РефератыФизикаСтСтереометрия. Тема Движение

Стереометрия. Тема Движение

Ðåôåðàò ïî ñòåðåîìåòðèè


Ó÷åíèêà 11 “” êëàññà


Àëåêñååíêî Íèêîëàÿ


Òåìà :


Äâèæåíèå.


Ñïàñèáî çà âíèìàíèå !


29.10.1995 ã.


Øêîëà # 1278, êë. 11 “”.


Äâèæåíèÿ. Ïðåîáðàçîâàíèÿ ôèãóð.


Ïðè ñîçäàíèè ðåôåðàòà áûëè èñïîëüçîâàíû ñëåäóþùèå êíèãè:


1. “Ãåîìåòðèÿ äëÿ 9-10 êëàññîâ”. À.Ä.Àëåêñàíäðîâ, À.Ë.Âåðíåð, Â.È.Ðûæèê.


2. “Ãåîìåòðèÿ”. Ë.Ñ.Àòàíàñÿí, Â.Ô.Áóòóçîâ, Ñ.Á.Êàäîìöåâ è äð.


3. “Ìàòåìàòèêà”. Â.À.Ãóñåâ, À.Ã.Ìîðäêîâè÷.


Âñå ðèñóíêè íàõîäÿòñÿ íà îòäåëüíîì ëèñòå, ïðèëîæåííîì ê ðåôåðàòó. Ðåøåíèÿ çàäà÷ òàêæå íà îòäåëüíîì ëèñòå. Äîêàçàòåëüñòâà îñíîâíûõ òåîðåì, ñâÿçàííûõ ñ äâèæåíèåì, ÿ òàêæå ïðèâîæó íà îòäåëüíûõ ëèñòêàõ. Â ðåôåðàòå - òîëüêî îïðåäåëåíèÿ è êëàññèôèêàöèÿ.


Äâèæåíèåì â ãåîìåòðèè íàçûâàåòñÿ îòîáðàæåíèå, ñîõðàíÿþùåå ðàññòîÿíèå. Ñëåäóåò ðàçúÿñíèòü, ÷òî ïîäðàçóìåâàåòñÿ ïîä ñëîâîì “îòîáðàæåíèå”.


1. Îòîáðàæåíèÿ, îáðàçû, êîìïîçèöèè îòîáðàæåíèé.


Îòîáðàæåíèåì ìíîæåñòâà M â ìíîæåñòâî N
íàçûâàåòñÿ ñîîòâåòñòâèå êàæäîìó ýëåìåíòó èç M åäèíñòâåííîãî ýëåìåíòà èç N.


Ìû áóäåì ðàññìàòðèâàòü òîëüêî îòîáðàæåíèå ôèãóð â ïðîñòðàíñòâå. Íèêàêèå äðóãèå îòîáðàæåíèÿ íå ðàññìàòðèâàþòñÿ, è ïîòîìó ñëîâî “îòîáðàæåíèå” îçíà÷àåò ñîîòâåòñòâèå òî÷êàì òî÷åê.


Î òî÷êå X’, ñîîòâåòñòâóþùåé ïðè äàííîì îòîáðàæåíèè f òî÷êå X, ãîâîðÿò, ÷òî îíà ÿâëÿåòñÿ îáðàçîì òî÷êè
X, è ïèøóò X’ = f(X). Ìíîæåñòâî òî÷åê X’, ñîîòâåòñòâóþùèõ òî÷êàì ôèãóðû M, ïðè îòîáðàæåíèè f íàçûâàåòñÿ îáðàçîì ôèãóðû
M è îáîçíà÷àåòñÿ M’ = f(M).


Åñëè îáðàçîì M ÿâëÿåòñÿ âñÿ ôèãóðà N, ò.å. f(M) = N, òî ãîâîðÿò îá îòîáðàæåíèè ôèãóðû
M íà ôèãóðó
N.


Îòîáðàæåíèå íàçûâàåòñÿ âçàèìíî îäíîçíà÷íûì
, åñëè ïðè ýòîì îòîáðàæåíèè îáðàçû êàæäûõ äâóõ ðàçëè÷íûõ òî÷åê ðàçëè÷íû.


Ïóñòü ó íàñ åñòü âçàèìíî îäíîçíà÷íîå îòîáðàæåíèå f ìíîæåñòâà M íà N. Òîãäà êàæäàÿ òî÷êà X’ ìíîæåñòâà N ÿâëÿåòñÿ îáðàçîì òîëüêî îäíîé (åäèíñòâåííîé) òî÷êè X ìíîæåñòâà M. Ïîýòîìó êàæäîé òî÷êå X’ Ì N ìîæíî ïîñòàâèòü â ñîîòâåòñòâèå òó åäèíñòâåííóþ òî÷êó X Ì M, îáðàçîì êîòîðîé ïðè îòîáðàæåíèè f ÿâëÿåòñÿ òî÷êà X’. Òåì ñàìûì ìû îïðåäåëèì îòîáðàæåíèå ìíîæåñòâà N íà ìíîæåñòâî M, îíî íàçûâàåòñÿ îáðàòíûì
äëÿ îòîáðàæåíèÿ f è îáîçíà÷àåòñÿ f. Åñëè îòîáðàæåíèå f èìååò îáðàòíîå, òî îíî íàçûâàåòñÿ îáðàòèìûì.


