ІДЕАЛЬНА ОПТИЧНА СИСТЕМА
1. Поняття про ідеальну оптичну систему. Кардинальні елементи
Під ідеальною оптичною системою розуміють таку систему, що будь-яку точку простору предметів зображує стигматично, тобто вона не порушує гомоцентричності широких пучків променів, що проходять крізь неї, у межах великої області простору. Теорія ідеальної оптичної системи має чисто геометричний характер. Вона є окремим випадком більш загальної геометричної задачі про перетворення одного простору в інший, котрий називають колінеарним перетворенням. Кожній безлічі точок одного простору відповідає безліч точок в іншому просторі, яке можна назвати зображенням першого. В основі колінеарної відповідності лежать такі розуміння:
- кожній точці простору предметів відповідає тільки одна точка в просторі зображень; ці дві точки є сполученими;
- будь-якій прямій лінії простору предметів відповідає тільки одна сполучена з нею пряма лінія у просторі зображень.
Таким чином, будь-якій площині простору предметів відповідає тільки одна сполучена площина в просторі зображень. У сполучених площинах, що перпендикулярні оптичній осі, зберігається строга подоба.
Виберемо в предметній площині Q, перпендикулярної до осі, предмет у вигляді лінійного відрізка у (рис. 1). Зображенням цього предмета буде відповідний відрізок у'. Відношення розміру зображення до розміру предмета називають лінійним збільшенням ідеальної системи:
b = у¢
/у.(1)
Для даної пари сполучених площин Q, Q', перпендикулярних до оптичної осі, лінійне збільшення є постійним і не залежить від розміру предмета. Для іншої пари сполучених площин лінійне збільшення матиме інше значення. Якщо b < 0, то зображення стосовно предмета буде переверненим, при b > 0 - зображення пряме. Лінійне збільшення визначає масштаб зображення. Теорія ідеальної центрованої оптичної системи була розроблена Гаусом, тому її часто називають оптикою Гауса.
Рисунок 1- До знаходження лінійного збільшення оптичної системи
Рисунок 2- Кардинальні точки оптичної системи
Перейдемо до визначення понять кардинальних (основних) елементів ідеальної оптичної системи. Для цього представимо оптичну систему, що складається з ряду поверхонь, у якій lі k (рис. 2) є першою й останньою поверхнями, і розглянемо три характерних положення предметної точки і її зображення.
1. Світна точка А знаходиться на оптичній осі в нескінченності. Її зображення буде в точці F', що називають заднім фокусом оптичної системи. Площина, що проходить крізь задній фокус і перпендикулярна оптичній осі, називається задньою фокальною площиною оптичної системи. Ця площина є зображенням нескінченно вилученої площини. Пучок променів, що виходить з нескінченно вилученої точки на оптичній осі, приходить в оптичну систему у вигляді пучка, рівнобіжного оптичній осі. Отже, задній фокус володіє тою властивістю, що крізь нього проходить усякий промінь, що входить в оптичну систему паралельно оптичній осі. Якщо предметна точка В (рис. 3, а), вилучена в нескінченність, знаходиться поза оптичною віссю, то промені, що виходять з цієї точки, утворять похилий пучок рівнобіжних променів. Цей пучок по виходу з оптичної системи збирається в сполученій точці В', що знаходиться поза оптичною віссю, у задній фокальній площині QF
.
2. При переміщенні предметної точки А праворуч точка А' (див. рис. 2) переміщатиметься також праворуч і видалиться в нескінченність. У цьому випадку точка А переміститься в точку F. Точку F на оптичній осі в просторі предметів, сполучений з нескінченно вилученою точкою оптичної осі в просторі зображень, називають переднім фокусом оптичної системи. Площина QF
, що перпендикулярна оптичній oci і минаює через передній фокус, називають передньою фокальною площиною. Передня фокальна площина сполучена з нескінченно вилученою площиною простору зображень. Отже, пучок променів, що виходить з будь-якої точки В передньої фокальної площини Qp
(крім переднього фокуса), виходить із системи похилим пучком рівнобіжних променів (рис. 4, б). Усякий промінь, що входить в оптичну систему через передній фокус, виходить із системи паралельно її оптичної осі.
