РефератыФизикаМаМатериалы с высокой проводимостью

Материалы с высокой проводимостью

Оглавление:


1. Введение 2


2. Медь и её сплавы 2


3. Алюминий и его сплавы 6


4. Список литературы 9


1.
Введение.


Материалы с высокой проводимостью.
К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; достаточно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение при разрыве); способность легко обрабатываться, что необходимо для изготовления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость.


Основным является требование максимальной удельной проводимости материала. Однако электропроводность металла может снижаться из-за загрязняющих примесей, деформации металла, возникающей при штамповке или волочении, что приводит к разрушению отдельных зерен металла. Влияние деформаций металла на ею электропроводность устраняется при отжиге, во время которого уменьшается число дефектов в металле и увеличиваются средние размеры кристаллов металла. В связи с этим проводниковые материалы используют в основном в отожженном (мягком) состоянии.


Наиболее распространенными современными материалами высокой проводимости, применяемыми в радиоэлектронике, являются цветные металлы (медь, алюминий, цинк, олово, магний, свинец) и черные металлы (железо), которые применяются в чистом виде. Еще шире используют сплавы этих металлов, так как они обладают лучшими свойствами и более дешевы по сравнению с чистыми металлами. Однако цветные металлы и их сплавы экономически целесообразно использовать в тех случаях, когда необходимые свойства изделий нельзя получить, применяя черные металлы, чугун и сталь.


Для улучшения свойств цветные сплавы подвергаются термической обработке - отжигу, закалке и старению. Отжиг влияет на мягкость материала и уменьшает напряжения в отливках. Закалка и старение повышают механические свойства.


2. Медь и ее сплавы

Медь
. Медь является одним из самых распространенных материалов высокой проводимости. Она обладает следующими свойствами:


малым удельным электрическим сопротивлением (из всех металлов только серебро имеет удельное электрическое сопротивление на несколько процентов меньше, чем у меди);


высокой механической прочностью;


удовлетворительной коррозионной стойкостью (даже в условиях высокой влажности воздуха медь окисляется значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах);


хорошей паяемостью и свариваемостью;


хорошей обрабатываемостью (медь прокатывается в листы и ленты и протягивается в проволоку).


Свойства медной проволоки приведены ниже.


Марка ………………………………………………………………………………………………………МТ…………………………………………………ММ


Плотность, D
,
кг/м3
…………………………………………………………………8,96·103
……………………………………8,90·103


Удельное электрическое


сопротивление r, мкОм•м, не более……………………………0,0179... 0,0182 0,0175


Предел прочности при растяжении s ,


МПа, не менее……………………………………………………………………………………360...390 260...280


Относительное удлинение


при разрыве Dl
/
l
,%……………………………………………………………………0,5...2,5 18...35


Медь получают чаще всего в результате переработки сульфидных руд. Примеси снижают электропроводность меди. Наиболее вредными из них являются фосфор, железо, сера, мышьяк. Содержание фосфора примерно 0,1% увеличивает сопротивление меди, на 55%. Примеси серебра, цинка, кадмия дают увеличение сопротивления на 1…5%. Поэтому медь, предназначенная для электротехнических целей, обязательно подвергается электролитической очистке. Катодные пластины меди, полученные в результате электролиза*
, переплавляют в болванки массой 80…90 кг, которые прокатывают и протягивают, создавая изделия необходимого поперечного сечения.


Для изготовления проволоки болванки сначала подвергают горячей прокатке в катанку диаметром 6,5...7,2 мм, которую затем протягивают без подогрева, получая проволоку нужных поперечных сечений.


В качестве проводникового материала используют медь марок М1 и МО. Медь марки М1 содержит 99,9% меди, не более 0,1% примесей, в общем количестве которых кислорода должно бы не более 0,08%. Медь марки МО содержит примесей не более 0,05 в
том числе кислорода не более 0,02%. Благодаря меньшему держанию кислорода медь марки МО обладает лучшими механическими свойствами, чем медь марки М1. Еще более чистым проводниковым металлом (не более 0,01% при



*
Совокупность процессов электрохимического окисления - восстановления, проис
ходящих на погруженных в электролит электродах при прохождении электрического тока.


месей) является вакуумная медь марки МВ, выплавляемая в вакуумных индукционных печах.


При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая обладает высоким пределом прочности при растяжении, твердостью и упругостью (при изгибе проволока из твердой меди несколько пружинит).


Твердую медь применяют в тех случаях, когда необходимо обеспечить высокую механическую прочность, твердость и сопротивляемость истиранию: для контактных проводов, шин распределительных устройств, для коллекторных пластин электрических машин, изготовления волноводов, экранов, токопроводящих жил кабелей и проводов диаметром до 0,2 мм.


После отжига до нескольких сотен градусов (медь рекристаллизуется при температуре примерно 270°С) с последующим охлаждением получают мягкую (отожженную) медь (ММ). Мягкая медь имеет проводимость на 3…5% выше, чем у твердой меди.


