МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КАЗАХСТАНСКО-АМЕРИКАНСКИЙ СВОБОДНЫЙ УНИВЕРСИТЕТ КОЛЛЕДЖ
на тему: Тепловые двигатели
Проверила:
Максименко Т. П.
Выполнила:
учащаяся группы 09 ОГХ - 1
Шушаникова Ю. Ю.
г. Усть-Каменогорск
2009 г.
План
1. История тепловых двигателей
2. Виды тепловых двигателей
а) паровая машина
б) двигатель внутреннего сгорания
в) паровая и газовая турбины
г) реактивный двигатель
3. Экологические проблемы, связанные с тепловыми двигателями
4. Пути решения экологических проблем
История тепловых двигателей
История тепловых машин уходит в далекое прошлое. Говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи.
Примерно тремя столетиями позже в Александрии - культурном и богатом городе на африканском побережье Средиземного моря - жил и работал выдающийся ученый Герон, которого историки называют Героном Александрийским. Герон оставил несколько сочинений, дошедших до нас, в которых он описал различные машины, приборы, механизмы, известные в те времена.
В сочинениях Герона есть описание интересного прибора, который сейчас называют Героновым шаром. Он представляет собой полый железный шар, закрепленный так, что может вращаться вокруг горизонтальной оси. Геронов шар - это прообраз современных реактивных двигателей.
В то время изобретение Герона не нашло применения и осталось только забавой. Прошло 15 столетий. Во времена нового расцвета науки и техники, наступившего после периода средневековья, об использовании внутренней энергии пара задумывается Леонардо да Винчи. В его рукописях есть несколько рисунков с изображением цилиндра и поршня. Под поршнем в цилиндре находится вода, а сам цилиндр подогревается. Леонардо да Винчи предполагал, что образовавшийся в результате нагрева воды пар, расширяясь и увеличиваясь в объеме, будет искать выход, и толкать поршень вверх. Во время своего движения вверх поршень мог бы совершать полезную работу.
Несколько иначе представлял себе двигатель, использующий энергию пара, Джованни Бранка, живший на век раньше великого Леонардо. Это было колесо с лопатками, в второе с силой ударяла струя пара, благодаря чему колесо начинало вращаться. По существу, это была первая паровая турбина.
В XVII-XVIII веках над изобретением паровой машины трудились англичане Томас Севери (1650-1715) и Томас Ньюкомен (1663-1729), француз Дени Папен (1647-1714), русский ученый Иван Иванович Ползунов (1728-1766) и другие.
Папен построил цилиндр, в котором вверх и вниз свободно перемещался поршень. Поршень был связан тросом, перекинутым через блок, с грузом, который вслед за поршнем также поднимался и опускался. По мысли Папена, поршень можно было связать с какой-либо машиной, например водяным насосом, который стал бы качать воду. В нижнюю откидывающуюся часть цилиндра насыпали поpox, который затем поджигали. Образовавшиеся газы, стремясь расшириться, толкали поршень вверх. После того цилиндр и поршень с наружной стороны обливали диодной водой. Газы в цилиндре охлаждались, и их давление на поршень уменьшалось. Поршень под действием собственного веса и наружного атмосферного давления опускался вниз, поднимая при этом груз. Двигатель совершал полезную работу. Для практических целей он ни годился: слишком уж сложен был технологический цикл его работы. Кроме того, применение подобного двигателя было далеко не безопасным.
Однако нельзя не усмотреть в первой машине Палена черты современного двигателя внутреннего сгорания.
В своем новом двигателе Папен вместо пороха использовал воду. Этот двигатель работал лучше, чем пороховой, но для серьезного практического использования был также малопригоден.
Недостатки были связаны с тем, что приготовление пара, необходимого для работы двигателя, происходило в самом цилиндре. А что если в цилиндр впускать уже готовый пар, полученный, например, в отдельном котле? Тогда достаточно было бы попеременно впускать в цилиндр то пар, то охлажденную воду, и двигатель работал бы с большей скоростью и меньшим потреблением топлива.
Об этом догадался современник Дени Палена англичанин Томас Севери, построивший паровой насос для откачки воды из шахты. В его машине приготовление пара происходило вне цилиндра - в котле.
