РефератыТехнологияХиХимико-термическая обработка

Химико-термическая обработка

Чувашский государственный университет им. И. Н. Ульянова


Кафедра материаловедения.


РЕФЕРАТ


Химико-термическая обработка:


Цементация, азотирование, цианирование.


Выполнил:


Студент гр. МС-12-98


Карпов С. Н.


Проверил


Преподаватель


Алексеева Н. А.


Чебоксары, 1999 год.


Химико-термическая обработка стали.


ЦЕМЕНТАЦИЯ.


Цементация - наиболее распространенный в машиностроении способ химико-термической обработки стальных деталей - применяется для получения высокой поверхностной твердости, износостойкостью и усталостной прочности деталей. Эти свойства достигаютсяобогащением поверхностного слоя низкоуглеродистой и нелегированной стали углеродом до концентрации эвтектоидной или заэвтектоидной и последующей термической обработкой, сообщающей поверхностному слою структуру мартенсита с тем или иным остаточным количеством остаточного аустенита и карбидов.


Глубина цементированного слоя обычно находится в пределах 0,5 - 2,0 мм (иногда для мелких деталей в пределах 0,1 - 0,3 мм, а для крупных - более 2,0 мм). Цементацию стальных деталей осуществляют в твердых, газовых и жидких карбюризаторах. За последние годы все большее развитие получает газовая цементация.


Диффузия углерода в сталь.


По количественной характеристике диффузии углерода в железо накоплены многочисленные данные.


Коэффициент диффузии углерода в a
-железо более чем на порядок выше, чем в g
-железо, имеющее значительно более плотно упакованную решетку.


Диффузия углерода в феррите обуславливает возможность протекание таких низкотемпературных процессов, как коагуляция и сфероидизация карбидов в отожженной стали, карбидообразование при отпуске закаленной стали, графитизация и т. д. Однако, цементация при температурах существования a-железа не производится ввиду ничтожной растворимости в этой фазе углерода. Цементация проводится при температурах 920-950 o
С и выше, при которых сталь находится в аустенитном состоянии.


Концентрационная зависимость коэффициента диффузии углерода в аустените выражается уравнением:


Dc
=(0,07 + 0,06C%)e -32000/RT


Или по другим данным:


Dc
=(0,04 + 0,08C%)e -31350/RT
.


Из приведенных зависимостей следует, что коэффициент диффузии углерода в аустените увеличивается с увеличением содержания углерода в стали. Это, очевидно, связано с увеличением искажения кристаллической решетки аустенита и термодинамической активностью углерода.


Легирующие элементы оказывают существенное влияние на диффузию углерода в аустените, что связано с искажением кристаллической решетки, изменением энергии межатомной связи в твердом растворе и термодинамической активности углерода.


Результаты изучения влияния легирующих элементов на коэффициент диффузии углерода в аустените при 1100о
С приведены на рисунке 1. При других температурах влияние некоторых элементов на коэффициент диффузии углерода в аустените изменяется. карбидообразующие элементы обычно замедляют, а некарбидообразующие ускоряют диффузию углерода. Однако, следует заметить, что это обобщение требует существенного уточнения. Так, например, кремний увеличивает коэффициент диффузии углерода в аустените при низких температурах (ниже 950о
С), что согласуется с представлением о кремнии как о некарбидообразующем элементе, искажающем кристаллическую решетку аустенита и вследствие этого ускоряющем диффузию.


Сталь для цементации.


Цементированные детали после соответствующей термической обработки должны иметь твердый, прочный поверхностный слой, стойкий против износа и продавливания, и достаточно прочную и вязкую сердцевину. В связи с последним требованием для цементации применяют низкоуглеродистую сталь, содержащую 0,08 - 0,25 %С.


В последние годы для высоконагруженных зубчатых колес и других ответственных, в том числе крупных, деталей начали использовать цементуемую сталь с более высоким (0,25 - 0,35%) содержанием углерода. Поэтому оказалось возможным уменьшить глубину цементованного слоя, не опасаясь его продавливания при больших нагрузках, предотвратить преждевременное разрушение поверхностного слоя из-за пластической деформации слоев металла, лежащих непосредственно под этим слоем, а также закаливать сердцевину с более низкой температуры без перегрева цементованного слоя.


Положительное влияние повышения содержания углерода в цементованной стали отмечалось и в ряде последующих работ. Показано, что увеличение содержания в некоторых сталях углерода повышает предел их выносливости лишь в случае одновременного некоторого снижения глубины цементованного слоя.