Мягкая отожженная медь служит электротехническим стандартом, по отношению к которому удельную электрическую проводимость металлов и сплавов выражают при температуре окружающей среды 20 °С. Удельная электрическая проводимость такой меди равна 58 мкСм/м, соответственно r = 0,017241 мкОм-м при значении ТКr = 4,3·10-3
К-1
.


Мягкая медь широко применяется для изготовления фольги и токопроводящих жил круглого и прямоугольного сечения в кабелях и обмоточных проводах, где важна гибкость и пластичность (отсутствие «пружинения» при изгибе), а прочность не имеет большого значения.


Из специальных электровакуумных сортов меди изготавливают аноды мощных генераторных ламп, детали СВЧ устройств: магнетронов, клистронов, некоторых типов волноводов и др.


Медь сравнительно дорогой и дефицитный материал, поэтому она должна расходоваться экономно. Отходы меди на электротехнических предприятиях необходимо собирать, не смешивая с другими металлами и менее чистой медью, чтобы их можно было переплавить и снова использовать. В ряде случаев медь как проводниковый материал заменяют другими металлами, чаще всего алюминием.


В ряде случаев, когда от проводникового материала требуется не только высокая проводимость, но и повышенные механическая прочность, коррозионная стойкость и сопротивляемость истиранию, применяют сплавы меди с небольшим содержанием легирующих примесей.


Бронзы
.
Сплавы меди с примесями олова, алюминия, кремния, бериллия и других элементов, среди которых цинк не является основным легирующим элементом, называют бронзами
(табл. 3.3).


Таблица 3.3. Основные свойства некоторых проводниковых бронз























Параметр


Кадмиевая


Бериллиевая


Фосфористая


Удельная электропроводность по отношению к электротехническому стандарту, %


95/90


37/30


(10…15)/


(10…15)


Предел прочности при растяжении sр
, МПа


До 310/730


(700…790)/ (1620…1750)


400/970


Относительное удлинение при разрыве Dl/l, %


50/4


20/9


50/3



Примечание.


1. Состав кадмиевой бронзы 0,9%
Cd, остальное
Cu; бериллиевой - 2,25% остальное
Cu; фосфористой 0,1% Р, 7%
Sn, остальное
Cu.


2. В числителе данные для отожженной латуни, в знаменателе - для твердотянутой.


При правильно подобранном составе бронзы имеют значительно более высокие механические свойства, чем чистая медь (значения предела прочности бронз могут доходить до 800…1200 МПа 1 более). Бронзы обладают малой объемной усадкой (0,6…0,8 %) по сравнению с чугуном и сталью, у которых усадка достигает 1,5…2,5%. Поэтому наиболее сложные детали отливают из бронзы.


Бронзы маркируют буквами Бр (бронза), после которых ставя буквы, обозначающие вид и количество легирующих добавок. На пример, бериллиевая бронза Бр.В2 (2% бериллия Ве, остальное медь Cu); фосфористая бронза Бр.ОФ 6,5-0,15 (6,5% олова 8п,, 0,15 фосфора Р, остальное медь Cu).


Введение в медь кадмия дает существенное повышение механической прочности и твердости при сравнительно малом снижении удельной электрической проводимости g.


Кадмиевую бронзу
МК (0,9% кадмия Сd, остальное Cu) применяют для контактных проводов и коллекторных пластин особо ответственного назначения, а также сварочных электродов при контактных методах сварки.


Обладая еще большей, чем кадмиевая бронза, механической прочностью, твердостью и стойкостью к механическому износу (предел прочности при растяжении sр
до 1350 МПа) бериллиевая бронза не изменяет своих свойств до температуры примерно 250˚
С. Она находит применение при изготовлении ответственных токоведущих пружин для электрических приборов, щеткодержателей токоштепсельных и скользящих контактов.


Фосфористая бронза
Бр.ОФ 6,5-0,15 (6,5% олова Sn, 0,1 фосфора Р, остальное медь Cu) отличается низкой электропроводностью. Из нее изготавливают различные малоответственные токоподводящие пружины в электроприборах.


Латуни
.
Латуни представляют собой медные сплавы, в которых основным легирующим элементом является цинк (до 43%).


Основные свойства некоторых латуней приведены ниже.


Сплав и его состав……………………………………………………………………………………Л68(68%Cu, Л59-1 (59%Cu,


32 % Zn) 1%Pb,40%Zn)


Удельная проводимость по отношению


к электротехническому стандарту меди, %………………………………………46/30 30/20


Предел прочности при растяжении sр
, Мпа…………………………………380/880 350/450


Относительное удлинение при разрыве Dl/l
,%……………………………65/5 25/5


Примечание.
В числителе данные для отожженной латуни, в
знаменателе – для твердотянутой.


Латуни прочнее, пластичнее меди, обладают достаточно высоким относительным удлинением при повышенном пределе прочности на растяжение по сравнению с чистой медью, они имеют пониженную стоимость, так как входящий в них цинк значительно дешевле меди. Иногда для повышения коррозионной стойкости в состав сплава в небольшом количестве вводят алюминий, никель, марганец.


Латуни хорошо штампуются и легко подвергаются глубокой вытяжке (контакты термобиметаллического реле, экраны контуров, пластины воздушных конденсаторов переменной емкости, колпачки радиотехнических ламп).