Вслед за Севери паровую машину (также приспособленную для откачивания воды из шахты) сконструировал английский кузнец Томас Ньюкомен. Он умело использовал многое из того, что было придумано до него. Ньюкомен взял цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле.
Машина Ньюкомена, как и все ее предшественницы, работала прерывисто - между двумя рабочими ходами поршня была пауза. Высотой она была с четырех- пятиэтажный дом и, следовательно, исключительно : пятьдесят лошадей еле-еле успевали подвозить ей топливо. Обслуживающий персонал состоял из двух человек: кочегар непрерывно подбрасывал уголь в топки, а механик управлял кранами, впускающими пар и холодную воду в цилиндр.
Понадобилось еще 50 лет, прежде чем был построен универсальный паровой двигатель. Это произошло в России, на одной из отдаленных ее окраин - Алтае, где в то время работал гениальный русский изобретатель, солдатский сын Иван Ползунов.
Ползунов построил его на одном из Барнаульских заводов. В апреле 1763 года Ползунов заканчивает расчеты и подает проект на рассмотрение. В отличие от паровых насосов Севери и Ньюкомена, о которых Ползунов знал, и недостатки которых ясно осознавал, это был проект универсальной машины непрерывного действия. Машина предназначалась для воздуходувных мехов, нагнетающих воздух в плавильные печи. Главной ее особенностью было то, что рабочий вал качался непрерывно, без холостых пауз. Это достигалось тем, что Ползунов предусмотрел вместо одного Цилиндра, как это было в машине Ньюкомена, два попеременно работающих. Пока в одном цилиндре поршень под действием пара поднимался вверх, в другом пар конденсировался, и поршень шел вниз. Оба поршня были связаны одним рабочим валом, который они поочередно поворачивали то в одну, то в другую стороны. Рабочий ход машины осуществлялся не за счет атмосферного давления, как у Ньюкомена, а благодаря работе пара в цилиндрах.
Весной 1766-года ученики Ползунова, спустя неделю после его смерти, испытали машину. Она работала в течение 43 суток и приводила в движение мехи трех плавильных печей. Потом котел дал течь; кожа, которой были обтянуты поршни (чтобы уменьшить зазор между стенкой цилиндра и поршнем), истерлась, и машина остановилась навсегда. Больше ею никто не занимался.
Создателем другого универсального парового двигателя, который получил широкое распространение, стал английский механик Джеймс Уатт (1736-1819). Работая над усовершенствованием машины Ньюкомена, он в 1784 году построил двигатель, который годился для любых нужд. Изобретение Уатта было принято на ура. В наиболее развитых странах Европы ручной труд на фабриках и заводах все больше и больше заменялся работой машин. Универсальный двигатель стал необходим производству, и он был создан. В двигателе Уатта применен так называемый кривошипно-шатунный механизм, преобразовывающий возвратно-поступательное движение поршня во вращательное движение колеса.
Уже потом было придумано машины: направляя поочередно пар то под поршень, то сверху поршня, Уатт превратил оба его хода (вверх и вниз) в рабочие. Машина стала мощнее. Пар в верхнюю и нижнюю части цилиндра направлялся специальным парораспределительным механизмом, который впоследствии был усовершенствован и назван .
Затем Уатт пришел к выводу, что вовсе не обязательно все время, пока поршень движется, подавать в цилиндр пар. Достаточно впустить в цилиндр какую-то порцию пара и сообщить поршню движение, а дальше этот пар начнет расширяться и перемещать поршень в крайнее положение. Это сделало машину экономичней: меньше требовалось пара, меньше расходовалось топлива.
Сегодня один из самых распространенных тепловых двигателей - двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т.д., во всем мире насчитываются сотни миллионов таких двигателей.
Виды тепловых двигателей
К тепловым двигателям относятся: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Их топливом является твёрдое и жидкое топливо, солнечная и атомная энергии.
Паровая машина
— тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу. Для привода паровой машины необходим паровой котёл. Расширяющийся пар давит на поршень или на лопатки паровой турбины, движение которых
Двигатель внутреннего сгорания
(сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС очень широко распространены, например на транспорте.
