РефератыФизикаЖиЖидкое состояние вещества 2

Жидкое состояние вещества 2

Содержание

Содержание……………………………………………………..1


1 Ведение………………………………………………………..2


2 Основная часть


2.1 Строение жидкости. Движение молекул жидкости………3


2.2 Давление в жидкости……………………………………….4


2.3 Закон Архимеда …………………………………………….5


2.4 Испарение……………………………………………………6


2.5 Кипение……………………………………………………….7


2.6 Поверхностное натяжение жидкости……………………….8


2.7 Жидкостные пленки…………………………………………9


2.8 Смачивание и несмачивание…………………………….….10


2.9 Капиллярные явления………………………………………..12


2.10 Электрический ток в жидкостях…………………………..13


3 Вывод………………………………………………………..14


Список литературы………………………………………………16


1.Введение

В повседневной жизни мы обычно сталкиваемся с тремя фазовыми состояниями вещества – твердым, жидким и газообразным. Мы имеем довольно ясное представление о строении газов и твердых кристаллических тел. Газ является собранием молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. В твердом теле все молекулы длительно сохраняют взаимное расположение, совершая лишь небольшие колебания около определенных положений равновесия.


В данном реферате я остановлюсь на более подробном рассмотрении жидкого состояния вещества. Главной особенностью этого агрегатного состояния является то, что жидкое состояние, занимая промежуточное положение между газами и кристаллами, сочетает в себе некоторые свойства обоих этих состояний. В частности, для жидкостей, как и для кристаллических тел, характерно наличия определенного объема, и вместе с тем, жидкость, подобно газу, принимает форму того сосуда, в котором находится. Большинство людей привыкли думать, что жидкости не имеют никакой собственной формы. Но это неверно. Естественная форма всякой жидкости – это шар. Обычно сила тяжести мешает жидкости принимать эту форму, жидкость либо растекается тонким слоем по поверхности, либо же принимает форму сосуда, если налита в него.


Промежуточным положением жидкостей обусловлено то, что жидкое состояние оказывается особенно сложным по своим свойствам. Хотя жидкости стали предметом научного изучения по крайней мере еще со времен Архимеда, то есть 2200 лет тому назад, анализ поведения жидкостей все еще является одной из самых трудных областей прикладной науки. До сих пор нет вполне законченной и общепризнанной теории жидкостей.


2
.Основная часть.


Для понимания основных свойств и закономерностей жидкого состояния вещества необходимо рассмотреть следующие аспекты:


2.1.Строение жидкости. Движение молекул жидкости
.


Жидкость – это нечто такое, что может течь.


В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным. Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным, и довольно быстро порядок в расположении частиц совсем исчезает. Молекулы жидкости движутся гораздо более свободно, чем молекулы твердого тела, хотя и не так свободно, как молекулы газа. Каждая молекула жидкости в течение некоторого времени движется то туда, то сюда, не удаляясь, однако от своих соседей. Но время от времени молекула жидкости вырывается из своего окружения и переходит в другое место, попадая в новое окружение, где опять в течение некоторого времени совершает движения, подобные колебанию. Значительные заслуги в разработке ряда проблем теории жидкого состояния принадлежит советскому ученому Я. И. Френкелю. Cогласно Френкелю, тепловое движение в жидкостях имеет следующий характер. Каждая молекула в течение некоторого времени колеблется около определенного положения равновесия. Время от времени молекула меняет место равновесия, скачком перемещаясь на новое положение, отстоящего от предыдущего на расстояние порядка размеров самих молекул. То есть, молекулы лишь медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест.Таким образом, движение молекул жидкости представляет собой нечто вроде смеси движений в твердом теле и в газе: колебательное движение на одном месте сменяется свободным переходом из одного места в другое.


2.2.Давление в жидкости

Повседневный опыт учит нас, что жидкости действуют с известными силами на поверхность твердых тел, соприкасающихся с ними. Эти силы называются силами давления жидкости.


Прикрывая пальцем отверстие открытого водопроводного крана, мы ощущаем силу давления жидкости на палец. Боль в ушах, которую испытывает пловец, нырнувший на большую глубину, вызвана силами давления воды на барабанную перепонку уха. Термометры для измерения температуры на глубине моря должны быть очень прочными, чтобы давление воды не могло раздавить их.


Давление в жидкости обусловлено изменением ее объема – сжатием. По отношению к изменению объема жидкости обладают упругостью. Силы упругости в жидкости – это и есть силы давления. Таким образом, если жидкость действует с силами давления на соприкасающиеся с ней тела, это значит, что она сжата. Так как при сжатии плотность вещества растет то можно сказать, что жидкости обладают упругостью по отношению к изменению плотности.


Давление в жидкости перпендикулярно любой поверхности, помещенной в жидкость. Давление в жидкости на глубине h равно сумме давления на поверхности и величины, пропорциональной глубине:



Благодаря тому, что жидкости могут передавать статическое давление, практически не менее своей плотности они могут использоваться в устройствах, дающих выигрыш в силе: гидравлическом прессе.


2.3.Закон Архимеда


На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть жидкости и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Равнодействующая сил давления на тело, погруженное в жидкость, называется поддерживающей силой жидкости.


