилизационного развития требует выработки новых ценностей, новых мировоззренческих ориентиров. Необходим пересмотр прежнего отношения к природе, идеалов господства, ориентированных на силовое преобразование природного и социального мира, необходима выработка новых идеалов человеческой деятельности, нового понимания перспектив человека.
В этом контексте возникает вопрос и о традиционных для техногенной цивилизации ценностях науки и научно-технического прогресса.
Существуют многочисленные антисциентистские концепции, возлагающие на науку и ее технологические применения ответственность за нарастающие глобальные проблемы. Крайний антисциентизм с его требованиями ограничить и даже затормозить научно-технический прогресс, по существу, предлагает возврат к традиционным обществам. Но на этих путях в современных условиях невозможно решить проблему обеспечения постоянно растущего населения элементарными жизненными благами.
Выход состоит не в отказе от научно-технического развития, а в придании ему гуманистического измерения, что, в свою очередь, ставит проблему нового типа научной рациональности, включающей в себя в явном виде гуманистические ориентиры и ценности[7].
В этой связи возникает целая серия вопросов. Как возможно включение в научное познание внешних для него ценностных ориентаций? Каковы механизмы этого включения? Не приведет ли к деформациям истины и жесткому идеологическому контролю за наукой требование соизмерять ее с социальными ценностями? Имеются ли внутренние, в самой науке вызревающие, предпосылки для ее перехода в новое состояние? И как это новое состояние скажется на судьбах теоретического знания, его относительной автономии и его социальной ценности?
Это действительно кардинальные вопросы современной философии науки. Ответ на них предполагает исследование особенностей научного познания, его генезиса, механизмов его развития, выяснения того, как могут исторически изменяться типы научной рациональности и каковы современные тенденции такого изменения.
Очевидно, первым шагом на этом пути должен стать анализ специфики науки, выявление тех инвариантных признаков, которые устойчиво сохраняются при исторической смене типов научной рациональности.
В каждую конкретную историческую эпоху эти признаки могут соединяться с особенными, свойственными именно данной эпохе характеристиками научного познания. Но если исчезнут инвариантные признаки науки, отличающие ее от других форм познания (искусства, обыденного познания, философии, религиозного постижения мира), то это будет означать исчезновение науки.
Специфика научного познания. Главные отличительные признаки науки
Интуитивно кажется ясным, чем отличается наука от других форм познавательной деятельности человека. Однако четкая экспликация специфических черт науки в форме признаков и определений оказывается довольно сложной задачей. Об этом свидетельствуют многообразие дефиниций науки, непрекращающиеся дискуссии по проблеме демаркации между ней и другими формами познания.
Научное познание, как и все формы духовного производства, в конечном счете необходимо для того, чтобы регулировать человеческую деятельность. Различные виды познания по-разному выполняют эту роль, и анализ этого различия является первым и необходимым условием для выявления особенностей научного познания.
Деятельность может быть рассмотрена как сложно организованная сеть различных актов преобразования объектов, когда продукты одной деятельности переходят в другую и становятся ее компонентами. Например, железная руда как продукт горнодобывающего производства становится предметом, который преобразуется в деятельности сталевара, станки, произведенные на заводе из добытой сталеваром стали, становятся средствами деятельности в другом производстве. Даже субъекты деятельности - люди, осуществляющие преобразования объектов в соответствии с поставленными целями, могут быть в определенной степени представлены как результаты деятельности обучения и воспитания, которая обеспечивает усвоение субъектом необходимых образцов действий, знаний и навыков применения в деятельности определенных средств.
Структурные характеристики элементарного акта деятельности можно представить в виде следующей схемы:
Правая часть этой схемы изображает предметную структуру деятельности - взаимодействие средств с предметом деятельности и превращение его в продукт благодаря осуществлению определенных операций. Левая часть представляет субъектную структуру, которая включает субъекта деятельности ( с его целями, ценностями, знаниями операций и навыками), осуществляющего целесообразные действия и использующего для этой цели определенные средства деятельности. Средства и действия могут быть отнесены и к объектной, и к субъектной структурам, поскольку их можно рассмотреть двояким образом. С одной стороны, средства могут быть представлены в качестве искусственных органов человеческой деятельности. С другой - они могут рассматриваться в качестве естественных объектов, которые взаимодействуют с другими объектами. Аналогичным образом операции могут представать в разных рассмотрениях и как действия человека, и как естественные взаимодействия объектов.
Деятельность всегда регулируется определенными ценностями и целями. Ценность отвечает на вопрос: для чего нужна та или иная деятельность? Цель - на вопрос: что должно быть получено в деятельности? Цель - это идеальный образ продукта. Она воплощается, опредмечивается в продукте, который выступает результатом преобразования предмета деятельности.
Поскольку деятельность универсальна, функциями ее предметов могут выступать не только фрагменты природы, преобразуемые в практике, но и люди, “свойства” которых меняются при их включении в различные социальные подсистемы, а также сами эти подсистемы, взаимодействующие в рамках общества как целостного организма. Тогда в первом случае мы имеем дело с “предметной стороной” изменения человеком природы, а во втором - с “предметной стороной” практики, направленной на изменение социальных объектов. Человек с этой точки зрения может выступать и как субъект, и как объект практического действия.
На ранних стадиях развития общества субъектная и предметная стороны практической деятельности не расчленяются в познании, а берутся как единое целое. Познание отображает способы практического изменения объектов, включая в характеристику последних цели, способности и действия человека. Такое представление об объектах деятельности переносится на всю природу, которая рассматривается сквозь призму осуществляемой практики.
Известно, например, что в мифах древних народов силы природы всегда уподобляются человеческим силам, а ее процессы - человеческим действиям. Первобытное мышление при объяснении явлений внешнего мира неизменно прибегает к их сравнению с человеческими поступками и мотивами[8]. Лишь в процессе длительной эволюции общества познание начинает исключать антропоморфные факторы из характеристики предметных отношений. Важную роль в этом процессе сыграло историческое развитие практики, и прежде всего совершенствование средств и орудий труда.
По мере усложнения орудий те операции, которые ранее непосредственно производились человеком, начинали “овеществляться”, выступая как последовательное воздействие одного орудия на другое и лишь затем на преобразуемый объект. Тем самым свойства и состояния объектов, возникающие благодаря указанным операциям, переставали казаться вызванными непосредственными усилиями человека, а все больше выступали в качестве результата взаимодействия самих природных предметов. Так, если на ранних стадиях цивилизации перемещение грузов требовало мускульных усилий, то с изобретением рычага и блока, а затем простейших машин можно было заменить эти усилия механическими. Например, с помощью системы блоков можно было уравновесить большой груз малым, а прибавив незначительный вес к малому грузу, поднять большой груз на нужную высоту. Здесь для подъема тяжелого тела не нужно усилий человека: один груз самостоятельно перемещает другой.
Подобная передача человеческих функций механизмам приводит к новому представлению о силах природы. Раньше силы понимались только по аналогии с физическими усилиями человека, а теперь начинают рассматриваться как механические силы. Приведенный пример может служить аналогом того процесса “объективизации” предметных отношений практики, который, по-видимому, начался уже в эпоху первых городских цивилизаций древности. В этот период познание начинает постепенно отделять предметную сторону практики от субъективных факторов и рассматривать данную сторону как особую, самостоятельную реальность. Такое рассмотрение практики является одним из необходимых условий для возникновения научного исследования.
Наука ставит своей конечной целью предвидеть процесс преобразования предметов практической деятельности (объект в исходном состоянии) в соответствующие продукты (объект в конечном состоянии). Это преобразование всегда определено сущностными связями, законами изменения и развития объектов, и сама деятельность может быть успешной только тогда, когда она согласуется с этими законами. Поэтому основная задача науки - выявить законы, в соответствии с которыми изменяются и развиваются объекты.
Применительно к процессам преобразования природы эту функцию выполняют естественные и технические науки. Процессы изменения социальных объектов исследуются общественными науками. Поскольку в деятельности могут преобразовываться самые различные объекты - предметы природы, человек (и состояния его сознания), подсистемы общества, знаковые объекты, функционирующие в качестве феноменов культуры и т.д., - постольку все они могут стать предметами научного исследования.
Ориентация науки на изучение объектов, которые могут быть включены в деятельность (либо актуально, либо потенциально как возможные объекты ее будущего преобразования), и их исследование как подчиняющихся объективным законам функционирования и развития составляет первую главную особенность научного познания.
Эта особенность отличает его от других форм познавательной деятельности человека. Так, например, в процессе художественного освоения действительности объекты, включенные в человеческую деятельность, не отделяются от субъективных факторов, а берутся в своеобразной “склейке” с ними. Любое отражение предметов объективного мира в искусстве одновременно выражает ценностное отношение человека к предмету. Художественный образ - это такое отражение объекта, которое содержит отпечаток человеческой личности, ее ценностных ориентаций, которые вплавляются в характеристики отражаемой реальности. Исключить это взаимопроникновение - значит разрушить художественный образ. В науке же особенности жизнедеятельности личности, создающей знания, ее оценочные суждения не входят непосредственно в состав порождаемого знания (законы Ньютона не позволяют судить о том, что любил и что ненавидел Ньютон, тогда как, например, в портретах кисти Рембрандта запечатлена личность самого Рембрандта, его мироощущение и его личностное отношение к изображаемым социальным явлениям; портрет, написанный великим художником, всегда выступает и как автопортрет).
Наука ориентирована на предметное и объективное исследование действительности. Сказанное, конечно, не означает, что личностные моменты и ценностные ориентации ученого не играют роли в научном творчестве и не влияют на его результаты.
Процесс научного познания обусловлен не только особенностями изучаемого объекта, но и многочисленными факторами социокультурного характера.
Рассматривая науку в ее историческом развитии, можно обнаружить, что по мере изменения типа культуры меняются стандарты изложения научного знания, способы видения реальности в науке, стили мышления, которые формируются в контексте культуры и испытывают воздействие самых различных ее феноменов. Это воздействие может быть представлено как включение различных социокультурных факторов в процесс генерации собственно научного знания. Однако констатация связей объективного и субъективного в любом познавательном процессе и необходимость комплексного исследования науки в ее взаимодействии с другими формами духовной деятельности человека не снимают вопроса о различии между наукой и этими формами (обыденным познанием, художественным мышлением и т.п.). Первой и необходимой характеристикой такого различия является признак объективности и предметности научного познания.
Наука в человеческой деятельности выделяет только ее предметную структуру и все рассматривает сквозь призму этой структуры. Как царь Мидас из известной древней легенды - к чему бы он ни прикасался, все обращалось в золото, - так и наука, к чему бы она ни прикоснулась, - все для нее предмет, который живет, функционирует и развивается по объективным законам.
Здесь сразу же возникает вопрос: ну, а как тогда быть с субъектом деятельности, с его целями, ценностями, состояниями его сознания? Все это принадлежит к компонентам субъектной структуры деятельности, но ведь наука способна исследовать и эти компоненты, потому что для нее нет запретов на исследование каких-либо реально существующих феноменов. Ответ на эти вопросы довольно простой: да, наука может исследовать любые феномены жизни человека и его сознания, она может исследовать и деятельность, и человеческую психику, и культуру, но только под одним углом зрения - как особые предметы, которые подчиняются объективным законам. Субъектную структуру деятельности наука тоже изучает, но как особый объект. А там, где наука не может сконструировать предмет и представить его “естественную жизнь”, определяемую его сущностными связями, там и кончаются ее притязания. Таким образом наука может изучать все в человеческом мире, но в особом ракурсе и с особой точки зрения. Этот особый ракурс предметности выражает одновременно и безграничность и ограниченность науки, поскольку человек как самодеятельное, сознательное существо обладает свободой воли, и он не только объект, он еще и субъект деятельности. И в этом его субъектном бытии не все состояния могут быть исчерпаны научным знанием, даже если предположить, что такое всеобъемлющее научное знание о человеке, его жизнедеятельности может быть получено.
В этом утверждении о границах науки нет никакого антисциентизма. Просто это констатация бесспорного факта, что наука не может заменить собой всех форм познания мира, всей культуры. И все, что ускользает из ее поля зрения, компенсируют другие формы духовного постижения мира - искусство, религия, нравственность, философия.
Изучая объекты, преобразуемые в деятельности, наука не ограничивается познанием только тех предметных связей, которые могут быть освоены в рамках наличных, исторически сложившихся на данном этапе развития общества типов деятельности. Цель науки заключается в том, чтобы предвидеть возможные будущие изменения объектов, в том числе и те, которые соответствовали бы будущим типам и формам практического изменения мира.
