РефератыФизикаРаРазработка блока питания

Разработка блока питания

Содержание


Введение


1. Разработка блока питания для электронного устройства


1.1 Расчёт выпрямителей переменного тока и сглаживающих фильтров


1.2 Расчёт силового трансформатора


2. Структурное проектирование логической схемы в интегральном исполнении по заданной логической функции


Заключение


Литература


Введение


Одним из важнейших направлений развития научно-технического прогресса в настоящее время является развитие электроники. Достижения электроники влияют на развитие общества.


Современная электроника характеризуется сложностью и многообразием решаемых задач, высоким быстродействием и надёжностью.


Электронные устройства применяются во многих отраслях промышленности, транспорта, связи, а также в быту. Наиболее часто применяемыми электронными устройствами являются такие, как автоматическое технологическое оборудование, радио- и TV аппаратура, персональный компьютер, микропрцессоры, усилители сигналов, счётчики, интегральные микросхемы и т.д.


Для питания большинства радиотехнических и электронных устройств требуется выпрямленное напряжение с заданными параметрами. Для того, чтобы получить необходимое напряжение на нагрузке, его сначала надо преобразовать с помощью трансформатора. Далее преобразованное напряжение необходимо выпрямить при помощи выпрямителя собранного на вентилях. Для выпрямителей, предназначенных для питания различных радиотехнических и электронных устройств, допустимый коэффициент пульсации напряжения на нагрузке не должен превышать определённую величину. Наличие пульсаций выпрямленного напряжения ухудшает работу потребителей, питаемых выпрямленным напряжением, поэтому в большинстве случаев выпрямители содержат сглаживающие фильтры.


1.
Разработка блока питания для электронного устройства


1.1 Расчёт выпрямителя переменного тока


a
) Для схемы однофазного двухполупериодного выпрямителя с нулевым выводом


Действующее значение напряжения каждой полуобмотки W2
трансформатора:


U2
1
= U2
11
= 1.11· Ud
= 1.11 · 12 = 13.32 В


Действующее значение тока, протекающего по обмотке W2
трансформатора:


I2
1
= I2
11
= 0.7· Id
= 0.7 · 0.5 = 0.3535 А


Амплитудное значение напряжения на вентиле, находящемся в непроводящем состояний:


Uam
=3.14 · Ud
= 3.14 · 12 = 37.68 В


Среднее значение тока вентиля:


Ia
= 0.5 · Id
= 0.5 · 0.5 = 0.25 А


Амплитудное значение тока проводящего вентиля:


Iam
=1 · Id
= 1 · 0.5 = 0.5 А


По полученным данным в качестве вентилей для цепи 1 выбираем два диода Д226Е с параметрами Uam
= 100 В; Ia
= 300 мА; Iam
= 2.5 А


Сделаем проверку выбранных вентилей на соответствие параметрам выпрямителя:


Uam
= 100 В > 37.68 В; Ia
= 300 мА > 250 мА; Iam
= 2.5 А > 0.5 А


Вентили соответствуют параметрам выпрямителя.


Для выбора схемы и количества звеньев сглаживающего фильтра определяем его коэффициент сглаживания:


q1
0.667


S= – = – = 133.4 > 100, следовательно нужен многозвенный


q2
0.005 фильтр


1.3.8 Коэффициент сглаживания каждого звена фильтра:


S1
= S2
= √S = √133.4 = 11.55 < 100


Ёмкость конденсатора C1
, входящего в состав первого звена фильтра, рассчитывается по методике для выпрямителя, работающего на активно – ёмкостную нагрузку:


H


C1
= –


q1
0.667 q22
· rц


где: q22
= – = – = 0.0577


S1
11.55


Uн 12



= 0.1· Rн = 0.1 · – = 0.1 · – = 2.4 Ом – сопротивление фазы выпрямителя


Iн 0.5


– для нахождения коэффициента Н определяем расчётный коэффициент А:


р · rц
3.14 · 2.4


A = – = – = 0.157


m · Rн 2 · 24


m = 2 – число пульсаций тока за период сетевого напряжения в нагрузке


По графику Н = f (А): H = 260


H260


C1
= – = – = 1877.53 мкФ


q22
· rц
0.577 · 2.4


По ёмкости С1
и напряжению Uн выбираем конденсатор: К50 – 3


Сном = 2000 мкФ; Uном = 12 В


Определяем параметры второго звена сглаживающего фильтра:


10 · (S2
+ 1) 10 · (11.55 + 1)


LC = – = – = 31.375 Гп · мкФ


m2
4


Принимаем конденсаторы типа К50 – 3: Сном = 2000 мкФ; Uном = 12 В


LC2
31.375


Тогда, L = – = – = 0.314 Гн


C2
10


б) Для схемы однофазного двухполупериодного мостового выпрямителя


Для выбора схемы и количества звеньев сглаживающего фильтра определяем его коэффициент сглаживания:


q1
0.667


S= – = – = 0.89 < 100


q2
0.75


Для данной схемы применим С – фильтр


Определяем коэффициент А:


р · rц
3.14 · 4.8


A = – = – = 0.157


m · Rн 2 · 48


Для нахождения сопротивления нагрузки используем выражение:


Uн 24


Rн = – = – = 48 Ом


Iн 0.5


Сопротивление фазы выпрямителя:



= 0.1· Rн = 0.1 · 48 = 4.8 Ом – сопротивление фазы выпрямителя


m = 2 – число пульсаций тока за период сетевого напряжения в нагрузке


Из графиков зависимостей В = f(A); D = f(A); F = f(A); H = f(A) находим вспомогательные коэффициенты В = 0.45; D = 2.35; F = 7.2; H = 260


ЭДС обмотки трансформатора Е3
= B · Ud
= B · Uн
= 0.95 · 24 = 22.8 В


Максимальное обратное напряжение на вентиле, находящемся в непроводящем состоянии:


Uобр
m
= 2√2 · Е3
= 2√2 · 22.8 = 64.488 В


Среднее значение тока вентиля:


Id
Iн 0.5


Ia = – = – = – = 0.25 А


2 2 2


Максимальный (амплитудный) ток вентиля:


Iam = F · Ia = 7.2 · 0.25 = 1.8 А


Действующее значение тока вторичной трансформатора:


I3
= D · Ia = 2.35 · 0.25 = 0.588 А


1.3.20 По полученным данным в качестве вентилей выбираем диоды Д226Е с параметрами:


Uam
= 100 В > 64.488 В; Ia
= 300 мА > 250 мА; Iперегр
= 2.5 А > 1.8 А Вентили соответствуют параметрам выпрямителя.


Ёмкость конденсатора фильтра находим из выражения:


H260


C = – = – = 72.22 мкФ


Q2
· rц
0.75 · 4.8


Принимаем стандартный оксидный (электролитический) конденсатор К50 – 3


Сном = 100 мкФ; Uном = 100 В


1.2 Расчёт силового трансформатора


Согласно исходных требований и расчёта выпрямителя расчёт трансформатора производим по следующим данным:


U2
= 13.32 В; I2
= 0.5 А; U3
= 22.8 В; I3
= 0.5 А; U4
= 220 В; I4
= 0.45 А


U5
= 10 В; I5
= 1 А


Напряжение сети: U1
= 220 В; fс = 50 Гц


Определяем габаритную мощность вторичных обмоток Sг2
и суммарную габаритную мощность Sг трансформатора с учётом выбранной схемы выпрямителя и использования остальных обмоток:


Sг2
= 1.7 · U2
I2
· U3
I3
· U4
I4
· U5
I5
=
1.7 · 13.32·0.5 · 22.8·0.5 · 220·0.45 · 10·1 = 131.722 В·А


Суммарная габаритная мощность трансформатора с учётом его КПД (з = 0.88):


Sг2
131.722


Sг = – = – = 149.684 В·А


З 0.88


По нонограмме мощности Sг = 149.684 В·А соответствует сердечник с площадью поперечного сечения Qс = 15.5 см2


Так как трансформатор малой мощности, то выберем обмоточный провод марки ПЭВ – провод с изоляцией лаком винифлекс