Газовая турбина
(фр. turbine от лат. turbo вихрь, вращение
) — это тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Состоит из компрессора, соединённого напрямую с турбиной, и камерой сгорания между ними. (Термин Газовая турбина может также относится к самому элементу турбина.)Сжатый атмосферный воздух из компрессора поступает в камеру сгорания, где смешивается с топливом и происходит возгорание смеси. В результате сгорания возрастает температура, скорость и объём потока газа. Далее энергия горячего газа преобразуется в работу. При входе в сопловую часть турбины горячие газы расширяются, и их тепловая энергия преобразуется в кинетическую. Затем, в роторной части турбины, кинетическая энергия газов заставляет вращаться ротор турбины. Часть мощности турбины расходуется на работу компрессора, а оставшаяся часть является полезной выходной мощностью. Газотурбинный двигатель приводит во вращение находящийся с ним на одном валу высокоскоростной генератор. Работа, потребляемая этим агрегатом, является полезной работой ГТД. Энергия турбины используется в самолётах, поездах, кораблях и танках.
Преимущества газотурбинных двигателей
· Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
· Высокий КПД на максимальных оборотах, чем у поршневых двигателей.
· Перемещение только в одном направлении, с намного меньшей вибрацией, чем у поршневого двигателя.
· Меньшее количество движущихся частей, чем у поршневого двигателя.
· Низкие эксплуатационные нагрузки.
· Высокая скорость вращения.
· Низкая стоимость и потребление смазочного масла.
Недостатки газотурбинных двигателей
· Стоимость намного больше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы должны быть более крепкие и жаропрочные.
· Машинные операции также более сложные;
· Как правило, имеют меньший КПД, чем поршневые двигатели, на холостом ходу.
· Задержка отклика на изменения настроек мощности.
Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты, крупные катера и так далее, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности.
Паровая турбина
представляет собой серию вращающихся дисков, закрепленных на единой оси, называемых ротором турбины, и серию чередующихся с ними неподвижных дисков, закрепленных на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в нее подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии. Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения). Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания. Основной сферой применения паровых турбин является выработка электроэнергии (около 86% мирового производства электроэнергии производится паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках). Было также построено некоторое количество паротурбовозов, но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами.
Реактивный двигатель
— двигатель, создающий необходимую для движения силу тяги посредством преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. Рабочее тело с большой скоростью истекает из двигателя, и в соответствии с законом сохранения импульса образуется реактивная сила, толкающая двигатель в противоположном направлении. Для разгона рабочего тела может использоваться как расширение газа, нагретого тем или иным способом до высокой температуры (т.н. тепловые реактивные двигатели
), так и другие физические принципы, например, ускорение заряженных частиц в электростатическом поле (См. ионный двигатель). Реактивный двигатель сочетает в себе собственно двигатель с движителем, то есть, он создаёт тяговое усилие только за счёт взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.
Существует два основных класса реактивных двигателей:
· Воздушно-реактивные двигатели — тепловые двигатели, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.
· Ракетные двигатели — содержат все компоненты рабочего тела на борту и способны работать в любой среде, в том числе и в безвоздушном пространстве.
Основным техническим параметром, характеризующим реактивный двигатель, является тяга (иначе — сила тяги) — усилие, которое развивает двигатель в направлении движения аппарата. Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей.
Экологические проблемы тепловых двигателей
Экологический кризис, нарушение взаимосвязей внутри экосистемы или необратимые явления в биосфере, вызванные антропогенной деятельностью и угрожающие существованию человека как вида. По степени угрозы естественной жизни человека и развитию общества выделяются неблагоприятная экологическая ситуация, экологическое бедствие и экологическая катастрофа
Загрязнения от тепловых двигателей:
1. Химическое.
2. Радиоактивное.
3. Тепловое.
КПД тепловых двигателей < 40%, в следствии чего больше 60% теплоты двигатель отдаёт холодильнику
При сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается
Сжигание топлива сопровождается выделением в атмосферу углекислого газа, азотных, серных и других соединений
Меры предотвращения загрязнений:
1. Снижение вредных выбросов.
2. Контроль за выхлопными газами, модификация фильтров.
3. Сравнение эффективности и экологической безвредности различных видов топлива, перевод транспорта на газовое топливо.
Перспективы использования электрических двигателей, пневмокаров, транспорта на солнечных батареях