Как выражение этих целей в науке складываются не только исследования, обслуживающие сегодняшнюю практику, но и слои исследований, результаты которых могут найти применение только в практике будущего. Движение познания в этих слоях обусловлено уже не столько непосредственными запросами сегодняшней практики, сколько познавательными интересами, через которые проявляются потребности общества в прогнозировании будущих способов и форм практического освоения мира. Например, постановка внутринаучных проблем и их решение в рамках фундаментальных теоретических исследований физики привели к открытию законов электромагнитного поля и предсказанию электромагнитных волн, к открытию законов деления атомных ядер, квантовых законов излучения атомов при переходе электронов с одного энергетического уровня на другой и т.п. Все эти теоретические открытия заложили основу для будущих способов массового практического освоения природы в производстве. Через несколько десятилетий они стали базой для прикладных инженерно-технических исследований и разработок, внедрение которых в производство, в свою очередь, революционизировало технику и технологию - появились радиоэлектронная аппаратура, атомные электростанции, лазерные установки и т.д.
Крупные ученые, создатели новых, оригинальных направлений и открытий, всегда обращали внимание на эту способность теорий потенциально содержать в себе целые созвездия будущих новых технологий и неожиданных практических приложений.
К.А.Тимирязев по этому поводу писал: “Несмотря на отсутствие в современной науке узко утилитарного направления, именно в своем, независимом от указки житейских мудрецов и моралистов, свободном развитии она явилась, более чем когда, источником практических, житейских применений. То поразительное развитие техники, которым ослеплены поверхностные наблюдатели, готовые признать его за самую выдающуюся черту XIX века, является только результатом не для всех видимого небывалого в истории развития именно науки, свободной от всякого утилитарного гнета. Разительным доказательством тому служит развитие химии: была она и алхимией и ятрохимией, на послугах и у горного дела, и у аптеки, и только в XIX веке, “веке науки”, став просто химией, т.е. чистой наукой, явилась она источником неисчислимых приложений и в медицине, и в технике, и в горном деле, пролила свет и на стоящие в научной иерархии выше ее физику и даже астрономию, и на более молодые отрасли знания, как, например, физиологию, можно сказать, сложившуюся только в течение этого века”[9].
Сходные мысли высказывал один из создателей квантовой механики французский физик Луи де Бройль. “Великие открытия, - писал он, - даже сделанные исследователями, которые не имели в виду никакого практического применения и занимались исключительно теоретическим решением проблем, быстро находили затем себе применение в технической области. Конечно, Планк, когда он впервые написал формулу, носящую теперь его имя, совсем не думал об осветительной технике. Но он не сомневался, что затраченные им огромные усилия мысли позволят нам понять и предвидеть большое количество явлений, которые быстро и во все возрастающем количестве будут использованы осветительной техникой. Нечто аналогичное произошло и со мной. Я был крайне удивлен, когда увидел, что разработанные мной представления очень быстро находят конкретные приложения в технике дифракции электронов и электронной микроскопии”[10].
Нацеленность науки на изучение не только объектов, преобразуемых в сегодняшней практике, но и тех объектов, которые могут стать предметом массового практического освоения в будущем, является второй отличительной чертой научного познания. Эта черта позволяет разграничить научное и обыденное, стихийно-эмпирическое познание и вывести ряд конкретных определений, характеризующих природу науки. Она позволяет понять, почему теоретическое исследование выступает определяющей характеристикой развитой науки.
Научное и обыденное познание
Стремление изучать объекты реального мира и на этой основе предвидеть результаты его практического преобразования свойственно не только науке, но и обыденному познанию, которое вплетено в практику и развивается на ее основе. По мере того как развитие практики опредмечивает в орудиях функции человека и создает условия для элиминации субъективных и антропоморфных наслоений при изучении внешних объектов, в обыденном познании появляются некоторые виды знаний о реальности, в общем-то сходные с теми, которые характеризуют науку.
Зародышевые формы научного познания возникли в недрах и на основе этих видов обыденного познания, а затем отпочковались от него (наука эпохи первых городских цивилизаций древности). С развитием науки и превращением ее в одну из важнейших ценностей цивилизации ее способ мышления начинает оказывать все более активное воздействие на обыденное сознание. Это воздействие развивает содержащиеся в обыденном, стихийно-эмприческом познании элементы объективно-предметного отражения мира.
Способность стихийно-эмпирического познания порождать предметное и объективное знание о мире ставит вопрос о различии между ним и научным исследованием. Признаки, отличающие науку от обыденного познания, удобно классифицировать сообразно той категориальной схеме, в которой характеризуется структура деятельности (прослеживая различие науки и обыденного познания по предмету, средствам, продукту, методам и субъекту деятельности).
Тот факт, что наука обеспечивает сверхдальнее прогнозирование практики, выходя за рамки существующих стереотипов производства и обыденного опыта, означает, что она имеет дело с особым набором объектов реальности, не сводимых к объектам обыденного опыта. Если обыденное познание отражает только те объекты, которые в принципе могут быть преобразованы в наличных исторически сложившихся способах и видах практического действия, то наука способна изучать и такие фрагменты реальности, которые могут стать предметом освоения только в практике далекого будущего. Она постоянно выходит за рамки предметных структур наличных видов и способов практического освоения мира и открывает человечеству новые предметные миры его возможной будущей деятельности.
Эти особенности объектов науки делают недостаточными для их освоения те средства, которые применяются в обыденном познании. Хотя наука и пользуется естественным языком, она не может только на его основе описывать и изучать свои объекты. Во-первых, обыденный язык приспособлен для описания и предвидения объектов, вплетенных в наличную практику человека (наука же выходит за ее рамки); во-вторых, понятия обыденного языка нечетки и многозначны, их точный смысл чаще всего обнаруживается лишь в контексте языкового общения, контролируемого повседневным опытом. Наука же не может положиться на такой контроль, поскольку она преимущественно имеет дело с объектами, не освоенными в обыденной практической деятельности. Чтобы описать изучаемые явления, она стремится как можно более четко фиксировать свои понятия и определения.
Выработка наукой специального языка, пригодного для описания ею объектов, необычных с точки зрения здравого смысла, является необходимым условием научного исследования. Язык науки постоянно развивается по мере ее проникновения во все новые области объективного мира. Причем он оказывает обратное воздействие на повседневный, естественный язык. Например, термины “электричество”, “холодильник” когда-то были специфическими научными понятиями, а затем вошли в повседневный язык.
Наряду с искусственным, специализированным языком научное исследование нуждается в особой системе средств практической деятельности, которые, воздействуя на изучаемый объект, позволяют выявить возможные его состояния в условиях, контролируемых субъектом. Средства, применяемые в производстве и в быту, как правило, непригодны для этой цели, поскольку объекты, изучаемые наукой, и объекты, преобразуемые в производстве и повседневной практике, чаще всего отличаются по своему характеру. Отсюда необходимость специальной научной аппаратуры (измерительных инструментов, приборных установок), которые позволяют науке экспериментально изучать новые типы объектов.
Научная аппаратура и язык науки выступают как выражение уже добытых знаний. Но подобно тому, как в практике ее продукты превращаются в средства новых видов практической деятельности, так и в научном исследовании его продукты - научные знания, выраженные в языке или овеществленные в приборах, становятся средством дальнейшего исследования.
Таким образом, из особенностей предмета науки мы получили в качестве своеобразного следствия отличия в средствах научного и обыденного познания.
Спецификой объектов научного исследования можно объяснить далее и основные отличия научных знаний как продукта научной деятельности от знаний, получаемых в сфере обыденного, стихийно-эмпирического познания. Последние чаще всего не систематизированы; это, скорее, конгломерат сведений, предписаний, рецептур деятельности и поведения, накопленных на протяжении исторического развития обыденного опыта. Их достоверность устанавливается благодаря непосредственному применению в наличных ситуациях производственной и повседневной практики. Что же касается научных знаний, то их достоверность уже не может быть обоснована только таким способом, поскольку в науке преимущественно исследуются объекты, еще не освоенные в производстве. Поэтому нужны специфические способы обоснования истинности знания. Ими являются экспериментальный контроль за получаемым знанием и выводимость одних знаний из других, истинность которых уже доказана. В свою очередь, процедуры выводимости обеспечивают перенос истинности с одних фрагментов знания на другие, благодаря чему они становятся связанными между собой, организованными в систему.
Таким образом, мы получаем характеристики системности и обоснованности научного знания, отличающие его от продуктов обыденной познавательной деятельности людей.
Из главной характеристики научного исследования можно вывести также и такой отличительный признак науки при ее сравнении с обыденным познанием, как особенность метода познавательной деятельности. Объекты, на которые направлено обыденное познание, формируются в повседневной практике. Приемы, посредством которых каждый такой объект выделяется и фиксируется в качестве предмета познания, вплетены в обыденный опыт. Совокупность таких приемов, как правило, не осознается субъектом в качестве метода познания. Иначе обстоит дело в научном исследовании. Здесь уже само обнаружение объекта, свойства которого подлежат дальнейшему изучению, составляет весьма трудоемкую задачу. Например, чтобы обнаружить короткоживущие частицы - резонансы, современная физика ставит эксперименты по рассеиванию пучков частиц и затем применяет сложные расчеты. Обычные частицы оставляют следы-треки в фотоэмульсиях или в камере Вильсона, резонансы же таких треков не оставляют. Они живут очень короткое время (10-22 сек) и за этот промежуток времени проходят расстояние, меньшее размеров атома. В силу этого резонанс не может вызвать ионизации молекул фотоэмульсии (или газа в камере Вильсона) и оставить наблюдаемый след. Однако, когда резонанс распадается, возникающие при этом частицы способны оставлять следы указанного типа. На фотографии они выглядят как набор лучей-черточек, исходящих из одного центра. По характеру этих лучей, применяя математические расчеты, физик определяет наличие резонанса. Таким образом, для того чтобы иметь дело с одним и тем же видом резонансов, исследователю необходимо знать условия, в которых появляется соответствующий объект. Он обязан четко определить метод, с помощью которого в эксперименте может быть обнаружена частица. Вне метода он вообще не выделит изучаемого объекта из многочисленных связей и отношений предметов природы. Чтобы зафиксировать объект, ученый должен знать методы такой фиксации. Поэтому в науке изучение объектов, выявление их свойств и связей всегда сопровождается осознанием метода, посредством которого исследуется объект. Объекты всегда даны человеку в системе определенных приемов и методов его деятельности. Но эти приемы в науке уже не очевидны, не являются многократно повторяемыми в повседневной практике приемами. И чем дальше наука отходит от привычных вещей повседневного опыта, углубляясь в исследование “необычных” объектов, тем яснее и отчетливее проявляется необходимость в создании и разработке особых методов, в системе которых наука может изучать объекты. Наряду со знаниями об объектах наука формирует знания о методах. Потребность в развертывании и систематизации знаний второго типа приводит на высших стадиях развития науки к формированию методологии как особой отрасли научного исследования, призванной целенаправлять научный поиск.
Наконец, стремление науки к исследованию объектов относительно независимо от их освоения в наличных формах производства и обыденного опыта предполагает специфические характеристики субъекта научной деятельности. Занятия наукой требуют особой подготовки познающего субъекта, в ходе которой он осваивает исторически сложившиеся средства научного исследования, обучается приемам и методам оперирования с этими средствами. Для обыденного познания такой подготовки не нужно, вернее, она осуществляется автоматически, в процессе социализации индивида, когда у него формируется и развивается мышление в процессе общения с культурой и включения индивида в различные сферы деятельности. Занятия наукой предполагают наряду с овладением средствами и методами также и усвоение определенной системы ценностных ориентаций и целевых установок, специфичных для научного познания. Эти ориентации должны стимулировать научный поиск, нацеленный на изучение все новых и новых объектов независимо от сегодняшнего практического эффекта от получаемых знаний. Иначе наука не будет осуществлять своей главной функции - выходить за рамки предметных структур практики своей эпохи, раздвигая горизонты возможностей освоения человеком предметного мира.
Две основные установки науки обеспечивают стремление к такому поиску: самоценность истины и ценность новизны.
Любой ученый принимает в качестве одной из основных установок научной деятельности поиск истины, воспринимая истину как высшую ценность науки. Эта установка воплощается в целом ряде идеалов и нормативов научного познания, выражающих его специфику: в определенных идеалах организации знания (например, требовании логической непротиворечивости теории и ее опытной подтверждаемости), в поиске объяснения явлений исходя из законов и принципов, отражающих сущностные связи исследуемых объектов, и т.д.
Не менее важную роль в научном исследовании играет установка на постоянный рост знания и особую ценность новизны в науке. Эта установка выражена в системе идеалов и нормативных принципов научного творчества (например, запрете на плагиат, допустимости критического пересмотра оснований научного поиска как условия освоения все новых типов объектов и т.д.).
Ценностные ориентации науки образуют фундамент ее этоса, который должен усвоить ученый, чтобы успешно заниматься исследованиями. Великие ученые оставили значительный след в культуре не только благодаря совершенным ими открытиям, но и благодаря тому, что их деятельность была образцом новаторства и служения истине для многих поколений людей. Всякое отступление от истины в угоду личностным, своекорыстным целям, любое проявление беспринципности в науке встречало у них беспрекословный отпор.