Íåïîäâèæíîé òî÷êîé îòîáðàæåíèÿ j íàçûâàåòñÿ òàêàÿ òî÷êà A, ÷òî


j(A) = A.


Èç äàííûõ îïðåäåëåíèé íåïîñðåäñòâåííî ñëåäóåò, ÷òî åñëè îòîáðàæåíèå f îáðàòèìî, òî îáðàòíîå åìó îòîáðàæåíèå f òàêæå îáðàòèìî è (f ) = f. Ïîýòîìó îòîáðàæåíèÿ f è f íàçûâàþòñÿ òàêæå âçàèìíî îáðàòíûìè.


Ïóñòü çàäàíû äâà îòîáðàæåíèÿ: îòîáðàæåíèå f ìíîæåñòâà M â ìíîæåñòâî N è îòîáðàæåíèå g ìíîæåñòâà N â ìíîæåñòâî P. Åñëè ïðè îòîáðàæåíèè f òî÷êà


X Ì N ïåðåøëà â òî÷êó X’ = f(X) Ì N, à çàòåì X’ ïðè îòîáðàæåíèè g ïåðåøëà â òî÷êó X’’ Ì P, òî òåì ñàìûì â ðåçóëüòàòå X ïåðåøëà â X’’ (ðèñ.1).


 ðåçóëüòàòå ïîëó÷àåòñÿ íåêîòîðîå îòîáðàæåíèå h ìíîæåñòâà M â ìíîæåñòâî P. Îòîáðàæåíèå h íàçûâàåòñÿ êîìïîçèöèåé îòîáðàæåíèÿ
f ñ ïîñëåäóþùèì îòîáðàæåíèåì
g.


Åñëè äàííîå îòîáðàæåíèå f îáðàòèìî, òî, ïðèìåíÿÿ åãî, à ïîòîì îáðàòíîå åìó îòîáðàæåíèå f , âåðíåì, î÷åâèäíî, âñå òî÷êè â èñõîäíîå ïîëîæåíèå, ò.å. ïîëó÷èì òîæäåñòâåííîå îòîáðàæåíèå
, òàêîå, êîòîðîå êàæäîé òî÷êå ñîïîñòàâëÿåò ýòó æå òî÷êó.


2. Îïðåäåëåíèå äâèæåíèÿ.



Äâèæåíèåì (èëè ïåðåìåùåíèåì) ôèãóðû íàçûâàåòñÿ òàêîå åå îòîáðàæåíèå, ïðè êîòîðîì êàæäûì äâóì åå òî÷êàì A è B ñîîòâåòñòâóþò òàêèå òî÷êè A’ è B’, ÷òî |A’B’| = |AB|.
(ðèñ.2).


Òîæäåñòâåííîå îòîáðàæåíèå ÿâëÿåòñÿ îäíèì èç ÷àñòíûõ ñëó÷àåâ äâèæåíèÿ
.


Ôèãóðà F’ íàçûâàåòñÿ ðàâíîé ôèãóðå F, åñëè îíà ìîæåò áûòü ïîëó÷åíà èç F äâèæåíèåì.



3. Îáùèå ñâîéñòâà äâèæåíèÿ.


Ñâîéñòâî 1
(ñîõðàíåíèå ïðÿìîëèíåéíîñòè
).


Ïðè äâèæåíèè òðè òî÷êè, ëåæàùèå íà ïðÿìîé, ïåðåõîäÿò â òðè òî÷êè, ëåæàùèå íà ïðÿìîé, ïðè÷åì òî÷êà, ëåæàùàÿ ìåæäó äâóìÿ äðóãèìè, ïåðåõîäèò â òî÷êó, ëåæàùóþ ìåæäó îáðàçàìè äâóõ äðóãèõ òî÷åê

(ñîõðàíÿåòñÿ ïîðÿäîê èõ âçàèìíîãî ðàñïîëîæåíèÿ).


Äîêàçàòåëüñòâî.
Èç ïëàíèìåòðèè èçâåñòíî, ÷òî òðè òî÷êè A, B, C ëåæàò íà ïðÿìîé òîãäà è òîëüêî òîãäà, êîãäà îäíà èç íèõ, íàïðèìåð òî÷êà B, ëåæèò ìåæäó äâóìÿ äðóãèìè - òî÷êàìè A è C, ò.å. êîãäà âûïîëíÿåòñÿ ðàâåíñòâî


|AB| + |BC| = |AC|.


