РефератыФизикаЭлЭлектрический ток в различных средах 2

Электрический ток в различных средах 2

Электрический Ток в металлах.


Носителями электрического тока в металлах являются свободные электроны. На основании электронной проводимости в металлах можно вывести закон Ома. Кинетическая энергия электрона к моменту соударения его в конце свободного пробега (свободный пробег электрона - расстояние между двумя соседними ударами) Обозначим время свободного пробега (интервал времени, за которое электрон проходит длину свободного пробега) через т.
Все электроны проводимости, которые имеются в участке проводника длиной l
и сечением S, приобретают энергию, равную


где v
- скорость электрона перед его столкновением с ионом. Средняя скорость Г7 направленного движения в результате действия электрического стационарного поля будет равна


Считаем, что движение электрона между ударами равноускоренное. В формулу, выражающую силу тока через микроскопические величины (I = neSv), подставим


получим: 2I = neSv. Из этого выражения находим:


которое подставим в формулу (3.18) и получим:


В выражение (3.19) все величины, стоящие перед I, не зависят от напряжения и поэтому:


Таким образом, сила тока пропорциональна напряжению. Вольт-амперная характеристика для металлов представлена на рис. 53. Зная силу тока I, заряд электрона е, площадь поперечного сечения проводника и концентрацию электронов, можно определить скорость упорядоченного движения электронов, так называемую дрейфовую скорость.


НАЗНАЧЕНИЕ:

Электрический ток присутствует везде, он течет: в нашем организме, передавая нервные импульсы, в атмосфере, вызывая разряды молнии и тому подобное, и, конечно же, в электрических приборах, протекая по металлическим проводам.


УСТРОЙСТВО:

Электрический ток в металлах - это движение отрицательно заряженных свободных электронов под действием электрического поля в пространстве между положительно заряженными ионами упорядоченной кристаллической решетки металла.


ПРИНЦИП ДЕЙСТВИЯ:

Отрицательно заряженные свободные электроны совершают хаотическое движение в пространстве между ионами, но под действием электрического поля они начинают смещаться в сторону положительно заряженного электрода. Скорость этого смещения очень мала, примерно, 1 мм в секунду. Однако электрическое поле распространяется по проводнику со скоростью света (300 000 км/c), и, так как все электроны начинают двигаться одновременно, получается что ток движется со скоростью света!


Электрический Ток в Полупроводниках


Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой
. При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости. В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные. Примеси, отдающие электроны и создающие электронную проводимость, называются донорными
(примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа. Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными
(примеси имеющие валентность меньше, чем у основного полупроводника). При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости. Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим
. Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57). Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1. Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57). Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования. Полупроводники находят широкое применение в современной электронной технике. Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах - терморезисторах
. Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами
.


Электрический Ток в электролитах


Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролит

ах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.




SO4 + Cu = CuSO4.



m = kQ = kIt.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза
. Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду
), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией
. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора: При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду (рис 4.15.1). Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают но одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков. Во многих случаях электролиз сопровождается вторичными реакциями
продуктов разложения, выделяющихся на электродах, с материалом электродов или растворителей. Примером может служить электролиз водного раствора сульфата меди CuSO4 (медный купорос) в том случае, когда электроды, опущенные в электролит, изготовлены из меди. Диссоциация молекул сульфата меди происходит по схеме Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ион отдает аноду два электрона и превращается в нейтральный радикал SO4 вступает во вторичную реакцию с медным анодом Образовавшаяся молекула сульфата меди переходит в раствор. Таким образом, при прохождении электрического тока через водный раствор сульфата меди происходит растворение медного анода и отложение меди на катоде. Концентрация раствора сульфата меди при этом не изменяется.Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году. Закон Фарадея
определяет количества первичных продуктов,
выделяющихся на электродах при электролизе: Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:
Величину k называют электрохимическим эквивалентом.
Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:








Здесь m0 и q0 – масса и заряд одного иона, – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m0 иона данного вещества к его заряду q0. Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q0 = ne), то выражение для электрохимического эквивалента k можно записать в виде




F = eNA = 96485 Кл / моль.

Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества, F = eNA – постоянная Фарадея.





Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества. Закон Фарадея для электролиза приобретает вид:


Явление электролиза широко применяется в современном промышленном производстве.


Электрический Ток в Газах


В газах существуют несамостоятельные и самостояг тельные электрические разряды.


Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой
.


Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны. Вольт-амперная характеристика представлена на рис. 54. В области ОАВ - несамостоятельный разряд. В области ВС разряд становится самостоятельным.


При самостоятельном разряде одним из способов ионизации атомов является ионизация электронным ударом. Ионизация электронным ударом становится возможна тогда, когда электрон на длине свободного пробега А приобретает кинетическую энергию Wk
, достаточную для совершения работы по отрыву электрона от атома. Виды самостоятельных разрядов в газах - искровой, коронный, дуговой и тлеющий разряды.



Искровой разряд
возникает между двумя электродами заряженными разными зарядами и имеющие большую разность потенциалов. Напряжение между разноименно заряженными телами достигает до 40 000 В. Искровой разряд кратковременный, его механизм - электронный удар. Молния - вид искрового разряда. В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом линии электропередачи и поверхностью Земли, возникает особая форма самостоятельного разряда в газах, называемая коронным разрядом
. Электрический дуговой разряд
был открыт русским ученым В. В. Петровым в 1802 г. При соприкосновении двух электродов из углей при напряжении 40-50 В в некоторых местах возникают участки малого сечения с большим электрическим сопротивлением. Эти участки сильно разогреваются, испускают электроны, которые ионизируют атомы и молекулы между электродами. Носителями электрического тока в дуге являются положительно заряженные ионы и электроны. Разряд, возникающий при пониженном давлении, называется тлеющим разрядом
. При понижении давления увеличивается длина свободного пробега электрона, и за время между столкновениями он успевает приобрести достаточную для ионизации энергию в электрическом поле с меньшей напряженностью. Разряд осуществляется электронно-ионной лавиной.


Электрический Ток в Вакууме


Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Работа, которую нужно совершить для освобождения электрона с поверхности тела, называется работой выхода. Явление термоэлектронной эмиссии объясняется тем, что при повышении температуры тела увеличивается кинетическая энергия некоторой части электронов в веществе. Если кинетическая энергия электрона превысит работу выхода, то он может преодолеть действие сил притяжения со стороны положительных ионов и выйти с поверхности тела в вакууме. На явлении термоэлектронной эмиссии основана работа различных электронных ламп.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Электрический ток в различных средах 2

Слов:1907
Символов:16022
Размер:31.29 Кб.