Рисунок 2- Схема для знаходження властивостей фокальних площин
3. Виберемо пари сполучених і перпендикулярних оптичній осі площини, у яких лінійне збільшення дорівнює плюс одиниці (див. рис. 2). Ці площини називають передньою і задньою головними площинами. Точки їхнього перетинання з оптичною віссю називають передньою Н і задньою Н' головними точками. Тому, що лінійне збільшення в головних площинах дорівнює +1, то будь-який відрізок в одній площині зображується рівним і однаково розташованим відрізком в іншій площині. Звідси випливає, що вхідний і вихідний промені перетинають відповідні головні площини на рівних висотах h.
Відстань HF від передньої головної точки Н до переднього фокуса F є передньою фокусною відстанню оптичної системи, а відстань H'F' від задньої головної точки Н' до заднього фокуса F' - задньою фокусною відстанню. Фокусні відстані позначають відповідно fі f¢. Їх відраховують від головних точок.
Якщо оптична система знаходиться в однорідному середовищі, наприклад у повітрі (n = n' = 1), то f' = -f, тобто заднє і переднє фокусні відстані рівні за абсолютним значенням. У загальному випадку при n' ¹ n
-f/f = n/n'.(2)
Оскільки n > 0 і n' > 0, тo фокусні відстані оптичної системи завжди мають різні знаки. Як правило, для характеристики оптичної системи використовують задню фокусну відстань, тому, якщо f' > 0, то система вважається позитивною, якщо f < 0, то - негативною. У негативних системах задній фокус знаходиться перед оптичною системою.
Рисунок 3- Схема для знаходження фокусних відстаней: а)- заднього, б)- переднього
Фокуси, фокальні площини, головні площини, головні точки і фокусні відстані називають кардинальними елементами оптичної системи.
Положення фокусів і головних площин визначають шляхом розрахунку чи графічної побудови ходу променів, паралельних оптичній осі, у прямому і зворотному напрямках (рис. 4). Як випливає з рис. 4, при висоті h падіння променів у прямому і зворотному ході одержуємо такі формули для визначення фокусних відстаней:
f' = h/tgsk
¢
;
f = h/tgs2
.
2. Залежності між положеннями і розмірами предмета і зображення. Кутове і подовжене збільшення
Уведення кардинальних елементів дозволяє легко визначити положення і розмір зображення графічним способом. Для цього необхідно побудувати хід двох променів, що виходять з однієї позавісьової точки В предмета АВ (рис. 5). Проведемо один промінь паралельно оптичній осі, а інший - крізь передній фокус F. На перетинанні цих променів у просторі зображень буде знаходитиметься зображення В' предметної точки В. З подібності трикутників випливає, що
- у'/у = -f/-z= z'/f¢.
Звідси можна одержати формулу Ньютона: яку можна одержати, підставивши в (3) z і z', виражені через а й а' згідно з рис. 5.
Відрізки а й а', що визначають положення предмета і зображення щодо відповідних головних площин, знаходяться з формули відрізків:
Рисунок 4- Схема для виводу формули кутового збільшення і формули кутів
Рисунок 5- Схема для знаходження продольного збільшення
zz¢ = ff¢.(3)
f'/a' + f/a = 1, (4)
При f' = -f формула (4) приймає вигляд
l/a' - l/a = 1/f'. (5)
Лінійне збільшення b може бути виражене завдяки відрізкам z, z' і f':
b = -f/z = -z/f'. (6)
Якщо у формулі (6) z і z' замінимо на а - f та а' - f', одержимо
(7)
а' = (1 - b)f'. (8)
При n = n' відрізок а = (1 - b) f'/b.