Ïðè äâèæåíèè ðàññòîÿíèÿ ñîõðàíÿþòñÿ, à çíà÷èò, ñîîòâåòñòâóþùåå ðàâåíñòâî âûïîëíÿåòñÿ è äëÿ òî÷åê A’, B’, C’:


|A’B’| + |B’C’| = |A’C’|.


Òàêèì îáðàçîì, òî÷êè A’, B’, C’ ëåæàò íà îäíîé ïðÿìîé è èìåííî òî÷êà B’ ëåæèò ìåæäó A’ è C’.


Èç äàííîãî ñâîéñòâà ñëåäóþò òàêæå åùå íåñêîëüêî ñâîéñòâ:


Ñâîéñòâî 2.
Îáðàçîì îòðåçêà ïðè äâèæåíèè ÿâëÿåòñÿ îòðåçîê.


Ñâîéñòâî 3.
Îáðàçîì ïðÿìîé ïðè äâèæåíèè ÿâëÿåòñÿ ïðÿìàÿ, à îáðàçîì ëó÷à - ëó÷.


Ñâîéñòâî 4.
Ïðè äâèæåíèè îáðàçîì òðåóãîëüíèêà ÿâëÿåòñÿ ðàâíûé åìó òðåóãîëüíèê, îáðàçîì ïëîñêîñòè - ïëîñêîñòü, ïðè÷åì ïàðàëëåëüíûå ïëîñêîñòè îòîáðàæàþòñÿ íà ïàðàëëåëüíûå ïëîñêîñòè, îáðàçîì ïîëóïëîñêîñòè - ïîëóïëîñêîñòü.


Ñâîéñòâî 5.
Ïðè äâèæåíèè îáðàçîì òåòðàýäðà ÿâëÿåòñÿ òåòðàýäð, îáðàçîì ïðîñòðàíñòâà - âñå ïðîñòðàíñòâî, îáðàçîì ïîëóïðîñòðàíñòâà - ïîëóïðîñòðàíñòâî

.


Ñâîéñòâî 6.
Ïðè äâèæåíèè óãëû ñîõðàíÿþòñÿ, ò.å. âñÿêèé óãîë îòîáðàæàåòñÿ íà óãîë òîãî æå âèäà è òîé æå âåëè÷èíû. Àíàëîãè÷íîå âåðíî è äëÿ äâóãðàííûõ óãëîâ.


Ñíà÷àëà ÿ ðàññìîòðþ âñå îñíîâíûå âèäû äâèæåíèé, à çàòåì ñâåäó èõ â åäèíóþ ñèñòåìó.


4. Ïàðàëëåëüíûé ïåðåíîñ.


Îïðåäåëåíèå.
Ïàðàëëåëüíûì ïåðåíîñîì, èëè, êîðî÷å, ïåðåíîñîì ôèãóðû, íàçûâàåòñÿ òàêîå åå îòîáðàæåíèå, ïðè êîòîðîì âñå åå òî÷êè ñìåùàþòñÿ â îäíîì è òîì æå íàïðàâëåíèè íà ðàâíûå ðàññòîÿíèÿ
(ðèñ.3), ò.å. ïðè ïåðåíîñå êàæäûì äâóì òî÷êàì X è Y ôèãóðû ñîïîñòàâëÿþòñÿ òàêèå òî÷êè X’ è Y’, ÷òî


XX’ = YY’.


Îñíîâíîå ñâîéñòâî ïåðåíîñà: Ïàðàëëåëüíûé ïåðåíîñ ñîõðàíÿåò ðàññòîÿíèÿ è íàïðàâëåíèÿ

, ò.å.


X’Y’ = XY.


Îòñþäà âûõîäèò, ÷òî ïàðàëëåëüíûé ïåðåíîñ åñòü äâèæåíèå, ñîõðàíÿþùåå íàïðàâëåíèå

è íàîáîðîò, äâèæåíèå, ñîõðàíÿþùåå íàïðàâëåíèå, åñòü ïàðàëëåëüíûé ïåðåíîñ.


Èç ýòèõ óòâåðæäåíèé òàêæå âûòåêàåò, ÷òî êîìïîçèöèÿ ïàðàëëåëüíûõ ïåðåíîñîâ åñòü ïàðàëëåëüíûé ïåðåíîñ.


Ïàðàëëåëüíûé ïåðåíîñ ôèãóðû çàäàåòñÿ óêàçàíèåì îäíîé ïàðû ñîîòâåòñòâóþùèõ òî÷åê.