Пользуясь нонограммой, для сечения проводника Qс = 15.5 см2
и наклонной линией, построенной для использования обмоточного провода ПЭВ, определяем необходимую площадь окна магнитопровода, которая составит Qо = 12 см2


В результате расчётов принимаем стандартный магнитопров

од Ш – 32 с параметрами


Qс = 19.0 см2
; Qо = 25.6 см2


Для выбора диаметра провода первичной (сетевой) обмотки, определяем ток в этой обмотке: Sг2
Sг 149.684


I1
= – = – = – = 0.68


U1
· з U1
220


Учитывая габаритную мощность трансформатора Sг = 149.684 В·А и принимая сердечник выполненным из штампованных пластин получаем магнитную индукцию в сердечнике (в стали) трансформатора Bс = 1.1 Тл


По нонограмме для магнитной индукции Bс = 1.1 Тл и сечения сердечника Qс = 25.6 см2
определяем число витков на 1 В напряжения для всех обмоток (W/1B), равное 2.8 Вит/1В, и определяем число витков в каждой обмотке из соотношения:


W


Wi = Ui · – · K


1B


Ui – напряжение соответствующей обмотки


K – коэффициент, учитывающий падение напряжения на активном сопротивлении вторичных обмоток (К = 1.05…1.1)


С учётом компенсации падения напряжения на активном сопротивлении обмотки число витков вторичных обмоток увеличивают на 5%. Тогда:


W1
= 220 · 2.8 · 1.05 = 647 Вит


W2
= 13.32 · 2 · 2.8 · 1.05 =78.3 Вит


W3
= 22.8 · 2.8 · 1.05 = 67 Вит


W4
= 220 · 2.8 · 1.05 = 647 Вит


W5
= 10 · 2.8 ·1.05 = 29.4 Вит


Определяем диаметр обмоточных проводов в обмотках трансформатора. Для мощности трансформатора Sг = 149.684 В·А рекомендуемая плотность тока составляет д = 2 А/мм2
.


Тогда по таблице определяем:


1) для первичной обмотки: для I1
= 0.68 А d1
= 0.748 А/мм2


2) для вторичных обмоток: для I1
= 0.5 А d1
= 0.405 А/мм2


для I1
= 0.5 А d1
= 0.405 А/мм2


для I1
= 0.45 А d1
= 0.348 А/мм2


для I1
= 1 А d1
= 1.57 А/мм2


1.4.8 Проверяем возможность размещения обмоток в окне сердечника. Определяем площадь g, занимаемую каждой обмоткой в окне сердечника.


Для первичной обмотки:


W1
= 647 витков, d1
= 0.748 А/мм2
в 1 мм2
уместится 1.72 витка


647


Общая площадь: g1
= – = 3.762 см2


1.72 · 100


Для обмотки W2
:


W2
= 78.3 витков, d1
= 0.405 А/мм2
в 1 мм2
уместится 6.1 витка


78.3


Общая площадь: g2
= – = 0.128 см2


6.1· 100


Для обмотки W3
:


W3
= 67 витков, d1
= 0.405 А/мм2
в 1 мм2
уместится 6.1 витка


67


Общая площадь: g3
= – = 0.11 см2


6.1· 100


Для обмотки W4
:


W4
= 647 витков, d1
= 0.348 А/мм2
в 1 мм2
уместится 8 витков


647


Общая площадь: g4
= – = 0.81 см2


8· 100


Для обмотки W5
:


W5
= 29.4 витка, d1
= 1.57 А/мм2
в 1 мм2
уместится 0.455 витка


29.4


Общая площадь: g5
= – = 0.06 см2


0.455· 100


Таким образом, общая площадь окна, занимаемая всеми обмотками:


Qоз = g1
+g2
+g3
+g4
+g5
= 3.762 + 0.128 + 0.11 + 0.81 + 0.06 = 4.87 см2


Возможность размещения всех обмоток в окне сердечника можно проводить с использованием коэффициента заполнения окна Ко:


Qоз 4.87


Ко = – = – = 0.19


Qо 25.6


Как показали расчёты, все обмотки в окне сердечника размещаются. Остальная оставшаяся площадь Qост = Qо – Qоз = 25.6 – 4.87 = 20.73 см2
используется для размещения каркаса и изоляционных прокладок между обмотками.