В науке в качестве идеала провозглашается принцип, что перед лицом истины все исследователи равны, что никакие прошлые заслуги не принимаются во внимание, если речь идет о научных доказательствах.
Малоизвестный служащий патентного бюро А.Эйнштейн в начале века дискутировал с известным ученым Г.Лоренцем, доказывая справедливость своей трактовки введенных Лоренцем преобразований. В конечном счете именно Эйнштейн выиграл этот спор. Но Лоренц и его коллеги никогда не прибегали в этой дискуссии к приемам, широко применяемым в спорах обыденной жизни, - они не утверждали, например, неприемлемость критики теории Лоренца на том основании, что его статус в то время был несоизмерим со статусом еще не известного научному сообществу молодого физика Эйнштейна.
Не менее важным принципом научного этоса является требование научной честности при изложении результатов исследования. Ученый может ошибаться, но не имеет права подтасовывать результаты, он может повторить уже сделанное открытие, но не имеет права заниматься плагиатом. Институт ссылок как обязательное условие оформления научной монографии и статьи призван не только зафиксировать авторство тех или иных идей и научных текстов. Он обеспечивает четкую селекцию уже известного в науке и новых результатов. Вне этой селекции не было бы стимула к напряженным поискам нового, в науке возникли бы бесконечные повторы пройденного и в конечном счете было бы подорвано ее главное качество - постоянно генерировать рост нового знания, выходя за рамки привычных и уже известных представлений о мире.
Конечно, требование недопустимости фальсификаций и плагиата выступает как своеобразная презумпция науки, которая в реальной жизни может нарушаться. В различных научных сообществах может устанавливаться различная жесткость санкций за нарушение этических принципов науки.
Рассмотрим один пример из жизни современной науки, который может служить образцом непримиримости сообщества к нарушениям этих принципов.
В середине 70-х годов в среде биохимиков и нейрофизиологов громкую известность приобрело так называемое дело Галлиса, молодого и подающего надежды биохимика, который в начале 70-х годов работал над проблемой внутримозговых морфинов. Им была выдвинута оригинальная гипотеза о том, что морфины растительного происхождения и внутримозговые морфины одинаково воздействуют на нервную ткань. Галлис провел серию трудоемких экспериментов, однако не смог убедительно подтвердить эту гипотезу, хотя косвенные данные свидетельствовали о ее перспективности. Опасаясь, что другие исследователи его обгонят и сделают это открытие, Галлис решился на фальсификацию. Он опубликовал вымышленные данные опытов, якобы подтверждающие гипотезу.
“Открытие” Галлиса вызвало большой интерес в сообществе нейрофизиологов и биохимиков. Однако его результаты никто не смог подтвердить, воспроизводя эксперименты по опубликованной им методике. Тогда молодому и уже ставшему известным ученому было предложено публично провести эксперименты на специальном симпозиуме в 1977 году в Мюнхене, под наблюдением своих коллег. Галлис в конце концов вынужден был сознаться в фальсификации. Сообщество ученых отреагировало на это признание жестким бойкотом. Коллеги Галлиса перестали поддерживать с ним научные контакты, все его соавторы публично отказались от совместных с ним статей, и в итоге Галлис опубликовал письмо, в котором он извинился перед коллегами и заявил, что прекращает занятия наукой[11].
В идеале научное сообщество всегда должно отторгать исследователей, уличенных в умышленном плагиате или преднамеренной фальсификации научных результатов в угоду каким-либо житейским благам. К этому идеалу ближе всего стоят сообщества математиков и естествоиспытателей, но у гуманитариев, например, поскольку они испытывают значительно большее давление со стороны идеологических и политических структур, санкции к исследователям, отклоняющимся от идеалов научной честности, значительно смягчены.
Показательно, что для обыденного сознания соблюдение основных установок научного этоса совсем не обязательно, а подчас даже и нежелательно. Человеку, рассказавшему политический анекдот в незнакомой компании, не обязательно ссылаться на источник информации, особенно если он живет в тоталитарном обществе.
В обыденной жизни люди обмениваются самыми различными знаниями, делятся житейским опытом, но ссылки на автора этого опыта в большинстве ситуаций просто невозможны, ибо этот опыт анонимен и часто транслируется в культуре столетиями.
Наличие специфических для науки норм и целей познавательной деятельности, а также специфических средств и методов, обеспечивающих постижение все новых объектов, требует целенаправленного формирования ученых специалистов. Эта потребность приводит к появлению “академической составляющей науки” - особых организаций и учреждений, обеспечивающих подготовку научных кадров.
В процессе такой подготовки будущие исследователи должны усвоить не только специальные знания, приемы и методы научной работы, но и основные ценностные ориентиры науки, ее этические нормы и принципы.
Итак, при выяснении природы научного познания можно выделить систему отличительных признаков науки, среди которых главными являются: а) установка на исследование законов преобразования объектов и реализующая эту установку предметность и объективность научного знания; б) выход науки за рамки предметных структур производства и обыденного опыта и изучение ею объектов относительно независимо от сегодняшних возможностей их производственного освоения (научные знания всегда относятся к широкому классу практических ситуаций настоящего и будущего, который никогда заранее не задан). Все остальные необходимые признаки, отличающие науку от других форм познавательной деятельности, могут быть представлены как зависящие от указанных главных характеристик и обусловленные ими.
Генезис научного познания
Характеристики развитых форм научного познания во многом намечают пути, на которых следует искать решение проблемы генезиса теоретического знания как феномена культуры.
Преднаука и развитая наука
В истории формирования и развития науки можно выделить две стадии, которые соответствуют двум различным методам построения знаний и двум формам прогнозирования результатов деятельности. Первая стадия характеризует зарождающуюся науку (преднауку), вторая - науку в собственном смысле слова. Зарождающаяся наука изучает преимущественно те вещи и способы их изменения, с которыми человек многократно сталкивался в производстве и обыденном опыте. Он стремился построить модели таких изменений с тем, чтобы предвидеть результаты практического действия. Первой и необходимой предпосылкой для этого было изучение вещей, их свойств и отношений, выделенных самой практикой. Эти вещи, свойства и отношения фиксировались в познании в форме идеальных объектов, которыми мышление начинало оперировать как специфическими предметами, замещающими объекты реального мира.[12] Эта деятельность мышления формировалась на основе практики и представляла собой идеализированную схему практических преобразований материальных предметов. Соединяя идеальные объекты с соответствующими операциями их преобразования, ранняя наука строила таким путем схему тех изменений предметов, которые могли быть осуществлены в производстве данной исторической эпохи. Так, например, анализируя древнеегипетские таблицы сложения и вычитания целых чисел, нетрудно установить, что представленные в них знания образуют в своем содержании типичную схему практических преобразований, осуществляемых над предметными совокупностями.
В таблицах сложения каждый из реальных предметов (это могут быть животные, собираемые в стадо, камни, складываемые для постройки, и т.д.) замещался идеальным объектом “единица”, который фиксировался знаком I (вертикальная черта). Набор предметов изображался здесь как система единиц (для “десятков”, “сотен”, “тысяч” и т.д. в египетской арифметике существовали свои знаки, фиксирующие соответствующие идеальные объекты). Оперирование с предметами, объединяемыми в совокупность (сложение), и отделение от совокупности предметов или их групп (вычитание) изображались в правилах действия над “единицами”, “десятками”, “сотнями” и т.д. Прибавление, допустим, к пяти единицам трех единиц производилось следующим образом: изображался знак III (число “три”), затем под ним писалось еще пять вертикальных черточек IIIII (число “пять”), а затем все эти черточки переносились в одну строку, расположенную под двумя первыми. В результате получалось восемь черточек, обозначающих соответствующее число. Эти операции воспроизводили процедуры образования совокупностей предметов в реальной практике (реальное практическое образование и расчленение предметных совокупностей было основано на процедуре добавления одних единичных предметов к другим).
Используя такого типа знания, можно было предвидеть результаты преобразования предметов, характерные для различных практических ситуаций, связанных с объединением предметов в некоторую совокупность.
Такую же связь с практикой можно обнаружить в первых знаниях, относящихся к геометрии. Геометрия (греч. “гео” - земля, “метрия” - измерение) в самом первичном смысле термина обнаруживает связь с практикой измерения земельных участков. Древние греки заимствовали первичные геометрические знания у древних египтян и вавилонян. Земледельческая цивилизация Древнего Египта основывалась на возделывании плодородных земель в долине Нила. Участки земли, которыми владели различные сельские общины, имели свои границы. При разливах Нила эти границы заносились речным илом. Их восстановление было важной задачей, которую решали особые государственные чиновники. Очертания участков и их размеры изображались в чертежах на папирусе. Такие чертежи были моделями земельных участков, и по ним восстанавливались их границы.
Кроме восстановления границ земельных участков существовали практические потребности вычисления их площадей. Это породило новый класс задач, решение которых требовало оперирования с чертежами. В этом процессе были выделены основные геометрические фигуры - треугольник, прямоугольник, трапеция, круг, через комбинации которых можно было изображать площади земельных участков сложной конфигурации. В древнеегипетской математике были найдены способы вычисления площадей основных геометрических фигур, и эти знания стали применяться не только при измерении земельных участков, но и при решении других практических задач, в частности при строительстве различных сооружений.
Операции с геометрическими фигурами на чертежах, связанные с построением и преобразованиями этих фигур, осуществлялись с помощью двух основных инструментов - циркуля и линейки. Этот способ до сих пор является фундаментальным в геометрии. Характерно, что он выступает в качестве схемы реальных практических операций. Измерение земельных участков, а также сторон и плоскостей создаваемых сооружений в строительстве, осуществлялись с помощью туго натянутой мерной веревки с узлами, обозначающими единицу длины (линейка), и мерной веревки, один конец которой закреплялся колышком, а стержень (колышек) на другом ее конце прочерчивал дуги (циркуль). Перенесенные на действия с чертежами эти операции предстали как построения геометрических фигур с помощью циркуля и линейки.
Способ построения знаний путем абстрагирования и схематизации предметных отношений наличной практики обеспечивал предсказание ее результатов в границах уже сложившихся способов практического освоения мира. Однако по мере развития познания и практики наряду с отмеченным способом в науке формируется новый способ построения знаний. Он знаменует переход к собственно научному исследованию предметных связей мира.
Если на этапе преднауки как первичные идеальные объекты, так и их отношения (соответственно смыслы основных терминов языка и правила оперирования с ними) выводились непосредственно из практики и лишь затем внутри созданной системы знания (языка) формировались новые идеальные объекты, то теперь познание делает следующий шаг. Оно начинает строить фундамент новой системы знания как бы “сверху” по отношению к реальной практике и лишь после этого, путем ряда опосредований, проверяет созданные из идеальных объектов конструкции, сопоставляя их с предметными отношениями практики.
При таком методе исходные идеальные объекты черпаются уже не из практики, а заимствуются из ранее сложившихся систем знания (языка) и применяются в качестве строительного материала при формировании новых знаний. Эти объекты погружаются в особую “сеть отношений”, структуру, которая заимствуется из другой области знания, где она предварительно обосновывается в качестве схематизированного образа предметных структур действительности. Соединение исходных идеальных объектов с новой “сеткой отношений” способно породить новую систему знаний, в рамках которой могут найти отображение существенные черты ранее не изученных сторон действительности. Прямое или косвенное обоснование данной системы практикой превращает ее в достоверное знание.
В развитой науке такой способ исследования встречается буквально на каждом шагу. Так, например, по мере эволюции математики числа начинают рассматриваться не как прообраз предметных совокупностей, которыми оперируют в практике, а как относительно самостоятельные математические объекты, свойства которых подлежат систематическому изучению. С этого момента начинается собственно математическое исследование, в ходе которого из ранее изученных натуральных чисел строятся новые идеальные объекты. Применяя, например, операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа (при вычитании из меньшего числа большего). Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким путем создает новое знание, характеризующее ранее не исследованные структуры действительности. В дальнейшем происходит новое расширение класса чисел: применение операции извлечения корня к отрицательным числам формирует новую абстракцию - “мнимое число”. И на этот класс идеальных объектов опять распространяются все те операции, которые применялись к натуральным числам.
Описанный способ построения знаний утверждается не только в математике. Вслед за нею он распространяется на сферу естественных наук. В естествознании он известен как метод выдвижения гипотетических моделей с их последующим обоснованием опытом.
Благодаря новому методу построения знаний наука получает возможность изучить не только те предметные связи, которые могут встретиться в сложившихся стереотипах практики, но и проанализировать изменения объектов, которые в принципе могла бы освоить развивающаяся цивилизация. С этого момента кончается этап преднауки и начинается наука в собственном смысле. В ней наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формируется особый тип знания - теория, позволяющая получить эмпирические зависимости как следствие из теоретических постулатов. Меняется и категориальный статус знаний - они могут соотноситься уже не только с осуществленным опытом, но и с качественно иной практикой будущего, а поэтому строятся в категориях возможного и необходимого. Знания уже не формулируются только как предписания для наличной практики, они выступают как знания об объектах реальности “самой по себе”, и на их основе вырабатывается рецептура будущего практического изменения объектов.