Íàïðèìåð, åñëè óêàçàíî, â êàêóþ òî÷êó A’ ïåðåõîäèò


äàííàÿ òî÷êà A, òî ýòîò ïåðåíîñ çàäàí âåêòîðîì AA’
, è ýòî îçíà÷àåò, ÷òî âñå òî÷êè


ñìåùàþòñÿ íà îäèí è òîò æå âåêòîð, ò.å. XX’ = AA’ äëÿ âñåõ òî÷åê Õ.


5. Öåíòðàëüíàÿ ñèììåòðèÿ.


Îïðåäåëåíèå 1.
Òî÷êè A è A’ íàçûâàþòñÿ ñèììåòðè÷íûìè îòíîñèòåëüíî òî÷êè Î, åñëè òî÷êè A, A’, O ëåæàò íà îäíîé ïðÿìîé è OX = OX’. Òî÷êà Î ñ÷èòàåòñÿ ñèììåòðè÷íîé ñàìà ñåáå (îòíîñèòåëüíî Î).


Äâå ôèãóðû íàçûâàþòñÿ ñèììåòðè÷íûìè îòíîñèòåëüíî òî÷êè Î, åñëè äëÿ êàæäîé òî÷êè îäíîé ôèãóðû åñòü ñèììåòðè÷íàÿ åé îòíîñèòåëüíî òî÷êè Î òî÷êà â äðóãîé ôèãóðå è îáðàòíî.


Êàê ÷àñòíûé ñëó÷àé, ôèãóðà ìîæåò áûòü ñèììåòðè÷íà ñàìà ñåáå îòíîñèòåëüíî íåêîåé òî÷êè Î. Òîãäà ýòà òî÷êà Î íàçûâàåòñÿ öåíòðîì ñèììåòðèè ôèãóðû,
à ôèãóðà - öåíòðàëüíî-ñèììåòðè÷íîé.


Îïðåäåëåíèå 2.
Öåíòðàëüíîé ñèììåòðèåé ôèãóðû îòíîñèòåëüíî Î íàçûâàåòñÿ òàêîå îòîáðàæåíèå ýòîé ôèãóðû, êîòîðîå ñîïîñòàâëÿåò êàæäîé åå òî÷êå òî÷êó, ñèììåòðè÷íóþ îòíîñèòåëüíî Î.


Îñíîâíîå ñâîéñòâî :
Öåíòðàëüíàÿ ñèììåòðèÿ ñîõðàíÿåò ðàññòîÿíèå, à íàïðàâëåíèå èçìåíÿåò íà ïðîòèâîïîëîæíîå. Èíà÷å ãîâîðÿ, ëþáûì äâóì òî÷êàì X è Y ôèãóðû F ñîîòâåòñòâóþò òàêèå òî÷êè X’ è Y’, ÷òî


X’Y’ = -XY.


Äîêàçàòåëüñòâî.
Ïóñòü ïðè öåíòðàëüíîé ñèììåòðèè ñ öåíòðîì â òî÷êå Î òî÷êè X è Y îòîáðàçèëèñü íà X’ è Y’. Òîãäà, êàê ÿñíî èç îïðåäåëåíèÿ öåíòðàëüíîé ñèììåòðèè (ðèñ.4),


OX’ = -OX, OY’ = -OY.


Âìåñòå ñ òåì


XY = OY - OX, X’Y’ = OY’ - OX’.


Ïîýòîìó èìååì:


X’Y’ = -OY + OX = -XY.


Îòñþäà âûõîäèò, ÷òî öåíòðàëüíàÿ ñèììåòðèÿ ÿâëÿåòñÿ äâèæåíèåì, èçìåíÿþùèì íàïðàâëåíèå íà ïðîòèâîïîëîæíîå

è íàîáîðîò, äâèæåíèå, èçìåíÿþùåå íàïðàâëåíèå íà ïðîòèâîïîëîæíîå, åñòü öåíòðàëüíàÿ ñèììåòðèÿ.


Öåíòðàëüíàÿ ñèììåòðèÿ ôèãóðû çàäàåòñÿ óêàçàíèåì îäíîé ïàðû ñóùåñòâóþùèõ òî÷åê:
åñëè òî÷êà À îòîáðàæàåòñÿ íà À’, òî öåíòð ñèììåòðèè - ýòî ñåðåäèíà îòðåçêà AA’.


6. Çåðêàëüíàÿ ñèììåòðèÿ (îòðàæåíèå â ïëîñêîñòè).



Îïðåäåëåíèå 1.
Òî÷êè A è A’ íàçûâàþòñÿ ñèììåòðè÷íûìè îòíîñèòåëüíî ïëîñêîñòè
a
, åñëè îòðåçîê AA’ ïåðïåíäèêóëÿðåí ýòîé ïëîñêîñòè è äåëèòñÿ åþ ïîïîëàì. Ëþáàÿ òî÷êà ïëîñêîñòè
a
ñ÷èòàåòñÿ ñèììåòðè÷íîé ñàìîé ñåáå îòíîñèòåëüíî ýòîé ïëîñêîñòè
(ðèñ.5).


