1. Спектр электромагнитных излучений.
Электромагнитные волны в принципе могут иметь любую частоту от нуля до бесконечно большой. Классификация электромагнитных волн по частотам называется спектром электромагнитных волн. Такой электромагнитный спектр показан на рисунке 1. Электромагнитные волны с очень низкими частотами (всего несколько герц) не имеют практического значения и поэтому генерируются сравнительно редко. Неизбежно, однако, излучение электромагнитных волн линиями электропередач переменного тока (обычно с частотой 50 Гц). Это излучение рассматривается как потеря энергии.
Электромагнитные волны с частотой, превышающей несколько тысяч герц, называются радиоволнами. Широковещательная полоса частот лежит в окрестности 1 МГц. Телевизионная полоса (видеочастоты) начинается примерно при 50 МГц. Затем идут ультравысокие частоты (УВЧ), за которыми следуют сверхвысокие частоты (СВЧ).
Электромагнитные волны с самыми высокими частотами, излучаемые электронными генераторами, называются микроволнами. Их длина волны составляет несколько сантиметров или даже миллиметров.
Электромагнитные волны с еще более высокими частотами могут излучаться молекулярными и атомными генераторами. Эти частоты соответствуют инфракрасному излучению. Электромагнитное излучение в диапазоне частот от 4,3 ·1014
до 7·1014
Гц лежит в области чувствительности человеческого глаза, это видимый свет. Электромагнитные волны с еще более высокими частотами невидимы человеческим глазом и называются ультрафиолетовым излучением. Диапазон ультрафиолетовых частот простирается вплоть до 5·1017
Гц. Начиная с этих частот и кончая частотами 1019
Гц лежит область рентгеновского излучения. Электромагнитное излучение с еще более высокими частотами называется гамма-излучением.
Рис. 1. Шкала электромагнитных излучений
2. Открытие ультрафиолетового излучения
Спектр лучей, видимых глазом человека не имеет резких, четко определенных границ. Со стороны фиолетового цвета одни исследователи относили границу к 4000 Å, другие - к 3800, а третьи сдвигали ее даже до 3200 Å. Очевидно, это объясняется различной световой чувствительностью глаза и свидетельствует о наличии области лучей, не видимых глазом человека.
Когда чувствительный термометр помещен в область спектра видимых лучей, он показывает значительное повышение температуры. Что же произойдет, если передвинуть термометр за пределы видимого спектра? Такие опыты были поставлены в начале XIX века английским астрономом У. Гершелем. После многократно проведенных исследований он обнаружил, что за границей красного цвета термометр показывает повышение температуры с определенным максимумом. Это послужило для ученого доказательством существования новых лучей, названных впоследствии инфракрасными.
А что происходит за фиолетовой, коротковолновой границей спектра? И здесь под влиянием невидимых лучей обнаружено повышение температуры. Правда, выражено оно значительно слабее, чем за красной границей спектра, и скептики пытались подвергнуть сомнению существование таких лучей. Когда же в качестве чувствительного приемника света немецкий физик И. Риттер и английский ученый У. Уоластон использовали в 1801 году фотопластинку, реальность новых лучей, названных ультрафиолетовыми, стала неоспоримой. За фиолетовой границей спектра фотографическая пластинка чернеет даже быстрее, чем под влиянием видимых лучей. Поскольку почернение фотопласти
3. Источники ультрафиолетового излучения и его основные свойства
Источники ультрафиолетового излучения условно можно разделить на естественные и искусственные. К естественным источникам относится Солнце и другие небесные светила, разряды молнии. К искусственным - электрическая дуга с угольными электродами или содержащими металлы в виде примесей или стержней, специальные газоразрядные лампы (например, ртутно-кварцевая лампа типа ПРК), водородные, бактерицидные, ксеноновые, люминесцентные, лампы-фотовспышки.
Ультрафиолетовое излучение обнаруживается с помощью фотоэлементов, фотоумножителей, люминесцентных веществ. В таблице 1 приведены основные свойства ультрафиолетового излучения и примеры его технического применения.
Таблица 1
Свойства УФ-излучения | Техническое применение |
Вызывает люминесценцию | Используется в люминесцентных лампах, люминесцентном анализе и дефектоскопии |
Вызывает фотоэффект | Применяется в промышленной электронике и автоматике |
Вызывает фотохимические реакции | Применяется в текстильном производстве |
Производит бактерицидное действие | Используется для стерилизации воздуха в промышленных помещениях и в медицинской практике |
Вызывает эритему | Применяется в профилактике заболеваний и лечении |
4. Использование ультрафиолетового излучения человеком
В предыдущих параграфах уже были приведены примеры использования человеком ультрафиолетового излучения. Но ультрафиолетовый свет имеет еще много полезных применений.
Ультрафиолет – верный помощник человека в сельском хозяйстве. С помощью ультрафиолетового облучения семян некоторых растений удается получить мутации, из числа которых можно отобрать особи, обладающие ценными хозяйственными качествами. Особый интерес представляет применение ультрафиолета в животноводстве. В осенний, зимний и весенний периоды, когда домашний скот и птица начинают ощущать недостаток света, особенно ультрафиолетового. Коровы начинают давать меньше молока, куры – яиц, учащаются случаи яловости, потомство рождается более слабым. Все это происходит потому, что в крови скота и птицы уменьшается количество гемоглобина, эреироцитов, белка и кальция.
Выход из положения ясен: недостаток ультрафиолетового излучения нужно восполнять искусственно. Однако следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав света ультрафиолетовых ламп, высота подвески над стойлами животных, длительность их горения и т.п. могут вместо пользы принести вред. На службу людям поставлена еще одна удивительная особенность ультрафиолетовых лучей. Многие насекомые, в большинстве своем вредители, «видят» ультрафиолетовые лучи и непреодолимо стремятся к ним. Используя эту особенность насекомых, в некоторых странах (Япония, США, Югославия и др.) для массового истребления насекомых-вредителей успешно применяют ультрафиолетовые лампы.
Литература
Барабой В. А. Солнечный луч. М.: Наука, 1976.
Детская энциклопедия. Вещество и энергия, т. 3. М.: Просвещение. 1966.
Орир Д. Популярная физика. М.: Мир, 1989.
Резников Л. И. Физическая оптика. М.: Просвещение. 1971.