Лабораторная работа №1
Тема: «Исследование смены режимов течения. Определение критических чисел Рейнольдса»
Цель работы
Демонстрация режимов течения жидкости и экспериментальное определение критических чисел Рейнольдса для труб круглого сечения.
Основные сведения
Режим течения определяется соотношением возмущающей течение силы инерции и стабилизирующей течение силы вязкости. Отношение этих сил выражается безразмерным числом Рейнольдса:
,
где u – средняя скорость течения жидкости по сечению трубы;
L – характерный линейный размер поперечного сечения, заполненного жидкостью (так называемого «живого сечения») для труб круглого сечения L=d;
n – кинематическая вязкость.
Средняя скорость находится по формуле
,
где Q – расход потока, т.е. объем жидкости, протекающий за единицу времени через данное сечение потока, площадь которого равна S. Возможны два принципиально отличающихся режима течения жидкости, получивших название ламинарного (слоистого) и турбулентного (бурного, возмущенного) режимов. При достаточно малых скоростях основного потока, когда число Рейнольдса меньше определенного критического (Re < Reкр
), инерционная сила незначительна по сравнению с силой вязкости, которая упорядочивает движение жидкости, создавая ламинарное движение. При этом окрашенная струйка, введенная в поток, вытягивается вдоль течения в виде тонко очерченной линии. При Re»Reкр
форма окрашенной струйки резко меняется – она приобретает вид более или менее отчетливых завитков. Такая картина отвечает начальной стадии развития турбулентности, а момент ее появления – началу перехода от ламинарного режима к турбулентному (переходный режим). При Re > Reкр
силы инерции преобладают над силами вязкости, и наступает вполне развитая турбулентность. Критическое число Рейнольдса, как правило, заключено в некоторых пределах: Reкр.н.
≤ Reкр
≤ Reкр.в
, где Reкр.в.
– максимальное критическое число Рейнольдса, соответствующее переходу ламинарного режима в турбулентный; Reкр.н
– нижнее критическое число Рейнольдса, т.е. минимально возможное число, соответствующее переходу турбулентного режима в ламинарный.
Установление режима движения имеет большое практическое значение, так как он определяет важнейшие характеристики потока, как распределение скоростей, гидравлическое сопротивление, теплоотдачу и др.
Описание установки
Установка Рейнольдса (рис. 1) состоит из напорного бака 1, прозрачно
с помощью экспериментальных (тарировочных) зависимостей вычисляют расход Q
. Такие устройства для измерения расхода называются данаидами.
Обработка данных:
течение жидкость рейнолдс труба
Таблица 1
№ опытов | Температура t, С | Кинематическая вязкость , см2
/с |
Уровень в мерном бачке Н, мм | Расход Q, см3
/с |
Средняя скорость см/с |
Число Рейнольдса |
Режим по визуальным наблюдениям |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 20 | 0,01007 | 25 | 13,489 | 4,766 | 899 | Л |
2 | 20 | 0,01007 | 205 | 36,307 | 12,829 | 2435 | Л>Т |
3 | 20 | 0,01007 | 260 | 39,810 | 14,067 | 2654 | Т |
4 | 20 | 0,01007 | 170 | 33,113 | 11,700 | 2207 | Т>Л |
Внутренний диаметр d
= 1,9 см.
1. Кинематическая вязкость в зависимости от температуры находится по эмпирической формуле Пуазеля:
.
2. По известному уровню Н
(мм) с помощью эмпирической зависимости (для малого калибровочного отверстия
3. Средняя скорость движения воды в трубе находится по формуле:
,
где S – площадь поперечного сечения трубы .
4. Число Рейнольдса для трубы находится по формуле: .
5. Среднее число Рейнольдса находится как