РефератыФизикаВлВлияние погрешности трансформаторов тока и напряжения на коммерческие потери в энергосистемах

Влияние погрешности трансформаторов тока и напряжения на коммерческие потери в энергосистемах

Нижегородский региональный центр энергосбережения при НГТУ


Влияние погрешности трансформаторов тока и напряжения на коммерческие потери в энергосистемах


А.Б. Лоскутов,


Е.Б. Солнцев,


И.В. Озеров


Спад производства последних лет привел к уменьшению нагрузок в ряде узлов энергосистемы, а также снижению потребления промышленностью, что в свою очередь вызвало возникновение отрицательной погрешности в автоматизированных системах контроля и учета электроэнергии (АСКУЭ).


Причиной тому стало возникновение отрицательной погрешности у первичных датчиков тока и напряжения, в качестве которых используются трансформаторы тока и напряжения.


Данная работа посвящена исследованию причин возникновения погрешностей и способам устранения недоучета электропотребления в системах АСКУЭ.


Погрешности трансформаторов тока (токовая и угловая) обусловлены наличием тока намагничивания и рассчитываются по формулам [1, 2]: токовая погрешность


(1)


где lм - средняя длина магнитного потока в магнитопроводе, м; z2 - сопротивление ветви вторичного тока (полное сопротивление вторичной цепи и вторичной обмотки), Ом; f - частота переменного тока, Гц; Sм - действительное сечение магнитопровода, м2; j - угол потерь, а a - угол сдвига фаз между вторичной э. д. с. Е2 и вторичным током I2, град.; угловая погрешность


(2)


Основное влияние на величины погрешностей трансформаторов тока оказывают их загрузка по току и величина сопротивления вторичной цепи. В условиях снижения потребления электроэнергии промышленными предприятиями загрузка трансформаторов тока часто не превышает 5 - 15%, что приводит к значительному увеличению погрешностей.


Предельные значения токовой и угловой погрешностей трансформаторов тока для измерений (по ГОСТ 7746-89) приведены в таблице.



























Класс точности


Первичный ток,% номинального


Предельная погрешность


Вторичная нагрузка,% номинальной, при cos j2
=0,8


токовая


угловая


мин


град


0,2


5 10 20 100-200


±0,75 ±0,50 ±0,35 ±0, 20


±30 ±20 ±15 ±10


±0,9 ±0,6 ±0,4 ±0,3


0,5


5 10 20 100-200


±1,5 ±1,0 ±0,75 ±0,5


±90 ±60 ±45 ±30


±2,5 ±1,7 ±1,35 ±0,9


25-100



Результаты расчета угловой и токовой погрешностей трансформаторов тока типа ТПОЛ 600/5, класса точности 0,5, произведенные по формулам (1) и (2), показаны на рис.1 и 2 (тонкая линия - расчетная кривая, жирная линия - аппроксимация). Вид аппроксимирующего выражения и критерий согласия расчетной и аппроксимирующей кривых представлены на рисунках.



Рис.1



Рис.2


Для диапазонов изменения (1 - 10% и 10 - 100%) первичного тока от номинального значения математические модели токовой погрешности наиболее распространенных трансформаторов тока имеют вид:


ТПОЛ10 - 600/5 Df [%] = 0,8428 * ln I1 - 1,9617 для 1 < I1 < 10% Df [%] = 0,0841 * ln I1 - 0,3919 для 10 < I1 < 100%


ТЛШ10 - 2000/5 Df [%] = 0,7227 * ln I1 - 1,6815 для 1 < I1 < 10% Df [%] = 0,0722 * ln I1 - 0,3353 для 10 < I1 < 100%


ТПШФД10 - 3000/5 Df [%] = 0,5986 * ln I1 - 1,2261 для 1 < I1 < 10% Df [%] = 0,0597 * ln I1 - 0,1111 для 10 < I1 < 100%


Значения первичного тока I1 трансформатора тока в формулы следует подставлять в процентах от номинального значения.


Исследования погрешностей трансформаторов тока проведенные в НИЦЭ, показали приемлемую сходимость теоретических и экспериментальных результатов. На рис.3 приведены результаты экспериментального исследования ТТ типа ТПЛМ10-200/5, класса точности 0,5.