Якщо відстань між площинами предмета і зображення дорівнює L, а між головними точками , то при заданих L, і b у випадку, якщо n = n', матимемо, що
f' = -(L-)b/(1-b)2
; (9)
a' = -(L-)b/(1-b); (10)
a = -(L-)/(1-b). (11)
Лінійне збільшення через відрізки а й а' визначають за формулою
b = -fa¢/f'а = na'/n'a. (12)
Наведені вище формули (3)-(12) при відомих вихідних даних дозволяють знайти положення (відрізки z', а') і розмір зображення (y').
Уведемо поняття ще про два збільшення оптичної системи.
Кутовим збільшенням оптичної системи називають відношення тангенсів кутів, утворених сполученими променями з оптичною віссю:
y = tg s'/tg s. (13)
З рис. 6 випливає, що
g = а/а'. (14)
Використовуючи формули (12) і (14), одержимо, що
g = . (15)
Формула (15) установлює зв'язок між кутовим і лінійним збільшеннями.
Точки предмета і зображення, що лежать на оптичній осі, для яких g = +1. називаються вузловими точками оптичної системи. З формули (15) видно, що вузлові точки збігаються з головними (b = +1) у тому випадку, якщо оптична система знаходиться в однорідному середовищі. У цьому випадку сполучені промені, що проходять крізь головні точки Н і Н', рівнобіжні один одному.
Подовжнім збільшенням a оптичною системою називають відношення розміру зображення нескінченно малого відрізка, розташованого уздовж оптичної осі, до розміру цього відрізка:
a = dz'¤dz.
Продиференціюємо формулу Ньютона (3) по zі z'. Після множення і розподілу знайденого вираження на ff' і заміни відносин z'/f' і f/z через b одержимо, що
а = -(f'/f) b2
. (16)
На підставі виразів (15) і (16) можна записати:
gb = -f/f; (17)
ga = b. (18)
Рівняння (18) установлює зв'язок між трьома збільшеннями b, g і a . При f' = -f
gb = 1; (19)
a = b2
.(20)
3. Побудова і розрахунок ходу променів крізь ідеальну оптичну систему
У практичній роботі конструкторів оптичних приладів досить широко використовуються властивості кардинальних елементів і осн
Рисунок 7- Чотири способи побудування ходу променів крізь розташовану в однорідному середовищі оптичної системи
Часто оптичні системи складаються з великого числа окремих компонентів, що вилучений один від одного на значні відстані. У цьому випадку багато задач геометричної оптики зручніше розв’язувати шляхом розрахунку ходу променів. Наприклад, у центрованих оптичних системах положення зображення предмета, перпендикулярного до оптичної осі, можна визначити шляхом розрахунку променя, що проходить крізь вісьову точку А цей предмет. Положення променя, що виходить із точки А і падаючого на висоті h на оптичну систему (див. рис. 6), визначається кутом а з оптичною віссю. Знайдемо кут а'. Згідно з рис. 6 маємо
а = h/tg s іа' = h/tg s'.
Поставивши а й а' у формулу відрізків (4), після перетворення одержимо
tg s' = (-f/f¢) tg s + hФ/n',
де Ф = n'/f' називають оптичною силою системи.
Останню формулу називають формулою кутів. У загальному вигляді для системи з декількох компонентів вона має такий вигляд:
tg sk+1
= (-fk
/f'k
) tg sk
+ hk
Ф/nk
+1
. (21)
У формулі (21) відношення -fk
¢
/f¢ можна замінити відношенням показників переломлення, тоді
tg sk+1
= tg s + hk
Фk
/nk+1
(22)
Якщо оптична система знаходиться в повітрі, то з (22) випливає, що
tg sk+1
= tg sk
+ hk
Фk
. (23)
Висоти h падіння променів на компоненти залежать від кутів, а також від відстаней між цими компонентами:
hk+1
= hk
– dk
tg sk+1
. (24)
Рівняння (24) називають формулою висот. Послідовно застосовуючи формули кутів і висот, можна розрахувати хід променів крізь ідеальну оптичну систему будь-якої складності.