Поскольку научное познание начинает ориентироваться на поиск предметных структур, которые не могут быть выявлены в обыденной практике и производственной деятельности, оно уже не может развиваться, опираясь только на эти формы практики. Возникает потребность в особой форме практики, которая обслуживает развивающееся естествознание. Такой формой практики становится научный эксперимент.
Поскольку демаркация между преднаукой и наукой связана с новым способом порождения знаний, проблема генезиса науки предстает как проблема предпосылок собственно научного способа исследования. Эти предпосылки складываются в культуре в виде определенных установок мышления, позволяющих возникнуть научному методу. Их формирование является результатом длительного развития цивилизации.
Культуры традиционных обществ (Древнего Китая, Индии, Древнего Египта и Вавилона) не создавали таких предпосылок. Хотя в них возникло множество конкретных видов научного знания и рецептур решения задач, все эти знания и рецептуры не выходили за рамки преднауки.
Переход к науке в собственном смысле слова был связан с двумя переломными состояниями развития культуры и цивилизации. Во-первых, с изменениями в культуре античного мира, которые обеспечили применение научного метода в математике и вывели ее на уровень теоретического исследования, во-вторых, с изменениями в европейской культуре, произошедшими в эпоху Возрождения и перехода к Новому времени, когда собственно научный способ мышления стал достоянием естествознания (главным процессом здесь принято считать становление эксперимента как метода изучения природы, соединение математического метода с экспериментом и формирование теоретического естествознания).
Нетрудно увидеть, что речь идет о тех мутациях в культуре, которые обеспечивали в конечном итоге становление техногенной цивилизации. Развитая наука утвердилась именно в этой линии цивилизационного развития, но исторический путь к ней не был простым и прямолинейным. Отдельные предпосылки и пробы развертывания научного метода неоднократно осуществлялись в разных культурах. Некоторые из них сразу попадали в поток культурной трансляции, другие же как бы отодвигались на периферию, а затем вновь получали второе дыхание, как это случилось, например, с многими идеями античности, воссозданными в эпоху Ренессанса.
Для перехода к собственно научной стадии необходим был особый способ мышления (видения мира), который допускал бы взгляд на существующие ситуации бытия, включая ситуации социального общения и деятельности, как на одно из возможных проявлений сущности (законов) мира, которая способна реализоваться в различных формах, в том числе весьма отличных от уже осуществившихся.
Такой способ мышления не мог утвердиться, например, в культуре кастовых и деспотических обществ Востока эпохи первых городских цивилизаций (где начиналась преднаука). Доминирование в культурах этих обществ канонизированных стилей мышления и традиций, ориентированных прежде всего на воспроизведение существующих форм и способов деятельности, накладывало серьезные ограничения на прогностические возможности познания, мешая ему выйти за рамки сложившихся стереотипов социального опыта. Полученные здесь знания о закономерных связях мира, как правило, сращивались с представлениями об их прошлой (традиция), либо сегодняшней практической реализации. Зачатки научных знаний вырабатывались и излагались в восточных культурах главным образом как предписания для практики и не обрели еще статуса знаний о естественных процессах, развертывающихся в соответствии с объективными законами[13].
Духовная революция Античности
Для того чтобы осуществился переход к собственно научному способу порождения знаний, с его интенцией на изучение необычных, с точки зрения обыденного опыта, предметных связей, необходим был иной тип цивилизации с иным типом культуры. Такого рода цивилизацией, создавшей предпосылки для первого шага по пути к собственно науке, была демократия античной Греции. Именно здесь происходит мутация традиционных культур и здесь социальная жизнь наполняется динамизмом, которого не знали земледельческие цивилизации Востока с их застойно-патриархальным круговоротом жизни. Хозяйственная и политическая жизнь античного полиса была пронизана духом состязательности[14], все конкурировали между собой, проявляя активность и инициативу, что неизбежно стимулировало инновации в различных сферах деятельности.
Нормы поведения и деятельности, определившие облик социальной действительности, вырабатывались в столкновении интересов различных социальных групп и утверждались во многом через борьбу мнений равноправных свободных индивидов на народном собрании. Социальный климат полиса снимал с нормативов деятельности ореол нерушимого сверхчеловеческого установления и формировал отношение к ним как к изобретению людей, которое подлежит обсуждению и улучшению по мере необходимости[15]. На этой основе складывались представления о множестве форм действительности, о возможности других, более совершенных форм по сравнению с уже реализовавшимися. Это видение можно обозначить как идею “вариабельного бытия”, которая получила свое рациональное оформление и развитие в античной философии. Оно стимулировало разработку целого спектра философских систем, конкурирующих между собой, вводящих различные концепции мироздания и различные идеалы социального устройства.
Развертывая модели “возможных миров”, античная философия, пожалуй, в наибольшей степени реализовала в эту эпоху эвристическую функцию философского познания, что и послужило необходимой предпосылкой становления науки в собственном смысле слова.
Именно в философии впервые были продемонстрированы образцы теоретического рассуждения, способные открывать связи и отношения вещей, выходящие за рамки обыденного опыта и связанных с ним стереотипов и архетипов обыденного сознания. Так, при обсуждении проблемы части и целого, единого и множественного античная философия подходит к ней теоретически, рассматривая все возможные варианты ее решения: мир бесконечно делим (Анаксагор), мир делится на части до определенного предела (атомистика Демокрита и Эпикура) и, наконец, совершенно невероятное с точки зрения здравого смысла решение - мир вообще неделим (бытие едино и неделимо - элеаты).
Обоснование элеатами (Парменид, Зенон) этой необычной идеи поставило ряд проблем, касающихся свойств пространства, времени и движения. Из принципа неделимости бытия следовала невозможность движения тел, так как тело - это часть (фрагмент) мира, а его движение представляет собой изменение его положения (места) в пространстве в различные моменты времени. Движение тел невозможно, если неделим мир, неделимо пространство и время. Но это противоречило наблюдаемым фактам движения тел.
На эти возражения известный древнегреческий философ Зенон ответил рядом контраргументов, получивших название апорий Зенона. В них доказывалось, что с позиций теоретического разума представление о движении тел приводит к парадоксам. Например, апория “Стрела” демонстрировала следующий парадокс: в каждый отдельный момент времени летящая стрела может быть рассмотрена как покоящаяся в некоторой точке пространства. Но сумма покоев не дает движения, а значит летящая стрела покоится. В других апориях Зенон выявляет парадоксы, связанные с представлениями о бесконечной делимости пространства. Например, в апории “Ахиллес” утверждалось, что самый быстрый бегун Ахиллес не догонит черепаху, так как сначала ему нужно пробежать половину дистанции между ним и черепахой, а она за это время отползет на некоторое расстояние, затем Ахиллесу придется преодолевать половину новой дистанции и вновь черепаха отползет на определенное расстояние, и так до бесконечности.
Самое интересное, что в этих, на первый взгляд, весьма экзотических рассуждениях были поставлены проблемы, к которым потом, на протяжении более двух тысячелетий не раз возвращалась философская и научная мысль. В преддверии возникновения механики мыслители позднего Средневековья обсуждали вопрос, можно ли говорить о движении тела в точке пространства? Если движение характеризуется скоростью, а скорость - это путь, деленный на время, то в точке не может быть скорости, поскольку точка - это нулевое расстояние, а ноль, деленный на t, дает ноль. Значит движущееся тело в точке покоится.
После возникновения механики Галилея в процессе поисков обобщающей теории механических движений (завершившихся механикой Ньютона) пришлось вновь решать эту проблему в связи с обоснованием понятия мгновенной скорости. Поставленная философией проблема трансформировалась в конкретно-научную. Ее решение было получено благодаря развитию в математике теории пределов и методов дифференциального и интегрального исчисления, примененных в физике.
Показательно также, что впервые сформулированные Зеноном парадоксы бесконечной делимости пространства были осмыслены позднее как проблема сопоставления бесконечных множеств. В апории “Ахиллес” (и других апориях) по существу было выявлено, что любой путь (отрезок), если его рассмотреть как бесконечно делимый, предстает как бесконечное множество точек, а любая часть этого пути также является бесконечным множеством точек и с этих позиций может быть приравнена к целому. Как справедливо отмечал историк науки А.Койре, эта проблема почти через два с половиной тысячелетия стала одной из фундаментальных в математике. Над ней размышляли великие математики Бернард Больцано и Георг Кантор, и она в значительной степени стимулировала современную разработку теории множеств.
Конечно, во времена элеатов все эти эвристические возможности философского познания, открывающего проблемы науки будущего, не были известны. Но важно то, что в философии этого времени возникали образцы теоретического рассуждения, которые ориентировались не столько на очевидности чувственного опыта, сколько на сущее, данное разуму. И здесь предпочтение отдавалось как раз теоретическому размышлению, которое способно выходить за рамки здравого смысла своего времени, стереотипов, выработанных в системе ограниченной повседневной практики.
В традиционных обществах Востока такого рода теоретические функции философии реализовались в урезанном виде. Генерация нестандартных представлений о мире в философских системах Индии и Китая осуществлялась спорадически, совпадая с периодами крупных социальных катаклизмов (например, период “сражающихся царств” в Древнем Китае). Но в целом философия тяготела к идеологическим конструкциям, обслуживающим традицию. Например, конфуцианство и брахманизм были философскими системами, которые одновременно выступали и как религиозно-идеологические учения, регулирующие поведение и деятельность людей. Что же касается Древнего Египта и Вавилона, в которых был накоплен огромный массив научных знаний и рецептур деятельности, относящихся к этапу преднауки, то в них философское знание в лучшем случае находилось в стадии зарождения. Оно еще не отпочковалось от религиозно-мифологических систем, которые доминировали в культуре этих обществ.
Принципиально иную картину дает социальная жизнь античного полиса. Особенности этой жизни создавали намного более благоприятные условия для реализации теоретических функций философии.
Античная философия продемонстрировала, как можно планомерно развертывать представление о различных типах объектов (часто необычных с точки зрения наличного опыта) и способах их мысленного освоения. Она дала образцы построения знаний о таких объектах. Это поиск единого основания (первоначал и причин) и выведение из него следствий (необходимое условие теоретической организации знаний). Эти образцы оказали бесспорное влияние на становление теоретического слоя исследований в античной математике.
Идеал обоснованного и доказательного знания складывался в античной философии и науке под воздействием социальной практики полиса. Восточные деспотии, например, не знали этого идеала. Знания вырабатывались здесь кастой управителей, отделенных от остальных членов общества (жрецы и писцы Древнего Египта, древнекитайские чиновники и т.д.), и предписывались в качестве непререкаемой нормы, не подлежащей сомнению. Условием приемлемости знаний, формулируемых в виде предписаний, были авторитет их создателей и наличная практика, построенная в соответствии с предложенными нормативами. Доказательство знаний путем их выведения из некоторого основания было излишним (требование доказанности оправдано только тогда, когда предложенное предписание может быть подвергнуто сомнению и когда может быть выдвинуто конкурирующее предписание).
Ряд знаний в математике Древнего Египта и Вавилона, по-видимому, не мог быть получен вне процедур вывода и доказательства. М.Я.Выгодский считает, что, например, такие сложные рецепты, как алгоритм вычисления объема усеченной пирамиды, были выведены на основе других знаний[16]. Однако в процессе изложения знаний этот вывод не демонстрировался. Производство и трансляция знаний в культуре Древнего Египта и Вавилона закреплялись за кастой жрецов и чиновников и носили авторитарный характер. Обоснование знания путем демонстрации доказательства не превратилось в восточных культурах в идеал построения и трансляции знаний, что наложило серьезные ограничения на процесс превращения “эмпирической математики” в теоретическую науку.
В противоположность восточным обществам, греческий полис принимал социально значимые решения, пропуская их через фильтр конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство, в ходе которого ссылки на авторитет, особое социальное положение индивида, предлагающего предписание для будущей деятельности, не считались серьезной аргументацией. Диалог велся между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в культуре идеал обоснованного мнения был перенесен античной философией и на научные знания. Именно в греческой математике мы встречаем изложение знаний в виде теорем: “дано - требуется доказать - доказательство”. Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь мы находим только нормативные рецепты решения задач, излагаемые по схеме: “Делай так!”... “Смотри, ты сделал правильно!”
Характерно, что разработка в античной философии методов постижения и развертывания истины (диалектики и логики) протекала как отражение мира сквозь призму социальной практики полиса. Первые шаги к осознанию и развитию диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народном собрании). Что же касается логики, то ее разработка в античной философии началась с поиска критериев правильного рассуждения в ораторском искусстве и выработанные здесь нормативы логического следования были затем применены к научному рассуждению.