Результаты исследования токовых погрешностей различных типов трансформаторов тока с первичным номинальным током 75 - 600 А позволило сделать следующие выводы:



Рис.3


в диапазоне изменения первичного тока от номинального значения 1 - 25% токовая погрешность имеет отрицательный знак;


с увеличением первичного тока абсолютное значение токовой погрешности уменьшается;


экспериментальные исследования подтверждают правильность математической модели токовой погрешности трансформатора тока;


учет токовой погрешности трансформатора тока в АСКУЭ позволит уменьшить величину небаланса по подстанциям;


количество электроэнергии, отпускаемой потребителям, из-за отрицательной токовой погрешности трансформаторов тока занижено по сравнению с фактической величиной; поэтому учет токовой погрешности трансформатора тока в АСКУЭ позволит более точно оценивать величину отпускаемой потребителям электроэнергии и получить определенный экономический эффект, который будет оценен далее.


Вторым источником погрешности измерения электроэнергии является трансформатор напряжения.


Согласно [3, 4] погрешность по напряжению определяется следующим образом: DU = DUн+DUх (3) где DUн - погрешность по напряжению, обусловленная током нагрузки, %; DUх - погрешность по напряжению, обусловленная током холостого хода, %.


Используя векторную диаграмму, можно с достаточной точностью выразить составляющие погрешности трансформатора напряжения следующим образом:



где U2 - напряжение вторичной обмотки трансформатора, В; Ia - активная составляющая тока холостого хода, приведенная к вторичной обмотке трансформатора, А; r'1 - приведенное сопротивление первичной обмотки трансформатора, приведенное ко вторичной обмотке, Ом; I'p - приведенная реактивная составляющая тока холостого хода, приведенная ко вторичной обмотке трансформатора, А; x'1 - реактивное сопротивление первичной обмотки трансформатора, приведенное ко вторичной обмотке, Ом; I2 - ток нагрузки трансформатора, А; r2 - сопротивление вторичной обмотки трансформатора, Ом; cosj2 - коэффициент мощности нагрузки, отн. ед.; x - индуктивное сопротивление трансформатора, Ом.


Угловая погрешность трансформатора напряжения определяется как


,


где d'x - угловая погрешность, обусловленная током холостого хода; d'н - угловая погрешность, обусловленная током нагрузки.


Составляющие угловой погрешности определяются как


;



Результаты расчета погрешностей трансформатора напряжения показаны на рис.4 и 5. Основное влияние на погрешность трансформатора напряжения оказывает величина вторичной загрузки I2.



Рис.4


Зависимость погрешности трансформатора напряжения от коэффициента загрузки по мощности (отношение фактической нагрузки вторичной обмотки трансформатора напряжения к номинальной величине нагрузки) имеет вид


DU [%] = - 0,73 * Кз + 0,35,


где Кз - загрузка трансформатора напряжения по вторичной обмотке, отн. ед.


Полученные выражения для погрешностей трансформаторов тока и трансформаторов напряжения позволяют увеличить точность учета электроэнергии на подстанциях.


Эффективность внедрения АСКУЭ на подстанции зависит от затрат на внедрение АСКУЭ; от экономического эффекта, полученного в результате внедрения. В настоящее время учет отпущенной электроэнергии и расчет энергетического баланса на большинстве подстанций ведется при помощи электромагнитных счетчиков без учета погрешностей трансформаторов тока и трансформаторов напряжения. Часто трансформаторы напряжения работают при загрузке вторичной обмотки, превышающей номинальную в несколько раз, т.е. с отрицательной погрешностью. Большую часть нагрузки трансформатора напряжения составляют измерительные приборы, подключенные к ним, в частности электромагнитные счетчики активной энергии. Например, на подстанции "Свердловская" установлены индукционные счетчики типа САЗУ-И670М, потребляемая мощность которых 4 Вт. В результате внедрения АСКУЭ индукционные счетчики будут заменены на электронные - типа ПСЧ, потребляемая мощность которых в два раза меньше - 2 Вт.


В этом случае коэффициент загрузки трансформатора напряжения снижается в два раза до значения 1,1 и, следовательно, снижается погрешность трансформатора напряжения с 1,15% до 0,5%. Снижение погрешности трансформатора напряжения приведет к повышению точности учета отпущенной потребителям электроэнергии.


Учет токовых погрешностей трансформаторов тока и напряжения в системе АСКУЭ дает экономический эффект. Для оценки экономического эффекта от внедрения АСКУЭ был произведен оценочный расчет

годового потребления электроэнергии по подстанции "Свердловская" с учетом погрешностей трансформаторов тока и напряжения. Расчет производился следующим образом:


По имеющимся данным за характерные зимние и летние сутки года (1997 и 1998 гг.) рассчитывались почасовые значения активной мощности (с учетом погрешностей трансформаторов тока и напряжения) по вводам и отходящим линиям по формуле


Рфакт = P * КI * KU,


где Р - среднечасовые значения мощности, определяемые по показаниям электросчетчиков;


KI - коэффициент, учитывающий токовую погрешность трансформатора тока, KU - коэффициент, учитывающий погрешность трансформатора напряжения.