4. Багатокомпонентні оптичні системи. Еквівалентна фокусна відстань
У практиці розрахунку оптичних систем велику роль відіграють двокомпонентні системи (рис. 9). Розглянемо дію такої системи за умови, що фокусні відстані компонентів і їхнє взаємне розташування відомі. Визначити положення фокальних і головних площин системи, що по своїй дії еквівалентна будь-якому числу заданих компонентів, можна шляхом розрахунку променів, рівнобіжних оптичний осі, у прямому і зворотному ході.
Послідовно застосовуючи формули кутів (21) і висот (24) для двокомпонентної системи, одержимо
tg s1
= 0; tg s2
= h1
Ф1
/n2
;
h2
= h1
[1 -(Ф1
/n2
)d];
tg s = h1
[].
Еквівалентна фокусна відстань системи
f¢ = h1
/tg s3
.
Тоді
Рисунок 8- Система з двох компонентів
n3
/f¢ = Ф1
+ Ф2
- (Ф1
Ф2
/n2
)d.
Відношення n3
/f є оптичною силою Ф усієї системи, тому
Ф = Ф1
+ Ф2
- (Ф1
Ф2
/n2
)d. (25)
Відстань від другого компонента до еквівалентного заднього фокуса системи а'F
¢
= h3
/tgs3
, або
А¢F
' = f¢[1-(Ф1
/n2
)d], (26)
а відстань від цього компонента до задньої головної площини системи
а¢H
¢
= а'F
¢
- f¢. (27)
З розрахунку ходу променяв зворотному ході, тобто з права на ліво, відповідно до формул (21) і (24) одержимо, що
-n/f = Ф = Ф1 +
Ф2
– (Ф1
Ф2
/n2
)d;
aF
= f(1 - (Ф2
/n2
)d); (28)
aH
= aF
– f.
Якщо обидва компоненти оптичної системи знаходяться в однорідному середовищі, наприклад у повітрі, то
Ф = -1/f = 1/f¢ = Ф1
+ Ф2
– Ф1
Ф2
d;
aF
= f(1- Ф2
d);
aH
= aF
- f;(29)
а¢F
¢
= f' (1 – Ф1
d);
a¢H
¢
= a¢F
¢
- f¢.
Для трикомпонентної системи, усі компоненти якої знаходяться в повітрі, еквівалентну оптичну силу Ф і відрізок а¢F
¢
- визначають за такими формулами:
Ф = Ф1
+ Ф2
+ Фз - (Ф2
+ Фз) Ф1
d1
- (Ф1
+ Ф2
- Ф1
Ф2
d1
) Ф3
d2
;
a'F
¢
= (1/Ф) [1 – Ф1
(d1
+ d2
) – Ф2
d2
(1 – Ф1
d1
)].
Якщо в розглянутій системі компонента стикаються (d1
= d2
= 0), то оптична сила
Ф = Ф1
+ Ф2
+ Фз
,
а відрізок а¢F
¢
дорівнює еквівалентній фокусній відстані системи f'.
Знайти параметри еквівалентної системи можна графічно шляхом побудови ходу променя, рівнобіжного оптичній осі, у прямому і зворотному напрямках.