Äâå ôèãóðû F è F’ íàçûâàþòñÿ ñèììåòðè÷íûìè îòíîñèòåëüíî äàííîé ïëîñêîñòè,
åñëè îíè ñîñòîÿò èç òî÷åê, ïîï&a

grave;ðíî ñèììåòðè÷íûõ îòíîñèòåëüíî ýòîé ïëîñêîñòè, ò.å. åñëè äëÿ êàæäîé òî÷êè îäíîé ôèãóðû åñòü ñèììåòðè÷íàÿ åé òî÷êà â äðóãîé ôèãóðå.


Åñëè ïðåîáðàçîâàíèå ñèììåòðèè îòíîñèòåëüíî ïëîñêîñòè ïåðåâîäèò ôèãóðó â ñåáÿ, òî ôèãóðà íàçûâàåòñÿ ñèììåòðè÷íîé îòíîñèòåëüíî ïëîñêîñòè
a
,
à ïëîñêîñòü a - ïëîñêîñòüþ ñèììåòðèè.


Îïðåäåëåíèå 2.
Îòîáðàæåíèå ôèãóðû, ïðè êîòîðîì êàæäîé åå òî÷êå ñîîòâåòñòâóåò òî÷êà, ñèììåòðè÷íàÿ åé îòíîñèòåëüíî äàííîé ïëîñêîñòè, íàçûâàåòñÿ îòðàæåíèåì ôèãóðû â ýòîé ïëîñêîñòè (èëè çåðêàëüíîé ñèììåòðèåé).


Òåîðåìà 1.
Îòðàæåíèå â ïëîñêîñòè ñîõðàíÿåò ðàññòîÿíèÿ è, ñòàëî áûòü, ÿâëÿåòñÿ äâèæåíèåì.


Ñì. Äîêàçàòåëüñòâî 1.


Òåîðåìà 2.
Äâèæåíèå, ïðè êîòîðîì âñå òî÷êè íåêîòîðîé ïëîñêîñòè íåïîäâèæíû, ÿâëÿåòñÿ îòðàæåíèåì â ýòîé ïëîñêîñòè èëè òîæäåñòâåííûì îòîáðàæåíèåì.


Çåðêàëüíàÿ ñèììåòðèÿ çàäàåòñÿ óêàçàíèåì îäíîé ïàðû ñîîòâåòñòâóþùèõ òî÷åê, íå ëåæàùèõ â ïëîñêîñòè ñèììåòðèè
: ïëîñêîñòü ñèììåòðèè ïðîõîäèò ÷åðåç ñåðåäèíó îòðåçêà, ñîåäèíÿþùåãî ýòè òî÷êè, ïåðïåíäèêóëÿðíî ê íåìó.


7. Ïîâîðîò âîêðóã ïðÿìîé.


Äëÿ áîëåå ÷åòêîãî ïðåäñòàâëåíèÿ î ïîâîðîòå âîêðóã ïðÿìîé ñëåäóåò âñïîìíèòü ïîâîðîò íà ïëîñêîñòè îêîëî äàííîé òî÷êè. Ïîâîðîòîì íà ïëîñêîñòè îêîëî äàííîé òî÷êè
íàçûâàåòñÿ òàêîå äâèæåíèå, ïðè êîòîðîì êàæäûé ëó÷, èñõîäÿùèé èç äàííîé òî÷êè, ïîâîðà÷èâàåòñÿ íà îäèí è òîò æå óãîë â îäíîì è òîì æå íàïðàâëåíèè (ðèñ.6). Ïåðåéäåì òåïåðü ê ïîâîðîòó â ïðîñòðàíñòâå.


Îïðåäåëåíèå.
Ïîâîðîòîì ôèãóðû âîêðóã ïðÿìîé a
íà óãîë

j
íàçûâàåòñÿ òàêîå îòîáðàæåíèå, ïðè êîòîðîì â êàæäîé ïëîñêîñòè, ïåðïåíäèêóëÿðíîé ïðÿìîé a
, ïðîèñõîäèò ïîâîðîò âîêðóã òî÷êè åå ïåðåñå÷åíèÿ ñ ïðÿìîé a
íà îäèí è òîò æå óãîë

j
â îäíîì è òîì æå íàïðàâëåíèè
(ðèñ. 7). Ïðÿìàÿ a
íàçûâàåòñÿ îñüþ ïîâîðîòà, à óãîë

j
- óãëîì ïîâîðîòà.


Îòñþäà âèäèì, ÷òî ïîâîðîò âñåãäà çàäàåòñÿ îñüþ, óãëîì è íàïðàâëåíèåì ïîâîðîòà.


Òåîðåìà 1.
Ïîâîðîò âîêðóã ïðÿìîé ñîõðàíÿåò ðàññòîÿíèÿ, ò.å. ÿâëÿåòñÿ äâèæåíèåì.


