РефератыФизикаПрПространственное вращение

Пространственное вращение

Пространственное вращение – один из важнейших видов периоди­ческого движения в стационарных квантовых системах. Напомним, что в классической механике наиболее рациональное описание такого дви­жения достигается при использовании сферической системы координат, с которой мы и начнём свой анализ.


Сферическая система координат


4.3.1.1. Сферическая система координат хорошо известна из географии и астрономии. Положение частица на сфере в этом случае определяется с помощью широты и долготы, которые задаются посредством двух углов и , отсчитываемых относительно фиксированных осей, например, декартовых, как это показано на рис. 4.2. Вводя рас­стояние от центра вращения, переменный радиус r
, получаем третью координату, необходимую для описания пространственного вращатель­ного движения


Шаровые координаты:









Декартовы координаты:


(4.28)


Рис. 4.2. Сферическая система координат


При описании переменных данной задачи обязательно следует указать пределы их изменения


или


или


или


4.3.1.2. Вычисление элемента объема в сферической системе ко­ординат проиллюстрируем рис. 4.2. Величина dV понадобится нам в дальнейших расчётах.


(4.29)


4.3.2. Преобразование оператора Лапласа


4.3.2.1. Лапласиан – основа выражения оператора кинетической энергии и, следовательно, гамильтониана . Поэтому проследим подробно всю схему его преобразования при замене декартовой системы координат на сферическую. С подобной , но более простой процеду­рой мы уже имели дело при рассмотрении плоского ротатора.


4.3.2.2. В теории поля лапласиан является скалярным произве­дением вектор-оператора Гамильтона "набла" самого на себя– скаляр­ным "квадратом" : Поэтому вначале преобразуем оператор "набла"


. (4.30)


В соответствии с (4.28) x,y,z выражаются как функции сфе­рических координат, поэтому производные, составляющие оператор "набла", предстанут в следующем виде


(4.31)


4.3.2.3. Наборы частных производных в (4.30) образуют квадрат­ную матрицу коэффициентов, при умножении на которую происходит пе­реход от одного базисного вектор-столбца к другому:


(4.32)


Вычислим все производные, являющиеся элементами квадратной матрицы, дифференцируя выражения (4.28)


или


(4.33)


Напомним, что перемножение матриц подчиняется правилу "строка на столбец". В итоге элементы искомого вектор-столбца предстанут в виде суммы:


(4.34)


(4.35)


(4.36)


4.3.2.4. Следующий этап преобразований – построение оператора Лапласа в переменных .


(4.37)


Для этого, согласно уравнению (4.35), необходимо перемножить сами на себя выражения операторов однократного дифференцирования по координатам х,у,z через сферические переменные (4.32)–(.4.34) и затем взять сумму этих произведений. При этом следует учитывать, что перемножаются не числа, а операторы, и действие оператора из левой скобки на каждое слагаемое правой выполняется по правилам, аналогичным правилам дифференцирования произведения функций, т.е.


(4.38)


4.3.2.5. Ход преобразований продемонстрируем на примере одно­го из слагаемых лапласиана, например при этом, для сохранения упорядоченного характера записи выпишем новые слагаемые, получающиеся в результате дифференцирования, в столбец под каждым преобразуемым выражением. Это в некотором роде изменение привычного математического синтаксиса, цель которого – порядок и наглядность в записи




Cуммируя, получаем


. (4.37)


4.3.2.6. Аналогично получаются другие слагаемые лапласиана.


Результаты преобразований представлены в таблице 4.2. В её левом столбце перечислены слагаемые оператора Лапласа в декартовых координатах, а в верхней строчке – все операторы дифференцирования первого и второго порядков по всем сферическим переменным , включая перекрёстные, которые возникают в ходе преобразований. На пере­сечении строк и столбцов указаны коэффициенты перед последними – функции от , которые получаются при преобразовании слагаемых лапласиана, стоящих в левом столбце. Самая нижняя строчка представляет суммы по столбцам. Домножая эти суммы справа на соответствующие о

ператоры верхней строки и суммируя результаты, получаем окончательное искомое выражение оператора Лапласа в сферической систе­ме координат:


(4.38)


4.3.2.7. Сгруппируем некоторые из слагаемых в (4.38) для более компактной записи


(4.39)


, (4.40)


В результате лапласиан приобретает вид


(4.41)


Таблица 4.2.


Коэффициенты преобразования оператора Лапласа.

























































0 1 0

Табл. 4.2.1. Продолжение.








































0 0

4.3.2.8. Отдельные фрагменты лапласиана, построенные на раз­ных переменных, удобно обозначить самостоятельными символами. Для краткости переменные отметим в качестве индексов


(4.42)


(4.43)


. (4.44)


Вся чисто угловая часть лапласиана, заключенная в скобки в формуле (4.41) называется оператором Лежандра .


(4.45)


В целом же лапласиан оказывается такой комбинацией трёх операторов, которая обеспечивает далее разделение переменных во многих дифференциальных уравнениях, в том числе и в уравнении Шредингера, построенных на его основе:


(4.46)


4.3.2.9. Напомним, что с оператором (4.44) составляющим самую внутреннюю часть конструкции и оператора Лапласа, и опе­ратора Лежандра мы уже имели дело при рассмотрении одномерного вращения (раздел 3.2.). Были найдены его собственные волновые функции, которые далее войдут в качестве одного из сомножителей общих собственных функций этих операторов.


Присутствие радиального слагаемого в этом случае заставляет представить оператор кинетической энергии в виде суммы


(4.50)


4.3.3.3. В силу того, что оператор кинетической энергии частицы отличается от лапласиана только множителем (см. уравнение 2.15), домножив на него формулу (4.46), получим


(4.51)


Сравнивая формулы (4.50) и (4.51), приходим к фундаменталь­ному соотношению


, (4.52)


т.е. оператор квадрата момента импульса совпадает с оператором Лежандра с точностью до постоянного множителя . Заметим, что размерность собственных значений оператора совпадает с размер­ностью постоянной Планка .


4.3.3.4. Этот же результат можно получить и последовательными математическими преобразованиями компонент операторов и . Процедура перехода к сферическим координатам для компонент аналогична той, что была осуществлена в разделе 3.2.2. при перево­де к плоской полярной системе координат. Кстати говоря, в сфери­ческих координатах имеет тот же самый вид (3.24). Используя уравнения (4.52) и (4.34), читатель сам легко получит выражения


(4.53)


(4.54)


(3.24)


Суммируя результаты возведения в квадрат найденных выражений для операторов проекций момента импульса, получаем формулу (4.52), которая в развернутой форме с учетом (4.45) имеет вид


(4.55)

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Пространственное вращение

Слов:978
Символов:9269
Размер:18.10 Кб.