Применение образцов теоретического рассуждения к накопленным на этапе преднауки знаниям математики постепенно выводили ее на уровень теоретического познания. Уже в истоках развития античной философии были предприняты попытки систематизировать математические знания, полученные в древних цивилизациях, и применить к ним процедуру доказательства. Так, Фалесу, одному из ранних древнегреческих философов, приписывается доказательство теоремы о равенстве углов основания равнобедренного треугольника (в качестве факта это знание было получено еще в древнеегипетской и вавилонской математике, но оно не доказывалось в качестве теоремы). Ученик Фалеса Анаксимандр составил систематический очерк геометрических знаний, что также способствовало выявлению накопленных рецептов решения задач, которые следовало обосновывать и доказывать в качестве теорем.
Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения ключом к пониманию мироустройства. И это создавало особые предпосылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как моделей тех или иных практических ситуаций, а самих по себе, безотносительно к практическому применению. Ведь познание свойств и отношений чисел теперь представало как познание начал и гармонии космоса. Числа представали как особые объекты, которые нужно постигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснить наблюдаемые явления. Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее вещи, их свойства и отношения.
В пифагорейской математике, наряду с доказательством ряда теорем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению теоретического исследования свойств геометрических фигур со свойствами чисел. Связи между этими двумя областями возникающей математики были двухсторонними. Пифагорейцы стремились не только использовать числовые отношения для характеристики свойств геометрических фигур, но и применять к исследованию совокупностей чисел геометрические образы. Так, число “10”, которое рассматривалось как совершенное число, завершающее десятки натурального ряда, соотносилось с треугольником, основной фигурой, к которой при доказательстве теорем стремились свести другие геометрические фигуры. Соотношение числа “10” и равностороннего треугольника изображались следующей схемой:
Здесь первый ряд соответствует “1”, второй - “2”, третий - числу “3”, четвертый - числу “4”, а сумма их дает число “10” (1+2+3+4=10).
Нужно сказать, что связь геометрии и теории чисел обусловила постановку перспективных проблем, которые стимулировали развитие математики и привели к ряду важных открытий. Так, уже в античной математике при решении задачи числового выражения отношения гипотенузы к катетам были открыты иррациональные числа. Исследование “фигурных чисел”, продолжающее пифагорейскую традицию, также получило развитие в последующей истории математики.
Разработка теоретических знаний математики проводилась в античную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы античности - Демокрит, Платон, Аристотель и др. - уделяли огромное внимание математическим проблемам. Они придали идеям пифагорейцев, отягощенным многими мистико-мифологическими наслоениями, более строгую рациональную форму. И Платон, и Аристотель, хотя и в разных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно математики, так и ее применение в различных областях изучения окружающего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, “Демиург (Бог) постоянно геометризирует”, т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории - евклидовой геометрии. В принципе ее построение, объединившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовали формирование математики в особую, самостоятельную науку.
Вместе с тем в античности были получены многочисленные приложения математических знаний к описаниям природных объектов и процессов. Прежде всего это касается астрономии, где были осуществлены вычисления положения планет, предсказания солнечных и лунных затмений, предприняты смелые попытки оценить размеры Земли, Луны, Солнца и расстояний между ними (Аристарх Самосский, Эратосфен, Птолемей). В античной астрономии были созданы две конкурирующие концепции строения мира: гелеоцентрические представления Аристарха Самосского (предвосхитившие последующие открытия Коперника) и геоцентрическая система Гиппарха и Птолемея. И если идея Аристарха Самосского, предполагавшая круговые движения планет по орбитам вокруг Солнца, столкнулась с трудностями при объяснении наблюдаемых перемещений планет на небесном своде, то система Птолемея, с ее представлениями об эпициклах, давала весьма точные математические предсказания наблюдаемых положений планет Луны и Солнца. Основная книга Птолемея “Математическое построение” была переведена на арабский язык под названием “Аль-магисте” (великое), и затем вернулась в Европу как “Альмагест”, став господствующим трактатом средневековой астрономии на протяжении четырнадцати веков.
В античную эпоху были сделаны также важные шаги в применении математики к описанию физических процессов. Особенно характерны в этом отношении работы великих эллинских ученых так называемого александрийского периода (около 300-600 гг. н э.) - Архимеда, Евклида, Герона, Паппа, Птолемея и др. В этот период возникают первые теоретические знания механики, среди которых в первую очередь следует выделить разработку Архимедом начал статики и гидростатики (развитая им теория центра тяжести, теория рычага, открытие основного закона гидростатики и разработка проблем устойчивости и равновесия плавающих тел и т.д.). В александрийской науке был сформулирован и решен ряд задач, связанных с применением геометрической статики к равновесию и движению грузов к наклонной плоскости (Герон, Папп); были доказаны теоремы об объемах тел вращения (Папп), открыты основные законы геометрической оптики - закон прямолинейного распространения света, закон отражения (Евклид, Архимед).
Все эти знания можно расценить как первые теоретические модели и законы механики, полученные с применением математического доказательства. В александрийской науке уже встречаются изложения знаний, не привязанные жестко к натурфилософским схемам и претендующие на самостоятельную значимость.
До рождения теоретического естествознания как особой, самостоятельной и самоценной области человеческого познания и деятельности оставался один шаг. Оставалось соединить математическое описание и систематическое выдвижение тех или иных теоретических предположений с экспериментальным исследованием природы. Но именно этого последнего шага античная наука сделать не смогла.
Она не смогла развить теоретического естествознания и его технологических применений. Причину этому большинство исследователей видят в рабовладении - использовании рабов в функции орудий при решении тех или иных технических задач. Дешевый труд рабов не создавал необходимых стимулов для развития солидной техники и технологии, а следовательно, и обслуживающих ее естественнонаучных и инженерных знаний[17].
Действительно, отношение к физическому труду как к низшему сорту деятельности и усиливающееся по мере развития классового расслоения общества отделение умственного труда от физического порождают в античных обществах своеобразный разрыв между абстрактно-теоретическими исследованиями и практически-утилитарными формами применения научных знаний. Известно, например, что Архимед, прославившийся не только своими математическими работами, но и приложением их результатов в технике, считал эмпирические и инженерные знания “делом низким и неблагородным” и лишь под давлением обстоятельств (осада Сиракуз римлянами) вынужден был заниматься совершенствованием военной техники и оборонительных сооружений. Архимед не упоминал в своих сочинениях о возможных технических приложениях своих теоретических исследований, хотя и занимался такими приложениями. По этому поводу Плутарх писал, что Архимед был человеком “возвышенного образа мысли и такой глубины ума и богатства по знанию”, что “считая сооружение машин низменным и грубым, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают не смешанными с потребностью жизни”[18].
Но не только в этих, в общем-то внешних по отношению к науке, социальных обстоятельствах заключалась причина того, что античная наука не смогла открыть для себя экспериментального метода и использовать его для постижения природы. Описанные социальные предпосылки в конечном счете не прямо и непосредственно определяли облик античной науки, а влияли на нее опосредованно, через мировоззрение, выражавшее глубинные менталитеты античной культуры.
Зарождение опытных наук
Важно зафиксировать, что сама идея экспериментального исследования неявно предполагала наличие в культуре особых представлений о природе, о деятельности и познающем субъекте, представлений, которые не были свойственны античной культуре, но сформировались значительно позднее, в культуре Нового времени. Идея экспериментального исследования полагала субъекта в качестве активного начала, противостоящего природной материи, изменяющего ее вещи путем силового давления на них. Природный объект познается в эксперименте потому, что он поставлен в искусственно созданные условия и только благодаря этому проявляет для субъекта свои невидимые сущностные связи. Недаром в эпоху становления науки Нового времени в европейской культуре бытовало широко распространенное сравнение эксперимента с пыткой природы, посредством которой исследователь должен выведать у природы ее сокровенные тайны.
Природа в этой системе представлений воспринимается как особая композиция качественно различных вещей, которая обладает свойством однородности. Она предстает как поле действия законосообразных связей, в которых как бы растворяются неповторимые индивидуальности вещей.
Все эти понимания природы выражались в культуре Нового времени категорией “натура”. Но у древних греков такого понимания не было. У них универсалия “природа” выражалась в категориях “фюсис” и “космос”. “Фюсис” обозначал особую, качественно отличную специфику каждой вещи и каждой сущности, воплощенной в вещах. Это представление ориентировало человека на постижение вещи как качества, как оформленной материи, с учетом ее назначения, цели и функции. Космос воспринимался в этой системе мировоззренческих ориентаций как особая самоцельная сущность со своей природой. В нем каждое отдельное “физически сущее” имеет определенное место и назначение, а весь Космос выступает в качестве совершенной завершенности[19].
Как отмечал А.Ф.Лосев, нескончаемое движение Космоса представлялось античному мыслителю в качестве своеобразного вечного возвращения, движения в определенных пределах, внутри которых постоянно воспроизводится гармония целого, и поэтому подвижный и изменчивый Космос одновременно мыслился как некоторое скульптурное целое, где части, дополняя друг друга, создают завершенную гармонию. Поэтому образ вечного движения и изменения сочетался в представлениях греков с идеей шарообразной формы (космос почти всеми философами уподоблялся шару)[20]. А.Ф.Лосев отмечал глубинную связь этих особых смыслов универсалии “природа” с самими основаниями полисной жизни, в которой разнообразие и динамика хозяйственной деятельности и политических интересов различных социальных групп и отдельных граждан соединялись в целое гражданским единством свободных жителей города-государства[21]. В идеале полис представлялся как единство в многообразии, а реальностью такого единства полагался Космос. Природа для древнего грека не была обезличенным неодушевленным веществом, она представлялась живым организмом, в котором отдельные части - вещи - имеют свои назначения и функции. Поэтому античному мыслителю была чужда идея постижения мира путем насильственного препарирования его частей и их изучения в несвободных, несвойственных их естественному бытию обстоятельствах. В его представлениях такой способ исследования мог только нарушить гармонию Космоса, но не в состоянии был обнаружить эту гармонию. Поэтому постижение Космоса, задающего цели всему “физически сущему”, может быть достигнуто только в умозрительном созерцании, которое расценивалось как главный способ поиска истины.
Знание о природе (фюсис) древние греки противопоставляли знанию об искусственном (тэхне). Античности, как и сменившему ее европейскому Средневековью, было свойственно резкое разграничение природного, естественного и технического, искусственного. Механика в античную эпоху не считалась знанием о природе, а относилась только к искусственному, созданному человеческими руками. И если мы расцениваем опыты Архимеда и его механику как знание о законах природы, то в античном мире оно относилось к “тэхне”, искусственному, а экспериментирование не воспринималось как путь познания природы.
Теоретическое естествознание, опирающееся на метод эксперимента, возникло только на этапе становления техногенной цивилизации. Проблематика трансформаций культуры, которые осуществлялись в эту эпоху, активно обсуждается в современной философской и культурологической литературе[22]. Не претендуя на анализ этих трансформаций во всех аспектах, отметим лишь, что их основой стало новое понимание человека и человеческой деятельности, которое было вызвано процессами великих преобразований в культуре переломных эпох - Ренессанса и перехода к Новому времени. В этот исторический период в культуре складывается отношение к любой деятельности, а не только к интеллектуальному труду, как к ценности и источнику общественного богатства.
Это создает новую систему ценностных ориентаций, которая начинает просматриваться уже в культуре Возрождения. С одной стороны, утверждается, в противовес средневековому мировоззрению, новая система гуманистических идей, связанная с концепцией человека как активно противостоящего природе в качестве мыслящего и деятельного начала. С другой стороны, утверждается интерес к познанию природы, которая рассматривается как поле приложения человеческих сил. Уже в эпоху Возрождения начинает складываться новое понимание связи между природным, естественным и искусственным, создаваемым в человеческой деятельности. Традиционное христианское учение о сотворении мира Богом получает здесь особое истолкование. По отношению к божественному разуму, который создал мир, природа рассматривается как искусственное. Деятельность же человека истолковывается как своеобразное подобие в малых масштабах актов творения. И основой этой деятельности полагается подражание природе, распознавание в ней разумного начала (законов) и следование осмысленной гармонии природы в человеческих искусствах - науке, художественном творчестве, технических изобретениях. Ценность искусственного и естественного уравниваются, а разумное изменение природы в человеческой деятельности выступает не как нечто противоречащее ей, а как согласующееся с ее естественным устройством. Именно это новое отношение к природе было закреплено в категории “натура”, что послужило предпосылкой для выработки принципиально нового способа познания мира: возникает идея о возможности ставить природе теоретические вопросы и получать на них ответы путем активного преобразования природных объектов.
Новые смыслы категории “природа” были связаны с формированием новых смыслов категорий “пространство” и “время”, что также было необходимо для становления метода эксперимента. Средневековые представления о пространстве как качественной системе мест и о времени как последовательности качественно отличных друг от друга временных моментов, наполненных скрытым символическим смыслом, были препятствием на этом пути.