KI = 1 - (DfI
/100), KU = 1 - (DfU
/100),


где DfI
- токовая погрешность трансформатора тока, DfU
- погрешность трансформатора напряжения.


Определялось потребление электроэнергии за характерные зимние и летние сутки с учетом погрешностей трансформаторов тока и напряжения (Wз. факт и Wл. факт) и без учета погрешностей (Wз и Wл) по вводам и отходящим линиям:


Wз. факт = S Рфакт. з, Wл. факт = S Рфакт. л, Wз = S Рз, Wл = S Рл.


Рассчитывалась величина годового потребления активной электроэнергии по вводам и отходящим линиям по формулам


Wг. факт = Wз. факт * Nз + Wл. факт * Nл, Wг = Wз * Nз + Wл * Nл,


где Nз = 213 и Nл = 152 - количество зимних и летних суток в году.


Эффект от внедрения АСКУЭ определяется по формуле DW = SWг. факт - SWг, где SWг. факт и SWг - годовое потребление электроэнергии отходящими фидерами с учетом и без учета погрешностей трансформаторов тока и напряжения соответственно.


Оценку экономического эффекта произведем для двух вариантов.


При учете АСКУЭ токовых погрешностей трансформаторов тока и снижении погрешностей трансформаторов напряжения за счет пониженного энергопотребления электронных счетчиков эффект составит:


по данным за 1997 г.


DW = 331021094-326683013=4338081 кВт*ч/год;



по данным за 1998 г.


DW = 294647641-290512594= 4135047 кВт*ч/год.


В денежном выражении экономический эффект (Э) равен (при стоимости электроэнергии 0,4 руб/кВт*ч) Э = 1735...1650 тыс. руб в год.


При учете только снижения погрешностей трансформаторов напряжения за счет пониженного энергопотребления электронных счетчиков эффект составит:


по данным за 1997 г.


DW = 328316428-326683013=1633415 кВт*ч/год;



по данным за 1998 г.


DW = 292196976-290512594=1684382 кВт*ч/год.


В денежном выражении экономический эффект равен (при стоимости электроэнергии 0,4 руб/кВт*ч) Э = 653...674 тыс. руб в год.


В заключение можно сделать следующие выводы:


уменьшение нагрузок в ряде узлов энергосистемы, а также снижение потребления электроэнергии промышленностью привели к возникновению отрицательной погрешности у трансформаторов тока и соответственно к коммерческому недоучету потребленной энергии;


для устранения недоучета потребления электроэнергии необходимо вводить корректирующие коэффициенты;


учет погрешностей трансформаторов тока в АСКУЭ, а также уменьшение погрешностей трансформатора напряжения за счет внедрения новых электронных счетчиков приводят к значительному экономическому эффекту.


Оценка экономических результатов внедрения АСДУ РЭС производится по следующим показателям:


Эг
- годовая экономия в связи с функционированием автоматизированной системы диспетчерского управления;


Ер
- расчетный коэффициент эффективности капитальных вложений на создание АСДУ;


Т - срок окупаемости капитальных вложений.


Внедрение задач АСДУ в РЭС определяется следующими критериями эффективности функционирования РЭС:


повышение качества и эффективности электроснабжения;


снижение потерь в электрических сетях;


снижение трудозатрат персонала на обработку и сбор информации о производственной деятельности предприятия;


снижение затрат на капитальный и текущий ремонт;


снижение потерь при аварийных отключениях;


снижение затрат на содержание автотранспорта, необходимого для оперативного обслуживания электрических сетей.


Расчет показателей экономической эффективности производится следующим образом:


1. Приращение годового объема реализуемой продукции в энергосистеме, формируемое за счет АСДУ РЭС:


DА=Wc
* (t-C1
) *K1
*10-5,



где: Wc
- количество электроэнергии, передаваемое по сети РЭС, кВт*ч;


C1
- себестоимость передачи электроэнергии, у. е. /кВт*ч;


К1
- коэффициент, определяющий долю участия АСДУ РЭС в формировании ежегодного прироста реализуемой продукции.