Если тело, погруженное в жидкость, предоставить самому себе, то оно потонет, останется в равновесии или всплывет на поверхность жидкости в зависимости от того, меньше ли поддерживающая сила, чем сила тяжести, действующая на тело, равна ей или больше ее.


Закон Архимеда заключается в том, что на тело, находящееся в жидкости, действует направленная вверх выталкивающая сила, равная весу вытесненной жидкости. На тело, погружённое в жидкость, действует выталкивающая сила (называемая силой Архимеда)



где ρ — плотность жидкости (газа), — ускорение свободного падения, а V
— объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности).


Если тело, погруженное в жидкость, подвешено к чаше весов, то весы показывают разность между весом тела в воздухе и весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.


Интересно отметить такой экспериментальный факт, что, находясь внутри другой жидкости большего удельного веса, жидкость по закону Архимеда «теряет» свой вес и принимает свою естественную, шарообразную форму.


2.4.Испарение


В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры.


Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией.


Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным.


С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей должна быть плотность пара, чтобы конденсация могла сравняться с испарением.


2.5.Кипение


Когда при нагревании жидкости достигается температура, при которой давление насыщенных паров равно внешнему давлению, устанавливается равновесие между жидкостью и ее насыщенным паром. При сообщении жидкости дополнительного количества теплоты происходит немедленное превращение соответствующей массы жидкости в пар. Этот процесс называется кипением.


Кипение – это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Например, для испарения 1 г воды при температуре 100° С и давлении, соответствующем атмосферному давлению на уровне моря, требуется затратить 2258 Дж, из которых 1880 идут на отделение молекул от жидкости, а остальные – на работу по увеличению объема, занимаемого системой, против сил атмосферного давления (1 г водяных паров при 100° С и нормальном давлении занимает объем 1,673 см3
, тогда как 1 г воды при тех же условиях – лишь 1,04 см3
).


Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается.


По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения.


Температуры кипения различных жидкостей сильно отличаются, между собой и это находит широкое применение в технике, например, при разгонке нефтепродуктов.


Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необхо

димое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.


2.6.Поверхностное натяжение жидкости


Свойство жидкости сокращать свою поверхность до минимума называется поверхностным натяжением. Поверхностное натяжение – явление молекулярного давления на жидкость, вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости. На поверхности жидкости молекулы испытывают действие сил, которые не являются симметричными. На находящуюся внутри жидкости молекулу со стороны соседей в среднем равномерно со всех сторон действует сила притяжения, сцепления. Если поверхность жидкости увеличивать, то молекулы будут двигаться против действия удерживающих сил. Таким образом, сила, стремящаяся сократить поверхность жидкости, действует в противоположном направлении внешней растягивающей поверхность силе. Эта сила называется силой поверхностного натяжения и вычисляется по формуле:




- коэффициент поверхностного натяжения
()


- длина границы поверхности жидкости


Обратим внимание, что у легко испаряющихся жидкостей (эфира, спирта) поверхностное натяжение меньше, чем у жидкостей нелетучих (у ртути). Очень мало поверхностное натяжение у жидкого водорода и, особенно, у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико. Различие в поверхностном натяжении жидкостей объясняется различием в силах сцепления у разных молекул.


Измерения поверхностного натяжения жидкости показывают, что поверхностное натяжение зависит не только от природы жидкости, но и от его температуры: с повышением температуры различие в плотностях жидкости уменьшаются, в связи с этим уменьшается и коэффициент поверхностного натяжения - .


Благодаря поверхностному натяжению любой объем жидкости стремится уменьшить площадь поверхности, уменьшая таким образом и потенциальную энергию. Поверхностное натяжение – одна из упругих сил, ответственных за движение ряби на воде. В выпуклостях поверхностное тяготение и поверхностное натяжение тянут частицы воды вниз, стремясь сделать поверхность снова гладкой.


2.7.Жидкостные пленки


Все знают, как легко получить пену из мыльной воды. Пена – это множества пузырьков воздуха, ограниченных тончайшей пленкой из жидкости. Из жидкости, образующей пену, легко можно получить и отдельную пленку.


Эти пленки очень интересны. Они могут быть чрезвычайно тонки: в наиболее тонких частях их толщина не превосходит стотысячной доли миллиметра. Несмотря на свою тонкость, они иногда очень устойчивы. Мыльную пленку можно растягивать и деформировать, сквозь мыльную пленку может протекать струя воды, не разрушая ее.


Чем же объяснить устойчивость пленок? Непременным условием образования пленки является прибавление к чистой жидкости растворяющихся в ней веществ, притом таких, которые сильно понижают поверхностное натяжение


В природе и технике мы обычно встречаемся не с отдельными пленками, а с собранием пленок – пеной. Часто можно видеть в ручьях, там, где небольшие струйки падают в спокойную воду, обильное образование пены. В этом случае способность воды пениться связана с наличием в воде особого органического вещества, выделяющегося из корней растений. В строительной технике используют материалы, имеющие ячеистую структуру, вроде пены. Такие материалы дешевы, легки, плохо проводят теплоту и звуки и достаточно прочны. Для их изготовления добавляют в растворы, из которых образуются стройматериалы, вещества, способствующие пенообразованию.