5. Параксіальна область оптичної системи. Параксіальні і нульові промені
Реальні оптичні системи, що складаються зі сферичних і плоских заломлюючих і поверхонь, що відбивають, у загальному випадку не дають стигматичних зображень, тобто не задовольняють положенням ідеальної оптичної системи, Замість точкових зображень виходять кола розсіювання, Гомоцентричність пучка променів зберігається тільки за умови, що кути s і e, утворені реальними променями з оптичною віссю і з нормаллю до поверхні, нескінченно малі. При нескінченно малих кутах s, e, а отже, і s', e' справедливі такі вирази:
sin s/sin s' »s/s' = s'/s » const; (30)
для сферичної заломлюючої поверхні
n'/s' - n/s = (n' - n)/r: (31)
для плоскої заломлюючої поверхні
n'/s' - n/s = 0;(32)
для сферичної поверхні, що відбиває
l/s' + 1/s = 2/r. (33)
У виразах (30)-(33) відрізки s і s' визначають відповідно положення осьової предметної точки і її зображення щодо поверхні. Як видно з (30)-(33), відрізок s' залишається постійним для заданого відрізка s, тобто всі промені, що виходять із предметної точки під будь-якими, але малими кутами, після переломлення перетинаються в одній точці - точці зображення. Промені, що утворять малі кути s і s' з оптичною віссю і малі кути e й e' з нормаллю до заломлюючої поверхні, називають параксіальними променями, а область біля осі, усередині якої поширюються ці промені, - параксіальною областю. Кути s і s' для параксіальної області позначають a і a'. Співвідношення (31)-(38) називають рівняннями параксіальних променів і використовують для розрахунку ходу променів.
Для зручності виконання розрахунків вводиться поняття нульових променів. Нульовим променем називають фіктивний промінь, що переломлюється (віддзеркалюваний) так само, як і параксіальний, на поверхнях, але зустрічається з ними на кінцевих відстанях від оптичної осі і відтинає на оптичній осі ті ж відрізки, що і параксіальний промінь.
Шляхом розрахунку ходу нульового променя через оптичну систему визначають фокусні відстані і фокальні відрізки, а також положення зображення і лінійне збільшення системи для випадку, коли предмет знаходиться на кінцевій відстані.
Формули для розрахунку ходу нульового променя:
; (34)
1
hk
+1
= hk
– dk
tgsk
+
.1
З виразу (34) одержимо формулу радіуса:
яку використовують для обчислення радіусів поверхонь при заданому ході променя. Для спрощення написання у формулах (34), (35) tg s рекомендується заміняти s.
6. Положення головних площин. Фокусні відстані заломлюючої поверхні в параксіальній області
У параксіальній області для реальних центрованих оптичних систем справедливі усі формули і положення ідеальної оптичної системи. Представимо малий предмет як би накладеним на поверхню в її вершини. Очевидно, що зображення цього предмета по положенню і розміру збігається із самим предметом. Отже, у вершині поверхні О (рис. 10) знаходиться сполучена пара сполучених точок, лінійне збільшення в який дорівнює одиниці, тобто, тут знаходяться співпадаючі головні точки заломлюючої поверхні. Головні площини збігаються і лежать у площині, дотичної до сфери в точці 0. Якщо предметну точку А переміщати уздовж оптичної осі так, щоб вона вилучилася в нескінченність, то точка А' збігається з заднім фокусом F' заломлюючої поверхні, тобто
s = -¥; s' = f'. (36)
Підставивши (36) у (31) і розв’язавши отриманий вираз відносно f', одержимо формулу для визначення задньої фокусної відстані заломлюючої поверхні:
f' = n'r/(n' - n). (37)
Рисунок 9- Схема для знаходження фокусних відстаней сферичної поверхні радіусом r
При переміщенні точки А' уздовж осі в нескінченність сполучена точка А збігається з переднім фокусом F поверхні, тобто
s = f;s' = ¥. (38)
З огляду на вираз (38), з формули (31) знайдемо вираз для передньої фокусної відстані сферичної поверхні:
f = nr/(n'- п). (39)
Розділивши (37) на (39), одержимо
f'/f = n'/n.(40)
Цей важливий вираз записано тут для однієї заломлюючої поверхні, але воно справедливо і для будь-якої складної оптичної системи.