DА=800*106
* (1,2-0,2) *0,003*10-5
=24тыс. у. е.


2. Экономия затрат от снижения потерь электроэнергии в электрических сетях РЭС:


DСпс
=Wпс
*bэ
*С1
*10-5,



где: Wпс
- потери электроэнергии в электрических сетях, кВт*ч;



- коэффициент, характеризующий сокращение потерь в сетях.


DСпс
=96*106
*0,04*0,2*10-5
=7,68тыс. у. е.


3. Экономия затрат от снижения потерь при аварийных отключениях в распределительных сетях:


DСнэ
=Нэ
*С2
*Квв
,


где: Нэ
- величина недоотпуска электроэнергии при отказах, тыс. кВт*ч;


С2
- приведенные затраты на предотвращение недоотпуска электроэнергии, у. е. /кВт*ч;


Квв
- коэффициент, характеризующий снижение потерь при аварийных отключениях в распределительных сетях.


DСнэ
=44*0,75*0,38=12,54тыс. у. е.


4. Экономия трудозатрат персонала, связанных со сбором и обработкой информации:


DСсон
=1,07*Кперс
*Ксон
*ЗП*Ч,


где: 1,07 - коэффициент отчислений на социальное страхование;


Кперс
- коэффициент, характеризующий снижение трудозатрат персонала по обработке информации;


Ксон
- коэффициент, отражающий долю общей численности промышленно-производственного персонала, занятого сбором и обработкой информации (принимается равным 0,2);


ЗП - среднегодовая зарплата персонала, тыс. у. е.;


Ч - численность персонала, чел.


DСсон
=1,07*0,15*0,12*1,066*74=1,52тыс. у. е.


5. Экономия затрат на автотранспорт, необходимый для сбора информации о состоянии управляемых объектов и оперативного персонала:


DСавт
=Кавт
*Савт
,


где: Кавт
- коэффициент, характеризующий снижение расходов на содержание автотранспорта;


Савт
- годовые затраты на автотранспорт.


DСавт
=0,2*8=4тыс. у. е.


6. Экономия затрат на капитальный ремонт оборудования:


DСкр
=Кфон
*Скр
,


где: Кфон
- коэффициент, характеризующий снижение затрат на капитальный ремонт оборудования;


Скр
- затраты на капитальный ремонт оборудования, тыс. у. е.


DСкр
=0,017*196,68=3,34тыс. у. е.


7. Годовая экономия от функционирования АСДУ РЭС:


Эг
=DА+DСпс
+DСнэ
+DСсон
+DСавт
+DСкр
-Сасу
,


где: Сасу
- текущие затраты, связанные с функционированием АСДУ РЭС, тыс. у. е.


Эг
=24+7,68+12,54+1,52+4+3,34-17,3=35,7тыс. у. е.


8. Годовой экономический эффект:


Э=Эг
-Ен
*Кд
А
,


где: Ен
- единый нормативный коэффициент экономической эффективности капиталовложений;


Кд
А
- единовременные затраты, связанные с созданием АСДУ РЭС:


Кд
А
= Кк
А
+ Кп
А
=62.12+8.18=70.3тыс. у. е.


Э=35.7-0,15*70.3=25.155тыс. у. е.


9. Расчетный коэффициент эффективности капиталовложений:


Ер
=Эг
/ Кк
А
,


Ер
=35.7/62.12=0.57


10. Срок окупаемости капиталовложений:


Т= Кк
А
/Эг
,


Т=62.12/35.7=1.74года


Расчетный коэффициент эффективности Ер
=0.57, что больше отраслевого нормативного коэффициента капиталовложений равного 0,44, следовательно, создание АСДУ РЭС экономически целесообразно.



Литература

1. Барзилович В.М. Высоковольтные трансформаторы тока. М. - Л.: Госэнергоиздат, 1962.


2. Афанасьев В.В., Адоньев Н.М., Кибель В.М., Сирота И.М., Стогний Б.С. Трансформаторы тока. Л.: Энергоатомиздат, 1989.


3. Вавин В.И. Трансформаторы напряжения и их вторичные цепи. М.: Энергия, 1967.


4. Дымков А.М. Трансформаторы напряжения. М.: Энергоатомиздат, 1975.


5. РД 34.09.101-94. Типовая инструкция по учету электроэнергии при ее производстве, передаче и распределении

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Влияние погрешности трансформаторов тока и напряжения на коммерческие потери в энергосистемах

Слов:2125
Символов:18749
Размер:36.62 Кб.