2.8.Смачивание


Небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости. Ртуть, помещенная на поверхность твердого тела, не всегда образует круглые капли. Она растекается по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится.


Капля анилина имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда. Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность.


Это объясняется тем, что в случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекулы жидкости с молекулой твердого тела. В случае ртути и стекла силы сцепления между молекулами ртути и стекла малы по сравнению с силами сцепления между молекулами ртути, и ртуть собирается в каплю. Такая жидкость называется не смачивающей
твердое тело. В случае же ртути и цинка силы сцепления между молекулами жидкости и твердого тела превосходят силы сцепления, действующие между молекулами жидкости, и жидкость растекается по твердому телу. В этом случае жидкость называется смачивающей
твердое тело.


Отсюда следует, что, говоря о поверхности жидкости, надо иметь в виду не только поверхность, где жидкость граничит с воздухом, но также и поверхность, граничащую с другими жидкостями и ли с твердым телом.


В зависимости от того, смачивает ли жидкость стенки сосуда или не смачивает, форма поверхности жидкости у места соприкосновения с твердой стенкой и газом имеет тот или иной вид. В случае несмачивания форма поверхности жидкости у края круглая, выпуклая. В случае смачивания жидкость у края принимает вогнутую форму.


2.9.Капиллярные явления.


В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. д. Подобные явления можно также наблюдать в узких стеклянных трубочках. Узкие трубочки называются капиллярными или волосными.


При погружении такой трубочки одним концом в широкий сосуд в широкий сосуд происходит следующее: если жидкость смачивает стенки трубки, то она поднимется над уровнем жидкости в сосуде и притом тем выше, чем уже трубка; если жидкость не смачивает стенки, то наоборот уровень жидкости в трубке устанавливается ниже, чем в широком сосуде. Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности.
В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения.


Высота поднятия жидкости в капиллярных трубках зависит от радиуса канала в трубке, поверхностного натяжения и плотности жидкости. Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровнейh, чтобы гидростатическое давление rgh уравновешивало капиллярное давление:


rgh= 2s/R,


где s - поверхностное натяжение жидкости


R – радиус капилляра.


Отсюда:




Высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости (закон Жюрена)


2.10.Электрический ток в жидкостях.


Чистые жидкости не проводят электрический ток, то есть являются диэлектриками, так как каждая из молекул жидкости нейтральна и не перемещается в электрическом поле.


Жидкости, пропускающие электрический ток называются электролитами. Электрический ток в жидкостях образуется в результате направленного движения ионов солей. Явление выделения вещества на электродах при прохождении тока через электролит называется электролизом. На отрицательно заряженном электроде - катоде
происходит электрохимическое восстановление частиц (атомов, молекул, катионов), а на положительно заряженном электроде - аноде
идет электрохимическое окисление частиц (атомов, молекул, анионов). В 1832 году Фарадей установил, что масса M вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду Q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I.


Коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества
Второй закон Фарадея гласит: электрохимическиеэквивалентыразличных веществ относятся, как их химические эквиваленты. Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент равен:

,


где F — постоянная Фарадея


Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения водорода, а также гидроксида натрия, хлора, хлорорганических соединений, диоксида марганца, пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование). Электролиз находит применение для очистки сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).


3.Вывод

Таким образом, жидкость - это промежуточное состояние вещества между твердым и газообразным состояниями. Это обуславливает наличие у жидкостей свойств, характерных как для твердого, так и газообразного состояния. Ярким примером состояния вещества, соединяющим свойства жидкого и твердого состояний, являются жидкие кристаллы, широко применяемые в промышленности и технике (жидкокристаллические дисплеи). В связи с этим описание состояния жидкости требует синтеза математических методов, используемых для описания твердого и газообразного состояний, что усложняет и затрудняет доскональное описание многих физико-химических явлений.


В настоящее время многие свойства жидкостей широко используются в промышленности и технике. Например, свойство жидкости повышать давление во всем своем объеме используется в грузоподъемных машинах с гидравлическим приводом. Но необходимо и дальнейшее глубокое изучение теории жидкого состояния вещества. Так, актуальность изучения потока вскипающей жидкости связана с запросами атомной энергетики, с проблемой безопасности энергетических установок.


Особый интерес к изучению физико-химических процессов в жидком состоянии связан с тем, что мы сами на 90% состоим из воды, самой распространенной жидкости на Земле. И все жизненно важные процессы в животном и растительном мире происходят в жидкости, а именно в воде. Поэтому изучение этого состояния вещества важно и актуально для всех людей.


Список литературы:


1) И.В. Савельев «Курс общей физики»

2) Кл.Э. Суорц «Необыкновенная физика обыкновенных явлений»


3) Элементарный учебник физики под редакцией академика Г.С. Ландсберга


4) Т.И. Трофимова «Курс физики»


5) Я.И. Перельман «Занимательная физика»

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Жидкое состояние вещества 2

Слов:2817
Символов:22990
Размер:44.90 Кб.