Как известно, физический эксперимент предполагает его принципиальную воспроизводимость в разных точках пространства и в разные моменты времени. Понятно, что физические эксперименты, поставленные в Москве, могут быть повторены в Лондоне, Нью-Йорке и в любой другой точке пространства. Если бы такой воспроизводимости не существовало, то и физика как наука была бы невозможна. Это же касается и воспроизводимости экспериментов во времени. Если бы эксперимент, осуществленный в какой-либо момент времени, нельзя было бы принципиально повторить в другой момент времени, никакой опытной науки не существовало бы.
Но что означает это, казалось бы, очевидное требование воспроизводимости эксперимента? Оно означает, что все временные и пространственные точки должны быть одинаковы в физическом смысле, т.е. в них законы природы должны действовать одинаковым образом. Иначе говоря, пространство и время здесь полагаются однородными.
Однако в средневековой культуре человек вовсе не мыслил пространство и время как однородные, а полагал, что различные пространственные места и различные моменты времени обладают разной природой, имеют разный смысл и значение.
Такое понимание пронизывало все сферы средневековой культуры - обыденное мышление, художественное восприятие мира, религиозно-теологические и философские концепции, средневековую физику и космологию и т.п. Оно было естественным выражением системы социальных отношений людей данной эпохи, образа их жизнедеятельности[23].
В частности, в науке этой эпохи оно нашла свое выражение в представлениях о качественном различии пространства земного и небесного. В мировоззренческих смыслах средневековой культуры небесное всегда отождествлялось со “святым” и “духовным”, а земное - с “телесным” и “греховным”. Считалось, что движения небесных и земных тел имеют принципиальное различие, поскольку эти тела принадлежат к принципиально разным пространственным сферам.
Радикальная трансформация всех этих представлений началась уже в эпоху Возрождения. Она была обусловлена многими социальными факторами, в том числе влиянием на общественное сознание великих географических открытий, усиливающейся миграцией населения в эпоху первоначального накопления, когда разорившиеся крестьяне сгонялись с земли, разрушением традиционных корпоративных связей и размыванием средневекового уклада жизни, основанного на жесткой социальной иерархии.
Показательно, что новые представления о пространстве возникали и развивались в эпоху Возрождения в самых разных областях культуры: в философии (концепция бесконечности пространства Вселенной у Д. Бруно), в науке (система Коперника, которая рассматривала Землю как планету, вращающуюся вокруг Солнца, и тем самым уже стирала резкую грань между земной и небесной сферами), в области изобразительных искусств, где возникает концепция живописи как “окна в мир” и где доминирующей формой пространственной организации изображаемого становится линейная перспектива однородного евклидова пространства.
Все эти представления, сформировавшиеся в культуре Ренессанса, утверждали идею однородности пространства и времени, и тем самым создавали предпосылки для утверждения метода эксперимента и соединения теоретического (математического) описания природы с ее экспериментальным изучением.
Они во многом подготовили переворот в науке, осуществленный в эпоху Галилея и Ньютона и завершившийся созданием механики как первой естественнонаучной теории.
Показательно, что одной из фундаментальных идей, приведших к ее построению, была сформулированная Галилеем эвристическая программа - исследовать закономерности движения природных объектов, в том числе и небесных тел, анализируя поведение механических устройств (в частности, орудий Венецианского арсенала).
В свое время Нильс Бор высказал мысль, что новая теория, которая вносит переворот в прежнюю систему представлений о мире, чаще всего начинается с “сумасшедшей идеи”. В отношении Галилеевой программы это вполне подошло бы. Ведь для многих современников это была действительно сумасшедшая идея - изучить законы движения, которым подчиняются небесные тела, путем экспериментов с механическими орудиями Венецианского арсенала. Но истоки этой идеи лежали в предыдущем культурном перевороте, когда были преодолены прежние представления о неоднородном пространстве мироздания, санкционировавшие противопоставление небесной и земной сфер.
Кстати, продуктивность Галилеевой программы была продемонстрирована в последующий период развития механики. Традиция, идущая от Галилея и Гюйгенса к Гуку и Ньютону, была связана с попытками моделировать в мысленных экспериментах с механическими устройствами силы взаимодействия между небесными телами. Например, Гук рассматривал вращение планет по аналогии с вращением тела, закрепленного на нити, а также тела, привязанного к вращающемуся колесу. Ньютон использовал аналогию между вращением Луны вокруг Земли и движением шара внутри полой сферы.
Характерно, что именно на этом пути был открыт закон всемирного тяготения. К формулировке Ньютоном этого закона привело сопоставление законов Кеплера и получаемых в мысленном эксперименте над аналоговой механической моделью математических выражений, характеризующих движение шара под действием центробежных сил[24].
Теоретическое естествознание, возникшее в эту историческую эпоху, предстало в качестве второй (после становления математики) важнейшей вехи формирования науки в собственном смысле этого слова.
В качестве последующих исторически значимых этапов, определивших ее развитие и функции в культуре, можно выделить становление технических и социально-гуманитарных наук. Их становление в качестве особых подсистем опытной науки (наряду с естествознанием) также имело социокультурные предпосылки. Оно происходило в эпоху вступления техногенной цивилизации в стадию индустриализма, и знаменовало обретение наукой новых функций - быть производительной и социальной силой.
К концу XVIII - началу XIX столетий наука окончательно становится бесспорной ценностью цивилизации. Она все активнее участвует в формировании мировоззрения, претендуя на достижение объективно истинного знания о мире, и вместе с тем все отчетливее обнаруживает прагматическую ценность, возможность постоянного и систематического внедрения в производство своих результатов, которые реализуются в виде новой техники и технологии. Примеры использования научных знаний в практике можно обнаружить и в предшествующие исторические периоды, что давало импульсы к осмыслению практической значимости науки (вспомним известное изречение Бэкона “знание - сила”).И все же использование результатов науки в производстве в доиндустриальные эпохи носило скорее эпизодический, чем систематический характер.
В конце XVIII - первой половине XIX вв. ситуация радикально меняется. К. Маркс справедливо отмечал, что “научный фактор впервые сознательно и широко развивается, применяется и вызывается в таких масштабах, о которых предшествующие эпохи не имели никакого понятия”[25].Индустриальное развитие поставило достаточно сложную и многоплановую проблему: не просто спорадически использовать отдельные результаты научных исследований в практике, но обеспечить научную основу технологических инноваций, систематически включая их в систему производства.
Именно в этот исторический период начинается процесс интенсивного взаимодействия науки и техники и возникает особый тип социального развития, который принято именовать научно-техническим прогрессом. Потребности практики все отчетливее обозначали тенденции к постепенному превращению науки в непосредственную производительную силу. Внедрение научных результатов в производство в расширяющихся масштабах становилось основной характеристикой социальной динамики, а идея социального прогресса все отчетливее связывалась с эффективным технологическим применением науки.
Важную роль в развитии науки, в частности в формировании новых отраслей знания, сыграло развитие крупной машинной индустрии, пришедшей на смену мануфактурному производству. Не случайно в тех странах, где капитализм приобретал более развитые формы, наука получала преимущества в развитии. Внедрение ее результатов в производство все чаще рассматривалось как условие получения прибыли производителями, как свидетельство силы и престижа государства. Ценность науки, ее практическая полезность, связанная с извлечением дивидендов, отчетливо начинала осознаваться теми, кто вкладывал средства в проведение исследований.
Расширяющееся применение научных знаний в производстве сформировало общественную потребность в появлении особого слоя исследований, который бы систематически обеспечивал приложение фундаментальных естественнонаучных теорий к области техники и технологии. Как выражение этой потребности между естественнонаучными дисциплинами и производством возникает своеобразный посредник - научно-теоретические исследования технических наук[26].
Их становление в культуре было обусловлено по меньшей мере двумя группами факторов. С одной стороны, они утверждались на базе экспериментальной науки, когда для формирования технической теории оказывалось необходимым наличие своей “базовой” естественнонаучной теории (во временном отношении это был период XVIII-XIX вв.). С другой стороны, потребность в научно-теоретическом техническом знании была инициирована практической необходимостью, когда при решении конкретных задач инженеры уже не могли опираться только на приобретенный опыт, а нуждались в научно-теоретическом обосновании создания искусственных объектов, которое невозможно осуществить, не имея соответствующей технической теории, разрабатываемой в рамках технических наук[27].
Технические науки не являются простым продолжением естествознания, прикладными исследованиями, реализующими концептуальные разработки фундаментальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и прикладных знаний, и эта система имеет специфический предмет исследования. Таким предметом выступает техника и технология как особая сфера искусственного, создаваемого человеком и существующего только благодаря его деятельности.
С точки зрения современных представлений об эволюции Вселенной, возникновение человека и общества открывает особую линию эволюции, в которой формируются объекты и процессы чрезвычайно маловероятные для природы, практически не могущие в ней возникнуть без целенаправленной человеческой активности. Природа не создает ни колеса, ни двигателя внутреннего сгорания, ни ЭВМ на кристаллах-все это продукты человеческой деятельности. Вместе с тем, все созданные человеком предметы и процессы возможны только тогда, когда порождающая их деятельность соответствует законам природы.
Идея законов природы выступает тем основанием, которое, сохраняя представление о специфике естественного и искусственного, связывает их между собой. Сама же эта идея исторически сформировалась в качестве базисного мировоззренческого постулата и ценности в эпоху становления техногенной цивилизации. Она выражала новое понимание природы и места человека в мире, отличное от представлений, свойственных большинству традиционных культур. Неразрывно связанное с этой мировоззренческой идеей представление об относительности разделения искусственного и естественного было одной из предпосылок не только становления естествознания, но и последующего формирования технических наук.
Первые образцы научных технических знаний, связанных с применением открытых естествознанием законов при создании новых технологий и технических устройств, возникли уже на ранних стадиях развития естественных наук. Классическим примером может служить конструирование Х.Гюйгенсом механических часов. Х.Гюйгенс опирается на открытые Галилеем законы падения тел, создает теорию колебания маятника, а затем воплощает эту теорию в созданном техническом устройстве[28]. Причем между теоретическими знаниями механики (законом падения тел и закон колебания идеального маятника), с одной стороны, и реальной конструкцией маятниковых часов, с другой, Гюйгенс создает особый слой теоретического знания, в котором знания механики трансформируются с учетом технических требований создаваемой конструкции. Этот слой знания (разработанная Гюйгенсом теория изохронного качания маятника как падения по циклоиде, обращенной вершиной вниз) можно интерпретировать в качестве одного из первых образцов локальной технической теории. Что же касается систематической разработки технических теорий, то она началась позднее, в эпоху становления и развития индустриального машинного производства. Его потребности, связанные с тиражированием и модификацией различных технических устройств, конструированием их новых видов и типов стимулировали формирование и превращение инженерной деятельности в особую профессию, обслуживающую производство. В отличие от технического творчества в рамках ремесленного труда, эта деятельность ориентировала на систематическое применение научных знаний при решении технических задач. Развитие инженерной деятельности в XIX и XX вв. привело к дифференциации ее функций, выделению в относительно самостоятельные специализации проектирования, конструирования и обслуживания технических устройств и технологических процессов. С развитием инженерной деятельности усложнялось научное техническое знание. В нем сформировались эмпирический и теоретический уровни; наряду с прикладными техническими теориями возникли фундаментальные. Их становление было стимулировано не только прогрессом естествознания, но, прежде всего, потребностями инженерной практики. Характерным примером в этом отношении может служить формирование теории машин и механизмов. Первые шаги к ее созданию были сделаны еще в эпоху первой промышленной революции и были связаны с задачами конструирования относительно сложных машин (подъемных, паровых, ткацких, прядильных и т.д.). Их разработка основывалась на использовании в качестве базисных компонентов так называемых “простых машин” (блок, ворот, винт, рычаг и т.п.), исследование которых было важным исходным материалом открытия законов механики (программа Галилея). Но в процессе конструирования выяснялось, что работа большинства сложных машин предполагает преобразование движения с изменением его характера, направления и скорости. Поэтому главная проблема состояла не столько в выделении “простых машин” в качестве компонентов сложных, сколько в разработке теоретических схем их состыковки и преобразования присущих им типов движения[29]. Потребности решения этой проблемы постепенно привели к созданию вначале отдельных теоретических моделей, а затем и фундаментальной теории машин и механизмов. Разработка последней была завершена в первой половине ХХ в. (В.А.Ассур, В.В.Добровольский, И.И Артоболевский)[30]. Характерной ее особенностью стало не только создание методов расчета существующих типов машин и механизмов, но и предсказание принципиально новых типов, еще не применявшихся в практике (подобно тому, как периодическая система элементов, созданная Д.И.Менделеевым, предсказала существование еще не открытых химических элементов, фундаментальная теория машин и механизмов предсказывала принципиально новые семейства механических устройств, до ее создания неизвестных практическому конструированию).
Возникая на стыке естествознания и производства, технические науки все яснее обозначали свои специфические черты, отличающие их от естественнонаучного знания. Они обретали свое предметное поле, формировали собственные средства и методы исследования, свою особую картину исследуемой реальности, т.е. все то, что позволяет говорить о становлении определенной научной дисциплины.