Для цементации широко используют низкоуглеродистую качественную сталь (08, 10, 15 и 20) и автоматную сталь (А12, А15, А15Г, А20), а для неответственных деталей низкоуглеродистую сталь обыкновенного или повышенного качества (Ст.2, Ст.3, Ст.4, Ст.5, М12, М16, Б09, Б16 и др.). ответственные изделия изготавливают из легированной стали.


Основное назначение легирующих элементов в цементуемой стали - повышение ее прокаливаемости и механических свойств сердцевины. Большинства легирующих элементов понижает склонность зерна стали к росту при нагреве, а некоторые из них улучшают механические свойства цементованного слоя.


Цементация в разных средах.


¨ Цементация в твердом карбюризаторе.


¨ Цементация в твердом карбюризаторе с нагревом током высокой частоты (далее т. в. ч.).


¨ Цементация в пастах.


¨ Цементация в пастах с нагревом т. в. ч.


¨ Газовая цементация.


¨ Высокотемпературная газовая цементация стали в печах.


¨ Цементация с нагревом т. в. ч.


¨ Ионная цементация.


¨ Газовая цементация кислородно-ацетиленовым пламенем.


¨ Цементация в жидкой среде.


¨ Цементация в расплавленном чугуне.


Как видно из приведенного списка видов цементации, их существует довольно много. Остановимся подробнее на газовой цементации, так как она используется довольно часто.


Газовая цементация.


Возможность цементации стали в газовой среде была показана еще в работе П. П. Аносова, выполненной в 1837 году. Однако только почти через сто лет (в 1935 г.) этот процесс начали впервые внедрять в производство в высокопроизводительных муфельных печах непрерывного действия на автозаводе им. Лихачева. При этом в качестве газового карбюризатора была использована среда, получаемая при пиролизе и крекинге керосина.


Для газовой цементации пока еще часто применяют шахтные муфельные печи и печи непрерывного действия с длинными горизонтальными муфелями из окалиностойкого сплава. Изредка применяют также печи с вращающимися ретортами. В последние годы начали получать все большее распространение безмуфельные печи непрерывного действия, нагреваемые излучающими трубками из стали Х23Н18 или Х18Н25С2.


Детали загружают в печи в поддонах (в корзинах) или в различных приспособлениях, на которых они располагаются на расстоянии 5 - 10 мм между цементуемыми поверхностями; мелкие детали загружают навалом на этажерки, помещаемые в корзины.


Для газовой цементации используют различные карбюризаторы - газы: природный (92 - 97% СН4
); природный разбавленный для городских нужд (60 - 90% СН4
); светильный (20 - 35% СН4
, 5 - 25% СО): нефтяной (50 - 60% СН4
): коксовый (20 - 25% СН4
, 4 - 10% СО); сжиженные: пропан, бутан, пропано-бутановая смесь.


Сложные углеводороды, которые входят в состав карбюризаторов или образуются при из разложении в результате ряда промежуточных реакций, распадаются в основном до метана. При крекинге углеводородов, который производится для снижения их активности или получения эндогаза, образуется также СО. Таким образом, химизм выделения атомарного углерода при газовой цементации сводится к распаду метана и окиси углерода.


СН4
= С + 2Н2
.


2СО = СО2
+ С.


Метан является более активным карбюризатором чем окись. Для науглероживания железа при 900-1000 0
С в смеси СН4
;-Н2
достаточно наличия всего лишь нескольких процентов метана, тогда как для цементации в смеси СО-СО2
необходима концентрация около 95-97% СО.


Свойства цементованной стали.


Оптимальное содержание углерода в поверхностной зоне цементованного слоя большинства сталей 0,8-0,9%C, при таком его количестве сталь обладает высокой износостойкостью. Дальнейшее увеличение содержание углерода уменьшает пределы выносливости и прочности стали при статических и динамических испытаниях. Однако наиболее износостоек цементованный слой при несколько повышенном содержании в нем углерода (по некоторым данным до 1,2% С). при этом после термической обработки цементованный слой должен иметь структуру мелкоигольчатого или скрытокристаллического мартенсита с мелкими глобулями карбидов и небольшим количеством остаточного аустенита.