Ñì. Äîêàçàòåëüñòâî 2.


Òåîðåìà 2.
Åñëè äâèæåíèå ïðîñòðàíñòâà èìååò ìíîæåñòâîì ñâîèõ íåïîäâèæíûõ òî÷åê ïðÿìóþ, òî îíî ÿâëÿåòñÿ ïîâîðîòîì âîêðóã ýòîé ïðÿìîé.


7.1. Ôèãóðû âðàùåíèÿ.


Ôèãóðà íàçûâàåòñÿ ôèãóðîé âðàùåíèÿ, åñëè ñóùåñòâóåò òàêàÿ ïðÿìàÿ, ëþáîé ïîâîðîò âîêðóã êîòîðîé ñîâìåùàåò ôèãóðó ñàìó ñ ñîáîé, äðóãèìè ñëîâàìè, îòîáðàæàåò åå ñàìó íà ñåáÿ.
Òàêàÿ ïðÿìàÿ íàçûâàåòñÿ îñüþ âðàùåíèÿ ôèãóðû.
Ïðîñòåéøèå òåëà âðàùåíèÿ : øàð, ïðÿìîé êðóãîâîé öèëèíäð, ïðÿìîé êðóãîâîé êîíóñ.


7.2. Îñåâàÿ ñèììåòðèÿ.



×àñòíûì ñëó÷àåì ïîâîðîòà âîêðóã ïðÿìîé ÿâëÿåòñÿ ïîâîðîò íà 180°. Ïðè ïîâîðîòå âîêðóã ïðÿìîé a
íà 180° êàæäàÿ òî÷êà A ïåðåõîäèò â òàêóþ òî÷êó A’, ÷òî ïðÿìàÿ a
ïåðïåíäèêóëÿðíà îòðåçêó AA’ è ïåðåñåêàåò åãî â ñåðåäèíå. Ïðî òàêèå òî÷êè A è A’ ãîâîðÿò, ÷òî îíè ñèììåòðè÷íû îòíîñèòåëüíî îñè a.
Ïîýòîìó ïîâîðîò íà 180
°
âîêðóã ïðÿìîé ÿâëÿåòñÿ íàçûâàåòñÿ îñåâîé ñèììåòðèåé â ïðîñòðàíñòâå
.


8.1. Íåïîäâèæíûå òî÷êè äâèæåíèé ïðîñòðàíñòâà.


Âàæíîé õàðàêòåðèñòèêîé äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ ìíîæåñòâî åãî íåïîäâèæíûõ òî÷åê. Çäåñü ìîãóò ïðåäñòàâèòüñÿ ëèøü ñëåäóþùèå ïÿòü ñëó÷àåâ:


1. Ó äâèæåíèÿ íåïîäâèæíûõ òî÷åê íåò

(íåòîæäåñòâåííûé ïàðàëëåëüíûé ïåðåíîñ).


2. Äâèæåíèå èìååò ëèøü îäíó íåïîäâèæíóþ òî÷êó

(öåíòðàëüíàÿ ñèììåòðèÿ).


3. Ìíîæåñòâî íåïîäâèæíûõ òî÷åê äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ ïðÿìîé

(ïîâîðîò âîêðóã ïðÿìîé).


4. Ìíîæåñòâî íåïîäâèæíûõ òî÷åê äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ ïëîñêîñòüþ

(çåðêàëüíàÿ ñèììåòðèÿ).


5. Ìíîæåñòâî íåïîäâèæíûõ òî÷åê äâèæåíèÿ ïðîñòðàíñòâà ÿâëÿåòñÿ âñåì ïðîñòðàíñòâîì

(òîæäåñòâåííîå äâèæåíèå).


Äàííàÿ êëàññèôèêàöèÿ î÷åíü óäîáíà, òàê êàê ïðåäñòàâëÿåò âñå âèäû äâèæåíèÿ êàê åäèíóþ ñèñòåìó.


8.2. Îñíîâíûå òåîðåìû î çàäàíèè äâèæåíèé ïðîñòðàíñòâà.


Òåîðåìà 1.
Ïóñòü â ïðîñòðàíñòâå äàíû äâà ðàâíûõ òðåóãîëüíèêà ABC è A’B’C’. Òîãäà ñóùåñòâóþò äâà è òîëüêî äâà òàêèõ äâèæåíèÿ ïðîñòðàíñòâà, êîòîðûå ïåðåâîäÿò A â A’, B â B’, C â C’. Êàæäîå èç ýòèõ äâèæåíèé ïîëó÷àåòñÿ èç äðóãîãî ñ ïîìîùüþ êîìïîçèöèè åãî ñ îòðàæåíèåì â ïëîñêîñòè A’B’C’.