Сформировавшись, технические науки заняли прочное место в системе развивающегося научного знания, а технико-технологические инновации в производстве все в большей мере стали основываться на применении результатов научно-технических исследований. И если раньше наука, как отмечал Дж. Бернал, мало что давала промышленности, то с утверждением технических наук ситуация изменилась. Они не только стали обеспечивать потребности развивающейся техники, но и опережать ее развитие, формируя схемы возможных будущих технологий и технических систем.
Технические науки, вместе с техническим проектированием, начиная с середины XIX столетия стали выступать связующим звеном между естественнонаучными дисциплинами, с одной стороны, и производственными технологиями - с другой.
Эпоха индустриализма создала предпосылки не только для возникновения технических дисциплин в качестве особой области научного знания. В этот же исторический период начинает складываться система социально-гуманитарных наук. Как и другие науки, они имели свои истоки еще в древности, в накапливаемых знаниях о человеке, различных способах социального поведения, условиях воспроизводства тех или иных социальных общностей. Но в строгом смысле слова социальные и гуманитарные науки конституировались в XIX столетии, когда в культуре техногенной цивилизации отчетливо оформилось отношение к различным человеческим качествам и к социальным феноменам как к объектам управления и преобразования. Отношение к любым исследуемым явлениям и процессам как к объектам является одним из обязательных условий научного способа познания, в том числе и социально-гуманитарного. Поэтому его предпосылками было формирование практик и типов дискурса, в которых человек, его качества, его деятельность и социальные связи, предстают в качестве особых объектов целерационального действия. Именно в эпоху индустриализма объектно-предметное отношение к человеку и человеческим общностям становится доминирующим в техногенной культуре. В это время окончательно оформляется приоритетный статус “отношений вещной зависимости”, которые подчиняют себе и ограничивают сферу “отношений личной зависимости”, выступавших основой организации социальной жизни в традиционных обществах. Главным фактором такой смены социально-культурных приоритетов стало всеохватывающее развитие товарно-денежных отношений, когда капиталистический рынок превращал различные человеческие качества в товары, имеющие денежный эквивалент. К.Маркс одним из первых проанализировал процессы и социальные последствия опредмечивания человеческих качеств в системе отношений развитого капиталистического хозяйства. Он интерпретировал эти процессы как отчуждение, порождающее неподвластные человеку социальные силы и превращающее людей в объекты социального манипулирования. Сходные мысли позднее развивал Г.Зиммель. Отталкиваясь от идей Маркса, он разработал свою философскую концепцию денег, в которой главное внимание уделялось социально-психологическим аспектам денежных отношений, их влиянию на духовную жизнь людей. Деньги рассматривались Зиммелем не только как феномен экономической жизни общества, но как универсальный способ обмена, определяющий характер отношений и общения в самых различных областях человеческой жизнедеятельности. Зиммелем была высказана мысль о знаково-символической роли денег и их функционировании как особого культурного феномена, опосредующего отношения людей[31].
Комментируя книгу Зиммеля “Философия денег”, современный французский психолог Серж Московичи писал: “Зиммель не открыл деньги. Тем не менее он первым охватил во всей полноте философию культуры, рожденной ими, и первым сформулировал целостную теорию их власти”[32]. Эта власть проявлялась в самых различных сферах человеческого бытия. Она фиксировала дистанцию между предметом и потребляющим его человеком. Именно благодаря деньгам как посреднику, не только материальные предметы, но и духовные сущности, идеи и ценности “становятся миром столь же автономным и объективным, как и мир физический[33]. Деньги “раздробляют и стерилизуют, как нечто мешающее им, тот тип человеческих связей, в основе которого лежит смесь чувств и интересов, превращают личные отношения в безличные, при которых человек становится вещью для другого человека”[34].
И еще на одно свойство денег обращает особое внимание Зиммель: на их способность превращать индивидуально неповторимые вещи, состояния, человеческие качества в количественные, калькулируемые объекты.
После работ Маркса и Зиммеля эта идея была развита М.Вебером в рамках его концепции духа капитализма. Вебер особо подчеркивал роль идеала целерационального действия в становлении и функционировании новой цивилизации, зародившейся в эпоху Ренессанса и Реформации. Этот идеал предполагал особый тип рациональности, основанной на принципах объективности, законодательного регулирования, планирования и расчета. Новая рациональность, включалась в самые различные области человеческой жизнедеятельности, организуя экономику, право, науку, искусство, повседневную жизнь людей.
Отношение к человеку как к предмету рациональной регуляции характеризовало огромное многообразие практик, сложившихся в историческую эпоху становления и развития техногенной цивилизации. В знаменитых исследованиях М.Фуко, посвященных формированию клиники, истории тюрьмы, истории сексуальности достаточно убедительно показано, что во всех этих, на первый взгляд малосвязанных между собой сферах человеческой жизни, реализовался некоторый общий принцип “знания-власти”. Человек выступал здесь как предмет, который нужно исследовать и рационально регулировать. Фуко показывает как это отношение проявлялось в исторически возникающей организации надзора и контроля в тюрьмах, в системе обезличенного наказания от имени закона, в правилах внутреннего распорядка тюрем, больниц, учебных заведений, в самой их архитектуре и планировке внутреннего пространства. К этому же классу феноменов, выступающих в качестве своеобразных культурных символов “знания-власти” Фуко относит: практику медицинского обследования, основанную на осмотре тела, которое предстает как объект открытый для наблюдения; практику тестирования и медицинской документации; публичное обсуждение проблем сексуальности; периодические смотры-экзамены в учебных заведениях, когда власть заставляет человека - объекта публично демонстрировать себя и т.п. Такого рода практики и дискурсы формировали и закрепляли новое отношение к индивиду как к объекту наблюдаемому, описываемому и регулируемому определенными правилами. Соответствующие смыслы укоренялись в мировоззренческих универсалиях культуры, в понимании человека и его социального бытия, создавая предпосылки для возникновения социально-гуманитарных наук. Как подчеркивает Фуко, с того момента, “когда “норма” заняла место “предка”, а мера соответствия норме - место статуса, когда место индивидуальности человека известного заняла индивидуальность человека вычислимого, в этот момент и стало возможным формирование наук о человеке, ибо именно тогда была запущена новая технология власти и новая политическая анатомия тела”[35].
Возникновение социально-гуманитарных наук завершало формирование науки как системы дисциплин, охватывающий все основные сферы мироздания: природу, общество и человеческий дух. Наука обрела привычные для нас черты универсальности, специализации и междисциплинарных связей. Экспансия науки во все новые предметные области, расширяющееся технологическое и социально-регулятивное применение научных знаний, сопровождались изменением институционального статуса науки. В конце XVIII-первой половине XIX столетия возникает дисциплинарная организация науки с присущими ей особенностями трансляции знаний, их применением и способами воспроизводства субъекта научной деятельности.
Развитие естественнонаучного, технического, а вслед за ними и социально-гуманитарного знания вызвало резкий рост научной информации. Наука конца XVIII - первой половины XIX веков характеризовалась увеличением объема и разнообразия научных знаний, углубляющейся дифференциацией видов исследовательской деятельности и усложнением их взаимосвязей. Все это приводило к изменениям институциональных форм научного познания. Складывалась ситуация, при которой ученому все труднее было овладевать накопленной научной информацией, необходимой для успешных исследований. Если воспользоваться терминологией М.К. Петрова, можно сказать, что для конкретного человека достаточно отчетливо определились новые пределы “информационной вместимости”, связанные как с физиологическими, так и с ментальными ограничениями человека[36].
Век энциклопедистов постепенно уходил в прошлое. Чтобы профессионально владеть научной информацией, необходимо было ограничить сферы исследования и организовать знания в соответствии с возможностями “информационной вместимости” индивида. Все это с неизбежностью вело к специализации знания. Исследователь постепенно становился специалистом в одной, порой достаточно узкой, области знания, становясь “сторонним наблюдателем” в других сферах исследования и не претендуя на всеобъемлющее знание. Нарастающая специализация способствовала оформлению предметных областей науки, приводила к дифференциации наук, каждая из которых претендовала не на исследование мира в целом и построение некой обобщенной картины мира, а стремилась вычленить свой предмет исследования, отражающий особый фрагмент или аспект реальности.
Фрагментация мира сопровождалась своеобразным расщеплением ранее синкретической деятельности ученого-исследователя на множество различных деятельностей, каждая из которых осуществлялась особым исследователем в соответствии с принципом “информационной вместимости”. То, что раньше осуществлял отдельный мыслитель, теперь предполагает усилия коллективного субъекта познания. Отсюда возникала необходимость в поиске новых форм трансляции знания в культуре, а также новом типе воспроизводства субъекта научной деятельности.
В науке XVII столетия главной формой закрепления и трансляции знаний была книга (манускрипт, фолиант), в которой должны были излагаться основополагающие принципы и начала “природы вещей”. Она выступала базисом обучения, дополняя традиционную систему непосредственных коммуникаций “учитель-ученик”, обеспечивающих передачу знаний и навыков исследовательской работы от учителя его ученикам. Одновременно она выступала и главным средством фиксации новых результатов исследования природы.
Перед ученым XVII столетия стояла весьма сложная задача. Ему недостаточно было получить какой-либо частный результат (решить частную задачу), в его обязанности входило построение целостной картины мироздания, которая должна найти свое выражение в достаточно объемном фолианте. Ученый обязан был не просто ставить отдельные опыты, но заниматься натурфилософией, соотносить свои знания с существующей картиной мира, внося в нее соответствующие изменения. Так работали все выдающиеся мыслители этого времени - Галилей, Ньютон, Лейбниц, Декарт и др.
В то время считалось, что без обращения к фундаментальным основаниям нельзя дать полного объяснения даже частным физическим явлениям. Не случайно Декарт в письме к Мерсенну писал: “Я охотно ответил бы на Ваши вопросы, касающиеся пламени свечи и других подобных вещей, но предвижу, что никогда не смогу достаточно удовлетворительно сделать это до тех пор, пока Вы не ознакомитесь со всеми принципами моей философии”[37].
Однако по мере развития науки и расширения поля исследовательской деятельности все настоятельнее формировалась потребность в такой коммуникации ученых, которая обеспечивала бы их совместное обсуждение не только конечных, но и промежуточных результатов, не только “вечных” проблем, но и конечных и конкретных задач. Как ответ на этот социальный запрос в XVII столетии возникает особая форма закрепления и передачи знаний - переписка между учеными. Письма, которыми они обменивались, как правило, содержали не только сведения бытового характера, но включали в себя и результаты исследования, и описание того пути, которым они были получены. Тем самым письма превращались в научное сообщение, излагающее результаты отдельных исследований, их обсуждение, аргументацию и контраргументацию. Систематическая переписка велась на латыни, что позволяло сообщать свои результаты, идеи и размышления ученым, живущим в самых разных странах Европы. Так возникает особый тип сообщества, которое избрало письмо в качестве средства научного общения и объединило исследователей Европы в так называемую “Республику ученых” (La Republigue des Lettres)[38].
Переписка между учеными выступала не только как форма трансляции знания, но служила еще и основанием выработки новых средств исследования. В частности, полагается, что мысленный эксперимент получил свое закрепление в качестве осмысленного исследовательского приема именно благодаря переписке ученых, когда в процессе описания реального предмета он превращался в идеализированный объект, не совпадающий с действительным предметом[39].
Способы общения между исследователями и формы трансляции знания, возникая в XVII столетии, обеспечивали успешное развитие наук этой исторической эпохи, но по мере накопления объема научной информации потребовалось их изменение.
Уже во второй половине XVII столетия постепенно началось углубление специализации научной деятельности. В различных странах образуются сообщества исследователей-специалистов, часто поддерживаемые общественным мнением и государством. Примером может служить сообщество немецких химиков - одно из первых национальных дисциплинарно ориентированных объединений исследователей, сложившееся в Германии к концу XVIII столетия. Как пишет по этому поводу историк науки К.Хуфбауэр, “в конце XVIII столетия германские химики образовали единое сообщество... Они стали относиться друг к другу как к необходимым коллегам и основным арбитрам во всем, что касается научной истины и личных достижений”[40].Коммуникации между исследователями осуществляются уже на национальном языке (а не на латыни), и в ней сочетаются как личные коммуникации, так и обмен результатами исследований благодаря публикации отдельных сообщений в журнале “Химические анналы”[41]. Этот журнал сыграл особую роль в объединении немецких химиков, позволив интенсивно вести обсуждения проблем на его страницах, побуждая немецких химиков “рассматривать друг друга в качестве основной аудитории”, все более “ощущая свою солидарность”[42].
Примерно такой же процесс характеризовал формирование сообществ специалистов в других областях разрастающегося массива научного знания.
Ученые уже не ограничивались только перепиской между собой и публикацией книг-фолиантов как основного продукта их научной деятельности. Переписка постепенно утрачивает свой прежний статус одного из основных объединителей исследователей, а “Республика ученых” заменяется множеством национальных дисциплинарно ориентированных сообществ. Внутренняя коммуникация в этих сообществах протекает значительно интенсивнее, чем внешняя.
