Нижегородский Государственный Технический Университет.
Лабораторная работа по физике №2-30.
Экспериментальные исследования диэлектрических
свойств материалов.
Выполнил студент
Группы 99 – ЭТУ
Наумов Антон Николаевич
Проверил:
Н. Новгород 2000г.
Цель работы:
определение диэлектрической проницаемости и поляризационных характеристик различных диэлектриков, изучение электрических свойств полей, в них исследование линейности и дисперсии диэлектрических свойств материалов.
Теоретическая часть:
Схема экспериментальной установки.
|
В эксперименте используются следующие приборы: два вольтметра PV1 (стрелочный) и PV2 (цифровой), генератор сигналов низкочастотный, макет-схема, на которой установлен резистор R=120 Ом, конденсатор, состоящий из набора пластин различных диэлектриков (толщиной d=2 мм).
Собираем схему, изображенную на РИС. 1. Ставим переключатель SA в положение 1. Подготавливаем к работе и включаем приборы. Подаем с генератора сигнал частоты f=60 кГц и напряжением U=5 В, затем по вольтметру PV1 установить напряжение U1=5 В. Далее, вращая подвижную пластину, измеряем напряжение U2 для конденсатора без диэлектрика и 4-x конденсаторов с диэлектриками одинаковой толщины. При этом напряжение U1 поддерживаем постоянным.
Напряженность поля между пластинами в вакууме Е0
вычисляется по формуле: где При внесении пластины в это поле диэлектрик поляризуется и на его поверхности появляются связанные заряды с поверхностной плотностью . Эти заряды создают в диэлектрике поле , направленное против внешнего поля , и имеет величину: . Результирующее поле: . В электрическом поле вектор поляризации:, где c - диэлектрическая восприимчивость вещества. Связь модуля вектора поляризации с плотностью связанных зарядов: . относительная диэлектрическая проницаемость диэлектрика. Вектор электрической индукции . Этот вектор определяется только свободными зарядами и вычисляется как . В рассматриваемой задаче на поверхности диэлектрика их нет. Вектор D связан с вектором Е следующим соотношением .
Экспериментальная часть:
В данной работе используются формулы: , где S - площадь пластины конденсатора, d - расстояние между ними. Диэлектрическая проницаемость материала: . Для емкости конденсатора имеем: , где U1
- напряжение на RC цепи, U2
- напряжение на сопротивлении R, f - частота переменного сигнала. В плоском конденсаторе напряженность связана с напряжением U1
как:
Опыт №1.
Измерение диэлектрической проницаемости и характеристик поляризации материалов.
U1
= 5В, R=120Ом, f=60 кГц, d=0,002м.
Материал
|
U
|
Воздух |
40 |
Стеклотекстолит |
97 |
Фторопласт |
61 |
Гетинакс |
89 |
Оргстекло |
76 |
СВ
=176 пкФ; ССТ
=429 пкФ;
СФП
=270 пкФ; СГН
=393 пкФ; СОС
=336 пкФ;
; ;
; ;
Для гетинакса подсчитаем:
;
; ;
; ;
; ;
;
Расчет погрешностей:
;
;
;
;
;
(так как ).
;
Опыт № 2.
Исследование зависимости
e
=
f
(
E
).
R=120Ом, f=60 кГц, d=0,002м.
U
|
U
(воздух) |
U
(гетинакс) |
С
|
С,
|
Е,
|
e
|
1 |
0,009 |
0,019 |
200 |
420 |
500 |
2,10 |
2 |
0,016 |
0,036 |
177 |
398 |
1000 |
2,24 |
3 |
0,025 |
0,052 |
184 |
387 |
1500 |
2,09 |
4 |
0,031 |
0,070 |
171 |
384 |
2000 |
2,26 |
5 |
0,039 |
0,086 |
172 |
380 |
2500 |
2,21 |
График зависимости e = f(E) - приблизительно прямая, так как диэлектрическая проницаемость не зависит от внешнего поля.
Опыт № 3.
Исследование зависимости диэлектрической проницаемости среды от частоты внешнего поля.
U1
= 5В, R=120Ом.
f
|
U
(воздух) |
U
text-align:center;">(гетинакс) |
Х
(гетинакс)
|
С
|
С,
|
e
|
20 |
0,015 |
0,030 |
20,0 |
199 |
398 |
2,00 |
40 |
0,029 |
0,059 |
10,2 |
192 |
391 |
2,04 |
60 |
0,041 |
0,089 |
6,7 |
181 |
393 |
2,07 |
80 |
0,051 |
0,115 |
5,2 |
169 |
381 |
2,25 |
100 |
0,068 |
0,146 |
4,1 |
180 |
387 |
2,15 |
120 |
0,078 |
0,171 |
3,5 |
172 |
378 |
2,18 |
140 |
0,090 |
0,197 |
3,0 |
181 |
373 |
2,18 |
160 |
0,101 |
0,223 |
2,7 |
167 |
370 |
2,21 |
180 |
0,115 |
0,254 |
2,4 |
169 |
374 |
2,21 |
200 |
0,125 |
0,281 |
2,2 |
166 |
372 |
2,24 |
По графику зависимости e = F(f) видно, что диэлектрическая проницаемость среды не зависит от частоты внешнего поля. График зависимости ХС
=F(1/f) подтверждает, что емкостное сопротивление зависит от 1/f прямо пропорционально.
Опыт № 4.
Исследование зависимости емкости конденсатора от угла перекрытия диэлектрика верхней пластиной.
U1
= 5В, R=120Ом, f=60 кГц, d=0,002м, r=0,06м, n=18.
a
|
U
|
С,
|
С
|
0 |
0,039 |
172 |
150 |
10 |
0,048 |
212 |
181 |
20 |
0,056 |
248 |
212 |
30 |
0,063 |
279 |
243 |
40 |
0,072 |
318 |
273 |
50 |
0,080 |
354 |
304 |
60 |
0,089 |
393 |
335 |
Опыт № 5.
Измерение толщины диэлектрической прокладки
.
U1
= 5В, R=120Ом, f=60 кГц.
Схема конденсатора с частичным заполнением диэлектриком.
U2
(стеклотекстолит тонкий)=0,051В,
U2
(стеклотекстолит толстый)=0,093В,
U2
(воздух)=0,039В.
С0
=172пкФ - без диэлектрика;
С1
= 411пкФ - стеклотекстолит толстый;
С1
= 225пкФ - стеклотекстолит тонкий.
; ; ; ;
; ; ;
Вывод:
На этой работе мы определили диэлектрическую проницаемость и поляризационные характеристики различных диэлектриков, изучили электрические свойства полей, в них исследовали линейность и дисперсность диэлектрических свойств материалов.