Òåîðåìà 2.
Ïóñòü â ïðîñòðàíñòâå çàäàíû äâà ðàâíûõ òåòðàýäðà ABCD è A’B’C’D’. Òîãäà ñóùåñòâóåò åäèíñòâåííîå äâèæåíèå ïðîñòðàíñòâà

j

, òàêîå, ÷òî

j

(A) = A’,

j

(B) = B’,

j

(C) = C’,

j

(D) = D’.




9. Äâà ðîäà äâèæåíèé.


Ñëåäóåò òàêæå çíàòü, ÷òî âñå äâèæåíèÿ ïîäðàçäåëÿþòñÿ íà äâà ðîäà â çàâèñèìîñòè îò òîãî, íåïðåðûâíû îíè èëè íåò. Äëÿ ëó÷øåãî ïîíèìàíèÿ ñóùíîñòè ýòîãî ðàçäåëåíèÿ ââåäó ïîíÿòèå áàçèñà è åãî îðèåíòàöèè.


9.1. Áàçèñû è èõ îðèåíòàöèÿ.




Áàçèñîì â ïðîñòðàíñòâå

íàçûâàåòñÿ ëþáàÿ òðîéêà âåêòîðîâ, íåïàðàëëåëüíûõ îäíîâðåìåííî íèêàêîé ïëîñêîñòè.


Òðîéêà áàçèñíûõ âåêòîðîâ íàçûâàåòñÿ ïðàâîé (ëåâîé),
åñëè ýòè âåêòîðû, îòëîæåííûå îò îäíîé òî÷êè, ðàñïîëàãàþòñÿ òàê, êàê ðàñïîëîæåíû ñîîòâåòñòâåííî áîëüøîé, óêàçàòåëüíûé è ñðåäíèé ïàëüöû ïðàâîé (ëåâîé) ðóêè.


Åñëè èìåþòñÿ äâå ïðàâûå (ëåâûå) òðîéêè âåêòîðîâ, ãîâîðÿò, ÷òî ýòè òðîéêè îðèåíòèðîâàíû îäèíàêîâî.
Åñëè îäíà òðîéêà ÿâëÿåòñÿ ïðàâîé, à âòîðàÿ - ëåâîé, òî îíè îðèåíòèðîâàíû ïðîòèâîïîëîæíî.


9.2. Äâà ðîäà äâèæåíèÿ.


Äâèæåíèÿ ïåðâîãî ðîäà - òàêèå äâèæåíèÿ, êîòîðûå ñîõðàíÿþò îðèåíòàöèþ áàçèñîâ íåêîåé ôèãóðû.
Îíè ìîãóò áûòü ðåàëèçîâàíû íåïðåðûâíûìè äâèæåíèÿìè.


Äâèæåíèÿ âòîðîãî ðîäà - òàêèå äâèæåíèÿ, êîòîðûå èçìåíÿþò îðèåíòàöèþ áàçèñîâ íà ïðîòèâîïîëîæíóþ.
Îíè íå ìîãóò áûòü ðåàëèçîâàíû íåïðåðûâíûìè äâèæåíèÿìè.


Ïðèìåðàìè äâèæåíèé ïåðâîãî ðîäà ÿâëÿþòñÿ ïåðåíîñ è ïîâîðîò âîêðóã ïðÿìîé, à äâèæåíèÿìè âòîðîãî ðîäà - öåíòðàëüíàÿ è çåðêàëüíàÿ ñèììåòðèè.


Êîìïîçèöèåé ëþáîãî ÷èñëà äâèæåíèé ïåðâîãî ðîäà ÿâëÿåòñÿ äâèæåíèå ïåðâîãî ðîäà.


Êîìïîçèöèÿ ÷åòíîãî ÷èñëà äâèæåíèé âòîðîãî ðîäà åñòü äâèæåíèå 1 ðîäà, à êîìïîçèöèÿ íå÷åòíîãî ÷èñëà äâèæåíèé 2 ðîäà - äâèæåíèå 2 ðîäà.


10. Íåêîòîðûå ðàñïðîñòðàíåííûå êîìïîçèöèè.


Ðàññìîòðèì òåïåðü íåêîòîðûå êîìáèíàöèè äâèæåíèé, èñïîëüçóåìûå äîñòàòî÷íî ÷àñòî, íî íå óäåëÿÿ èì îñîáîãî âíèìàíèÿ.


10.1. Êîìïîçèöèè îòðàæåíèé â ïëîñêîñòè.


Òåîðåìà 1.
Äâèæåíèå ïðîñòðàíñòâà ïåðâîãî ðîäà ïðåäñòàâèìî â âèäå êîìïîçèöèè äâóõ èëè ÷åòûðåõ îòðàæåíèé â ïëîñêîñòè.