Место частных писем, выступающих как научное сообщение, занимает статья в научном журнале. Статья приобретает особую значимость: в отличие от книги она является меньшей по объему, в ней не требуется излагать всю систему взглядов, поэтому время появления ее в свет сокращается. Но в ней не просто фиксируется то или иное знание, она становится необходимой формой закрепления и трансляции нового научного результата, определяющего приоритет исследователя. Для того, чтобы новое знание вошло в культуру, необходимо его объективировать, закрепить в тексте, который был бы доступен самым различным исследователям. Статья успешно решает эту задачу. В этом процессе все более широкое применение находят национальные языки. Прежний язык научного общения - латынь - постепенно уступает место общедоступному национальному языку, который благодаря специальным терминам, особой системе научных понятий трансформируется (модифицируется) в язык научной коммуникации. Он дает возможность все более широкому кругу исследователей ознакомиться с полученными научными результатами и включить их в состав собственных исследований.
В отличие от письма, ориентированного на конкретного человека, зачастую лично знакомого автору, статья была адресована анонимному читателю, что приводило к необходимости более тщательного выбора аргументов для обоснования выдвигаемых положений. Статья не сразу приобрела все эти необходимые характеристики. Лишь к середине XIX столетия (период интенсивного оформления дисциплинарной организации науки) статья обрела те функции, в которых она предстает в современном научном сообществе: с одной стороны, она выступает как форма трансляции знания, предполагая преемственную связь с предшествующим знанием, поскольку ее написание предполагает указание на источники (институт ссылок), с другой, является заявкой на новое знание[43].
Появление статьи как новой формы закрепления и трансляции знаний было неразрывно связано с организацией и выпуском периодических научных журналов. Первоначально они выполняли особую функцию объединения исследователей, стремясь показать, что и кем делается, но затем наряду с обзорами стали публиковать сведения о новом знании, и это постепенно стало их главной функцией[44].
Научные журналы становились своеобразными центрами кристаллизации новых типов научных сообществ, возникающих рядом с традиционными объединениями ученых. В этот исторический период многие ранее возникшие академические учреждения дополняются новыми объединениями, со своими уставами, в которых определялись цели науки. В отличие от “Республики ученых”, где складывались неформальные отношения между учеными, такие сообщества были формально организованы, в них обязательно были предусмотрены еженедельные заседания, наличие уставов, определяющих жизнедеятельность данных учреждений и т.д.
Показательно, что в уставах академий обращалось внимание не только на необходимость теоретических разработок, но и на практическое внедрение результатов научных исследований. Это был существенный аргумент, которым ученые стремились добиться поддержки со стороны правительства[45].
В конце XVIII - первой половине XIX вв. в связи с увеличением объема научной, научно-технической информации, наряду с академическими учреждениями, возникшими еще в XV - начале XVI столетий (Лондонское королевское общество - 1660 г., Парижская академия наук - 1666 г., Берлинская академия наук - 1700 г., Петербургская академия - 1724 г. и др.) начинают складываться различного рода новые ассоциации ученых, такие как “Французская консерватория (хранилище) технических искусств и ремесел” (1795 г.), “Собрание немецких естествоиспытателей” (1822 г.), “Британская ассоциация содействия прогрессу” (1831) и др.
Исследователи, работавшие в различных областях знания, начинают объединяться в научные общества (физическое, химическое, биологическое и т.п.). Новые формы организации науки порождали и новые формы научных коммуникаций. Все чаще в качестве главной формы трансляции знания выступают научные журналы, вокруг которых ученые объединялись по интересам.
Тенденция к специализации служила объективной основой, при которой ученый уже не ставил (или не мог поставить) задачу построения целостной картины мироздания. Все чаще в его обязанности входило решение отдельных задач, “головоломок” (Т .Кун).
Ситуация, связанная с ростом объема научной информации и пределами “информационной вместимости” субъекта, не только существенно трансформировала формы трансляции знания, но и обострила проблему воспроизводства субъекта науки. Возникала необходимость в специальной подготовке ученых, когда на смену “любителям науки, вырастающим из подмастерьев, приходил новый тип ученого как тип университетского профессора”[46].
Не случайно в данный период все более широкое распространение приобретает целенаправленная подготовка научных кадров, когда повсеместно развивается сеть новых научных и учебных учреждений, в том числе и университеты. Первые университеты возникли еще в XII-XIII вв. (Парижский - 1160 г., Оксфордский - 1167 г., Кембриджский - 1209 г., Падуанский - 1222 г., Неапольский - 1224 г. и т.д.) на базе духовных школ и создавались как центры по подготовке духовенства. Длительное время в преподавании главное внимание уделялось проблеме гуманитарного знания. Однако в конце XVIII - начале XIX вв. ситуация меняется. Начинает постепенно осознаваться необходимость в расширении сети учебных предметов. Именно в этот исторический период большинство существующих и возникающих университетов включают в число преподаваемых курсов естественнонаучные и технические дисциплины. Открывались и новые центры подготовки специалистов, такие, как известная политехническая школа в Париже (1795 г.), в которой преподавали Лагранж, Лаплас, Карно, Кариолис и др.
Растущий объем научной информации привел к изменению всей системы обучения. Возникают специализации по отдельным областям научного знания, и образование начинает строиться как преподавание групп отдельных научных дисциплин, обретая ярко выраженные черты дисциплинарно-организованного обучения. В свою очередь это оказало обратное влияние на развитие науки, и в частности на ее дифференциацию и становление конкретных научных дисциплин.
Процесс преподавания требовал не просто знакомства слушателей с совокупностью отдельных сведений о достижениях в естествознании, но систематического изложения и усвоения полученных знаний.
Систематизация по содержательному компоненту и совокупности методов, с помощью которых были получены данные знания, стала рассматриваться как основа определенной научной дисциплины, отличающая одну совокупность знаний (научную дисциплину) от другой[47]. Иначе говоря, систематизация знаний в процессе преподавания выступала как один из факторов формирования конкретных научных дисциплин.
Специальная подготовка научных кадров (воспроизводство субъекта науки) оформляла особую профессию научного работника. Наука постепенно утверждалась в своих правах как прочно установленная профессия, требующая специфического образования, имеющая свою структуру и организацию[48].
Дисциплинарно организованная наука с четырьмя основными блоками научных дисциплин - математикой, естествознанием, техническими и социально- гуманитарными науками - завершила долгий путь формирования науки в собственном смысле слова. В науке сложились внутридисциплинарные и междисциплинарные механизмы порождения знаний, которые обеспечили ее систематические прорывы в новые предметные миры. В свою очередь эти прорывы открывали новые возможности для технико-технологических инноваций в самых различных сферах человеческой жизнедеятельности.
Примечания
[1] В культурологических исследованиях уже отмечалось, что существует два типа культур: ориентированные на предметно-активистский способ жизнедеятельности и на автокоммуникацию, интроспекцию и созерцание (см., например: Лотман Ю.М. О двух моделях коммуникации в системе культуры // Труды по знаковым системам. Тарту, 1973. Вып.6). Культуры техногенных обществ явно тяготеют к первому типу, а культуры традиционных обществ - ко второму.
[2] Петров М.К. Язык, знак, культура. М., 1991. С. 130.
[3] Петров М.К. Указ.соч. С.134-135.
[4] Герцен А.И. Письма об изучении природы. М.,1946. С.84.
[5] См.: Лурия А.Р. Об историческом развитии познавательных процессов. Экспериментально-психологическое исследование. М.,1974. С.106-121.
[6] См.: Тульвисте П. К интерпретации параллелей между онтогенезом и историческим развитием мышления // Труды по знаковым системам. Вып.VIII. Тарту,1977. С.96.
[7] См. подробнее: Фролов И.Т., Юдин Б.Г. Этика науки. Проблемы и дискуссии. М., 1986; Фролов И.Т. О человеке и гуманизме. М., 1989.
[8] Подтверждением тому служит огромный этнографический материал. Бушмены, например, объясняют происхождение огня вследствие трения таким образом: “Если дерево долго тереть, оно потеет, дымится и сердится - вспыхивает”. Подр. см.: Шахнович М.И. Первобытная мифология и философия. Л., 1961. С. 31-35.
[9] Тимирязев К.А. Сочинения. Т. VIII. М., 1939. С. 17.
[10] Бройль Л де. По тропам науки. М., 1962. С. 223.
[11] Факты приведены в статье “Мимикрия в науке”, опубликованной в журнале “Техника и наука” 1983. N 4. С. 31-32.
[12] Идеальный объект представляет в познании реальные предметы, но не по всем, а лишь по некоторым, жестко фиксированным признакам. Поскольку такая фиксация осуществляется посредством замещения указанных признаков знаками, постольку идеальный объект выступает как смысл соответствующего знака. Идеальный объект представляет собой упрощающий и схематизированный образ реального предмета.
[13] См.: Нейгебауэр О. Точные науки в древности. М., 1968.
[14] См.: Зайцев А.И. Культурный переворот в Древней Греции. М., 1985.
[15] См.: Кессиди Ф.Х. От мифа к логосу. М., 1972, С. 18-20.
[16] См.: Выгодский М.Я. Арифметика и алгебра в Древнем мире. М., 1967. С. 237.
[17] См.: Doods E.K. The Greeks and the irrational. Berkley. 1951; См. также: История античной диалектики. М., 1972. С. 61-63.
[18] См.: Плутарх. Сравнительные жизнеописания. Т. I. М., 1961. С. 393.
[19] См.: Ахутин А.В.Понятие "природа" в античности и в Новое время. М., 1988. С.164.
[20] См.: Лосев А.Ф. Античная философия истории. М., 1977. С. 14-18.
[21] См.: Лосев А.Ф. История античной эстетики. Т. I. (Ранняя классика). М., 1963. С. 21-22.
[22] Из отечественных исследований отметим работы: Ахутин А.В. История принципов физического эксперимента. М., 1976; Библер В.С. Мышление как творчество. М., 1978; Гайденко П.П. Эволюция понятия науки (XVII-XVIII вв.). М., 1987; Косарева Л.М. Социокультурный генезис науки Нового времени. М., 1989.
[23] См. подр.: Гуревич А.Я. Категории средневековой культуры. М., 1972. С. 26; см. также: Степин В.С. О прогностической природе философского знания // Вопр. философии. 1986. № 4. С. 39-53.
[24] См.: Розенфельд Л. Ньютон и закон тяготения // У истоков классической науки. М., 1968. С. 64-94.
[25] Маркс К., Энгельс Ф. Соч. Т.47. С.556.
[26] О становлении технических наук и их месте в культуре см.: Горохов В.Г. Методологический анализ научно-технических дисциплин. М.,1984; Иванов Б.И., Чешев В.В. Становление и развитие технических наук. Л.,1977; Чешев В.В. Техническое знание как объект методологического анализа. Томск,1981; и др.
[27] Иванов Б.И., Чешев В.В. Становление и развитие технических наук. С. 97, 108, 126.
[28] Подробнее см.: Философия техники: история и современность. М., 1997. С. 128-129
[29] Подробнее см.: Горохов В.Г. Методологический анализ научно-технических дисциплин. М., 1984. С. 46; Философия техники: история и современность. М., 1997. С. 132-139; Степин В.С., Горохов В.Г., Розов М.А. Философия науки и техники. М., 1996. С. 346-347.
[30] Горохов В.Г. Методологический анализ научно-технических дисциплин. М., 1984. С.51-53.
[31] Позднее, уже во второй половине нашего столетия эту мысль развивал Т. Парсонс, рассматривая деньги как особый код культуры, “специализированный язык”, а обращение денег как “отправление сообщений”. (Parsons T. Systems analysis; social systems // International Encyclopedia of the Social Science. N.Y., 1968).
[32] Московичи С. Машина, творящая богов. М., 1998. С. 455.
[33] Там же. С. 398.
[34] Там же. С. 423.
[35] Цит. по: Сокулер З.А. Методология гуманитарного познания и концепция “власти-знания” Мишеля Фуко // Философия науки. Вып. 4. М., 1998. С. 182.
[36] Петров М.К. Язык, знак, культура. С. 73, 92.
[37] Цит. по: Философия эпохи ранних буржуазных революций. М., 1983. С. 303.
[38] Там же. С. 296.
[39] Там же. С. 300-301.
[40] Hufbauer K. The formation of the German chemical community (1720-1795). Berkeley, 1982. P. 1.
[41] Ibid. P. 62.
[42] Ibid. P. 95.
[43] Прайс Д. Малая наука, большая наука // Наука о науке. М., 1966. С. 339-340.
[44] Там же.
[45] Там же. С. 337.
[46] Бернал Дж. Наука в истории общества. М., 1956. С. 308.
[47] Мирский Э.М. Междисциплинарные исследования и дисциплинарная организация науки. М., 1980. С. 60.
[48] Бернал Дж. Наука в истории общества. С. 9.