Цементация повышает предел выносливости стали. Объясняется это, возникновением в слое остаточных сжимающих напряжений в связи с неодинаковым изменением объема слоя и сердцевины стали в процес

се цементации и закалки. Наибольшее повышение предела выносливости достигается при цементации на сравнительно небольшую глубину, когда цементованный слой приобретает после закалки мартенситную структуру с минимальным количеством остаточного аустенита, в результате чего в слое возникают максимальные сжимающие напряжения.


Азотирование.


Азотированием (азотизацией или нитрированием) стали называется процесс поверхностного насыщения стали азотом.


Азотированию, как и цементации, подвергают детали, работающие на износ и воспринимающие знакопеременные нагрузки. Азотированные детали имеют следующие преимущества: высокую твердость, износостойкость, теплостойкость и коррозийную стойкость. Так как азотированию подвергают в основном легированные стали определенных составов и процесс имеет большую продолжительность (30-60 ч.), применение его оказывается экономически целесообразным лишь для обработки ответственных инструментов и деталей авиамоторов, дизелей, турбин, приборов и т. п.


Насыщаемость железа молекулярным азотом при атмосферном давлении и температуре до 1500 0
С невелика, однако ее можно увеличить, создав в печи высокое давление (несколько сот атмосфер). Но этот способ насыщения железа азотом пока не представляет практического интереса ввиду его трудоемкости.


Для насыщения целесообразнее использовать атомарный азот, образующийся в момент разложения соединений, содержащих этот элемент. В качестве такого соединения обычно применяют аммиак, диссоциация которого сопровождается выделением азота в атомарном активном состоянии, который, однако, вскоре переходит в молекулярное состояние и теряет свою активность:


2
NH3
= 2N + 6H


2N N2


6H 3H2
.


Поэтому азотирование интенсивно протекает лишь в том случае, когда диссоциация аммиака происходит в непосредственной близости от азотируемой поверхности.


Стали для азотирования.


Все шире применяется азотирование аустенитных и нержавеющих теплостойких сталей.


Аустенитная сталь, как известно, имеет низкую износостойкость, но в то же время обладает рядом ценных свойств: парамагнитностью, высокой жаропрочностью, окалиностойкостью, коррозийной стойкостью и высокой ударной вязкостью при температуре ниже 0 0
С.


Азотирование - наиболее эффективный способ повышения износостойкости аустенитных нержавеющих сталей.


В ряде зарубежных работ освещены результаты исследований сталей, содержащих титан. Эти стали азотируются быстрее, чем хромомолибденоаллюминиевая, и отличаются более высокой поверхностной твердостью и красностойкостью.


Разработана сталь, содержащая 18% Ni, насыщение азотом при 425-455 0
С в течение 20 ч приводит к превращению в поверхностном слое феррита в аустенит, а последний, при охлаждении на воздухе превращается в мартенсит.


Рекомендовано подвергать азотированию (взамен цианирования) инструмент из быстрорежущих сталей Р9 и Р18.


Азотированию подвергают также детали из высокопрочного магниевого чугуна (в частности, коленчатые валы тепловоза и детали из специальных чугунов, легированных алюминием).


Свойства азотированной легированной стали.


Азотированный слой обладает высокой твердостью и износостойкостью. Износостойкость азотированной стали в 1,5-4 раза выше износостойкости закаленных высокоуглеродистых, цементованных, а также цианированных и нитроцементованных сталей.


Азотирование снижает вязкость стали, повышает ее прочность, ослабляет влияние концентраторов напряжений на снижение предела выносливости стали и существенно повышает предел выносливости, особенно тонких деталей и деталей, работающих в некоторых коррозионных средах.


Азотирование повышает сопротивление задираемости и налипанию металла под нагрузкой и особенно при повышенных температурах.


Азотированная сталь обладает теплостойкостью (красностойкостью), и ее твердость сохраняется после воздействия высоких температур. Например, сталь 38ХМЮА сохраняет свою твердость при нагреве до 500-520 0
С в течение нескольких десятков часов. Еще большую устойчивость твердости против воздействия температур (до 600 0
С) имеет аустенитная сталь. Однако при длительной эксплуатации в условиях высоких температур азотированный слой постепенно рассасывается, на поверхности образуются окислы и происходит глубокая диффузия кислорода по нитридным прожилкам, образующимся как в процессе азотирования, так и при длительном нагреве во время эксплуатации.