Äâèæåíèå ïðîñòðàíñòâà âòîðîãî âèäà åñòü ëèáî îòðàæåíèå â ïëîñêîñòè, ëèáî ïðåäñòàâèìî â âèäå êîìïîçèöèè òðåõ îòðàæåíèé â ïëîñêîñòè.


Îòñþäà ìû ìîæåì îáúÿñíèòü óæå èçâåñòíûå íàì äâèæåíèÿ òàê:


· Êîìïîçèöèÿ îòðàæåíèÿ â 2 ïàðàëëåëüíûõ ïëîñêîñòÿõ åñòü ïàðàëëåëüíûé ïåðåíîñ.


· Êîìïîçèöèÿ îòðàæåíèÿ â 2 ïåðåñåêàþùèõñÿ ïëîñêîñòÿõ åñòü ïîâîðîò âîêðóã ïðÿìîé ïåðåñå÷åíèÿ ýòèõ ïëîñêîñòåé.


· Öåíòðàëüíàÿ ñèììåòðèÿ îòíîñèòåëüíî äàííîé òî÷êè ÿâëÿåòñÿ êîìïîçèöèåé 3 îòðàæåíèé îòíîñèòåëüíî ëþáûõ 3 âçàèìíî ïåðïåíäèêóëÿðíûõ ïëîñêîñòåé, ïåðåñåêàþùèõñÿ â ýòîé òî÷êå.


10.2. Âèíòîâûå äâèæåíèÿ.


Îïðåäåëåíèå.
Âèíòîâûì äâèæåíèåì íàçûâàåòñÿ êîìïîçèöèÿ ïîâîðîòà è ïåðåíîñà íà âåêòîð, ïàðàëëåëüíûé îñè ïîâîðîòà. Ïðåäñòàâëåíèå î òàêîì äâèæåíèè äàåò ââèí÷èâàþùèéñÿ èëè âûâèí÷èâàþùèéñÿ âèíò.


Òåîðåìà 2.
Ëþáîå äâèæåíèå ïðîñòðàíñòâà ïåðâîãî ðîäà - âèíòîâîå äâèæåíèå (â ÷àñòíîñòè ïîâîðîò âîêðóã ïðÿìîé èëè ïåðåíîñ).


10.3. Çåðêàëüíûé ïîâîðîò.


Îïðåäåëåíèå.
Çåðêàëüíûì ïîâîðîòîì âîêðóã îñè a
íà óãîë

j
íàçûâàåòñÿ êîìïîçèöèÿ ïîâîðîòà âîêðóã îñè a
íà óãîë

j
è îòðàæåíèÿ â ïëîñêîñòè, ïåðïåíäèêóëÿðíîé îñè ïîâîðîòà.


Òåîðåìà 3.
Ëþáîå äâèæåíèå ïðîñòðàíñòâà âòîðîãî ðîäà, èìåþùåå íåïîäâèæíóþ òî÷êó, ÿâëÿåòñÿ çåðêàëüíûì ïîâîðîòîì, êîòîðûé, â ÷àñòíîñòè, ìîæåò áûòü öåíòðàëüíîé èëè çåðêàëüíîé ñèììåòðèåé.


10.4. Ñêîëüçÿùèå îòðàæåíèÿ.


Îïðåäåëåíèå.
Ñêîëüçÿùèì îòðàæåíèåì íàçûâàåòñÿ êîìïîçèöèÿ îòðàæåíèÿ â íåêîåé ïëîñêîñòè è ïåðåíîñà íà âåêòîð, ïàðàëëåëüíûé ýòîé ïëîñêîñòè.


Òåîðåìà 4.
Äâèæåíèå ïðîñòðàíñòâà âòîðîãî ðîäà, íå èìåþùåå íåïîäâèæíûõ òî÷åê, åñòü ñêîëüçÿùåå îòðàæåíèå.



Òåîðåìà Øàëÿ.
Äâèæåíèå ïëîñêîñòè ïåðâîãî ðîäà ÿâëÿåòñÿ ëèáî ïîâîðîòîì, ëèáî ïàðàëëåëüíûì ïåðåíîñîì.


Äâèæåíèå ïëîñêîñòè âòîðîãî ðîäà ÿâëÿåòñÿ ñêîëüçÿùèì îòðàæåíèåì.


Ïðèìå÷àíèå: Ê ðåôåðàòó ïðèëàãàþòñÿ 7 ðèñóíêîâ, 2 ïèñüìåííûõ äîêàçàòåëüñòâà òåîðåì è ðåøåíèÿ çàäà÷.


ÑÏÀÑÈÁÎ ÇÀ ÂÍÈÌÀÍÈÅ !


Ðåôåðàò ñîñòàâëåí è íàïå÷àòàí Íèêîëàåì Àëåêñååíêî â ðåäàêòîðå Word for Windows 6.0.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Стереометрия. Тема Движение

Слов:2481
Символов:96387
Размер:188.26 Кб.