В обозначениях марок сложных латуней после буквы Л (обозначение латуни) ставятся буквы, которые указывают на наличие легирующих элементов (кроме меди), например ЛС59-1 (59% меди Cu, 1 % свинца Pb, остальное цинк Zn).


2. Алюминий и его сплавы


Алюминий
.
Алюминий относится к так называемым легким
металлам (плотность литого алюминия около 2600, прокатанного -2700 кг/м3
).


Алюминий обладает следующими особенностями:


удельное электрическое сопротивление r алюминия (при содержании примесей не более 0,05%) в 1,63 раза больше, чем у меди, поэтому замена меди алюминием не всегда возможна, особенно в радиоэлектронике;


алюминий приблизительно в 3,5 раза легче меди;


из-за высоких значений удельной теплоемкости и теплоты плавления алюминия нагревание алюминиевого провода до расплавления требует больших затрат энергии, чем нагревание и расплавление такого же количества меди;


Даже при одинаковой стоимости алюминия и меди в слитках стоимость алюминиевой проволоки почти вдвое ниже, однако использование алюминия для изолированных проводов в большинстве случаев менее выгодно из-за затрат на изоляцию;


алюминий на воздухе активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением, которая предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов;


алюминий менее дефицитен, чем медь;


существенным недостатком алюминия как проводникового материала является низкая механическая прочность, для ее повышения алюминий подвергается механической обработке;


прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям для меди;


примеси значительно снижают проводимость алюминия.


Алюминий высокой степени чистоты (примесей не более 0,001... 0,01%) марок А999 и А995 используют для изготовления анодной и катодной фольги электролитических конденсаторов и в микроэлектронике для получения тонких пленок.


Менее чистый алюминий марок А97 и А95 (примесей не более 0,03%) используют для корпусов электролитических конденсаторов, статорных и роторных пластин воздушных конденсаторов. Из алюминиевой фольги и ленты изготавливают экраны радиочастотных коаксиальных кабелей.


Промышленность выпускает алюминиевую проволоку следующих марок: АТП - твердая повышенной прочности, АТ - твердая, АПТ - полутвердая, АМ - мягкая.


Основные свойства алюминиевой проволоки приведены ниже.


Марка алюминия …………………………………………………………………………………АТ АМ


Плотность D, кг/ м3
…………………………………………………………………2600…2700 2600…2700


Удельное электрическое сопротивление r, мкОм-м, не более…………………………………0,0295 0,0290


Предел прочности при растяжении sр
, МПа, не менее …………………………………………………………………………160…170 80


Относительное удлинение при разрыве Dl
/l
, % ……………………………………………………………………1,5…2,0 10…18


По мере снижения твердости проволоки в 1,9…2,7 раза уменьшается предел ее прочности при растяжении. Максимальное значение предела прочности sp
алюминиевого провода более чем в 2 раза ниже, чем соответствующие значения медного. Из-за низкой механической прочности правильная эксплуатация алюминиевых поводов сопряжена с выполнением следующих условий: их нельзя протаскивать по твердому грунту, скручивать медной проволокой, загрязнять поверхность.


Алюминиевые сплавы
.
Сплав алъдрей
(0,3. ..0, 5% меди Си, 0,4... 0,7% кремния 51, 0,2... 0,3% железа Ре, остальное алюминий А1) обладает следующими свойствами:


повышенной механической прочностью (в 2 раза прочнее алюминия, приближаясь к твердотянутой меди sр
= 350 МПа);


сплав сохраняет легкость чистого алюминия и близок к нему по удельному электрическому сопротивлению (r = 0,0317 мкОм-м);


более высоким пределом вибрационной прочности по сравнению с чистым алюминием.


Применяется для изготовления проводов малонагруженных линий электропередачи.


Магналий
(сплав алюминия с магнием) отличается низкой плотностью. Применяется для изготовления стрелок различных электрорадиотехнических приборов.


Силумин
относится к группе литейных сплавов с повышенным содержанием кремния, меди и марганца. Он обладает хорошей жидкотекучестью, малой усадкой, большой плотностью и повышенной прочностью по сравнению с алюминием и широко применяется для корпусов воздушных конденсаторов.


Дюраль
принадлежит к деформируемым сплавам алюминия с медью, магнием и марганцем. Медь и магний улучшают механические свойства сплава, а марганец увеличивает твердость и коррозионную стойкость, которая является недостаточной по сравнению с другими коррозионными сплавами. Для защиты от коррозии его покрывают лаками, красками или слоем алюминия.


В обозначениях дюралей после буквы Д стоят цифры, указывающие на наличие легирующих добавок, например Д1 (3,8% меди Cu, 0,4...0,8% магния Mg, марганца Mn).


Список литературы:


1. Журовлева Л.В., Электроматериаловедение: Учебник для начального профессионального образования. М.: Изд. Центр «Академия»; ИРПО, 2000. –312 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Материалы с высокой проводимостью

Слов:1993
Символов:17987
Размер:35.13 Кб.