В результате азотирования коррозионная стойкость конструкционной стали (в среде воздуха, водопроводной воде, перегретом паре, слабых щелочных растворах) повышается и, наоборот, аустенитной хромоникелевой и нержавеющей хромистой стали некоторых марок понижается. Окалиностойкость последних сталей также понижается. Это объясняется тем, что в азотированном слое этих сталей из твердого раствора устраняется значительная часть хрома, входящего в состав образующихся нитридов. В аустенитной стали некоторых составов, например с малым содержанием никеля, это может сопровождаться даже выпадением в азотированном слое a-фазы, в результате чего поверхностный слой становится слегка магнитным.


Азотированная сталь обладает высокой эрозионной стойкостью в потоках горячей воды и водяного пара.


Цианирование.


Для цианирования на небольшую глубину используют ванны составом:


№1
NaCN 20-25%, NaCl 25-50%, Na2
CO3
25-50%, температура цианирования 840-870 0
С, продолжительность процесса - 1ч.


№2
цианплав ГИПХ 9%, NaCl 36%? CaCl2
55%.


Реакции идущие в ванне №1:


2NaCN + O2
= 2NaCNO


2NaCNO + o2 = Na2
CO3
+ 2N + CO.


реакции идущие в ванне №2:


Ca(CN)2 = CaCN2 + C


CaCN2 + O2 = CaO + CO + 2N


2Ca(CN)2 + 3O2 = 2CaO + 4CO + 4N.


После цианирования непосредственно из ванны производится закалка.


Структура нитроцементованного и цианированного слоя.


При цианировании при 850-900 0
С в цианистых ваннах, содержащих цианплав, и при глубоком цианировании при 900-950 0
С в низкопроцентных ваннах с цианистым натрием и хлористым барием сталь с поверхности насыщается углеродом примерно до той же концентрации, что и при цементации, и лишь немного азотом. При цианировании в ванне №1 сталь насыщается углеродом несколько меньше, чем при цементации, а азотом в поверхностной зоне слоя больше, чем в других ваннах.


Низкотемпературная нитроцементация и цианирование.


Низкотемпературной нитроцементации и цианированию при 560-700 0
С подвергаются стали различного назначения для повышения их поверхностной твердости, износостойкости, предела выносливости, теплостойкости и противозадирных свойств. Обычно такая обработка проводится при 560-580 0
С, т. е. при температуре, которая немного ниже минимальной температуры существования g-фазы в системе Fe - N. Поэтому в процессе обработки при такой температуре на стали образуется, по существу, азотированный слой, а углерод проникает на глубину лишь нескольких микрон, где может образовываться тонкая карбонитридная зона.


Свойства нитроцементованной и цианированной стали.


Нитроцементованная и цианированная конструкционная сталь благодаря присутствию азота более износостойка, чем цементованная.


Нитроцементация и цианирование существенно повышают предел выносливости, причем нитроцементация в большей степени, чем цианирование, а в ряде случаев в большей степени, чем цементация.


При цианировании невозможно регулировать концентрацию азота и углерода в слое. Поэтому в цианированном слое количество остаточного аустенита всегда больше, чем в нитроцементованном.


В связи с этим сжимающие напряжения создаются в цианированном слое лишь на некотором расстоянии от поверхности, что приводит к снижению предела выносливости стали. Этим и объясняется меньшая долговечность цианированных деталей по сравнению с нитроцементованными.


При цианировании необходимо производить наклеп деталей дробью, создающий на поверхности (вследствие превращения остаточного аустенита в мартенсит) высокие напряжения сжатия. Усталостные испытания зубьев цианированных зубчатых колес на изгиб с циклической нагрузкой показали, что наклеп дробью повышает предел выносливости с 43 до 72 кГ/мм2
.


Испытания на стенде показали, что после наклепа дробью стойкость (до разрушения) цианированных зубчатых колес увеличилась с 9 до 140 ч.


Сталь, подвергнутая нитроцементации и имеющая на поверхности тонкий нетравящийся карбонитридный слой (что бывает не всегда), корродирует медленнее нецианированной стали. Например, в 3%-ном растворе поваренной соли стойкость такой стали против коррозии в 2 раза выше, чем нецианированной. Коррозионная стойкость нержавеющих сталей после нитроцементации и цианирования снижается.


Использованная литература:


А. Н. Минкевич.


"Химико-термическая обработка металлов и сплавов"


Издательство "Машиностроение"


Москва, 1965 г.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Химико-термическая обработка

Слов:2246
Символов:19995
Размер:39.05 Кб.