2.
Структурное проектирование логической схемы в интегральном исполнении по заданной логической функции


Процесс структурного проектирования разбиваем на два последовательно выполняемых этапа:


Минимизация заданной логической функции


Синтез логической структуры


Минимизация заданной логической функции


Пользуясь аксиомами и законами алгебры логики (булевой алгебры) упрощаем заданную логическую функцию до образования конъюнкций, где присутствуют все независимые переменные исходного выражения:


-- – -- – -- – -- – -- – -- – -- – -- – -- – -- – -- – -- – -- – -- – -- – ---


F = X·Y· (Z + X) + X·Y·Z + Z· (X·Y·Z + Z·Y) = X·Y·Z + X·Y·Z + X·Y·Z


Опишем логическую структуру в виде таблицы состояний (истинности) согласно упрощенного выражения логической функции F:















































X Y Z F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Дальнейшее упрощение (минимизацию) заданной логической функции проводим графическим методом с использованием карты Карно, где количество независимых переменных К = 3.



Результат склейки клеток 1,2 и 1,7 даёт описание логической структуры в виде минимизированной дизъюнктивной нормальной формы (МДНФ), представляющей собой алгебраическое выражение: – – – –


F = Y·Z + X·Y


Синтез логической структуры


Проведём синтез полученной логической структуры с использованием логических элементов в интегральном исполнении.


Синтезируем логическую структуру в виде структурно – функциональных схем. Для сравнительного анализа различных схемных решений рассмотрим варианты реализации логической структуры с использованием базовых логических элементов, а также с использованием элементов И-НЕ и с использованием элемента ИЛИ – НЕ. Результаты проделанной работы представлены в графической части.


Синтезируем логическую структуру в виде принципиальных электрических схем на микросхемах ТТЛ серии 155. Результаты проделанной работы представлены в графической части.


В результате анализа предложенных вариантов реализации логической структуры отдаем предпочтение варианту выполнения принципиальной электрической схемы на микросхеме К155ЛЕ1, так как этот вариант имеет лучшие технико – экономические показатели, а именно: меньшее количество внутрисхемных соединений, количество электронных компонентов минимальное (всего одна ИС), выше надежность устройства, повышенное быстродействие, минимальная потребляемая мощность.


Заключение


В данной курсовой работе был разработан блок питания для системы автоматического управления процессом транспортировки и хранения комбикормов в животноводческом комплексе и произведено структурное проектирование логической схемы в интегральном исполнении по заданной логической функции.


Для блока питания представлены принципиальная и структкрно-функциональная схемы. Он рассчитан на питание от бытовой сети с параметрами U=220 B, f=50 Гц и выдаёт два выпрямленных напряжения (U=12 В, I=0.5 А и U=24 В, I=0.05 А), и два переменных (U=220В, I=0.45 А и U=10В, I=1 А).


В выпрямителе этого блока питания могут использоваться диоды следующих марок: для схемы выпрямителя с нулевым выводом – Д226Е, для мостовой схемы – Д226Е. В схеме выпрямителя с нулевым выводом используется многозвенный фильтр с двумя звеньями. В первом звене используется конденсатор К50 – 3 с Сном = 2000 мкФ; Uном = 12 В. Во втором звене используется конденсатор К50 – 3 с Сном = 2000 мкФ; Uном = 12 В и катушка индуктивности с индуктивностью L = 0.314 Гн. В мостовой схеме выпрямления используется С – фильтр с маркой конденсатора: К50 – 3, Uном = 25 В, Сном = 100 мкФ.


Литература


1.Макаров А.А. Электроника. Учебно-методическое пособие. – Кострома: изд. КГСХА, 2003.-67 с.


2. Арестов К.А. Основы электроники и микропроцессорной техники. – М.: Колос, 2001

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Разработка блока питания

Слов:2241
Символов:17423
Размер:34.03 Кб.