РефератыФизикаИсИсследование движения тел в диссипативной среде 2

Исследование движения тел в диссипативной среде 2

Министерство Образования РФ


Санкт-Петербург


Государственный Электротехнический Университет “ЛЭТИ”


Кафедра физики


Исследование движения тел в диссипативной среде


Лабораторная работа N1


Санкт-Петербург


2004


Исследуемые закономерности


Сила сопротивления движению в вязкой среде.
В вязкой среде на движущееся тело действует сила сопротивления, направленная против скорости тела. Эта сила обусловлена вязким трением между слоями среды и пропорциональна скорости тела


,


где v
– скорость движения тела, r
– коэффициент сопротивления, зависящий от формы, размеров тела и от вязкости среды h.


Для шара радиуса R
коэффициент сопротивления определяется формулой Стокса




При движении тела в вязкой среде происходит рассеяние (диссипация) его кинетической энергии. Слой жидкости, находящийся в непосредственной близости от поверхности движущегося тела, имеет ту же скорость, что и тело, по мере удаления скорость частиц жидкости уменьшается. В этом состоит явление вязкого трения, в результате которого энергия тела передается слоям окружающей среды в направлении, перпендикулярном движению тела.


Слой жидкости, находящийся в непосредственной близости от поверхности движущегося тела, имеет ту же скорость, что и тело, по мере удаления скорость частиц жидкости уменьшается. В этом состоит явление вязкого трения, в результате которого энергия тела передается слоям окружающей среды в направлении, перпендикулярном движению тела.


Движение тела в диссипативной среде.

Движение тела массой m
под действием постоянной силы F
при наличии сопротивления среды описывается следующим уравнением:


.


В данной работе тело движется под действием силы тяжести, уменьшенной в результате действия выталкивающей силы Архимеда, т.е.


,


где rс
и rт
– плотности среды и тела, соответственно. Таким образом, уравнение движения преобразуется к виду


.


Если начальная скорость движения тела равна нулю, то равна нулю и сила сопротивления, поэтому начальное ускорение


.


С увеличением скорости сила сопротивления возрастает, ускорение уменьшается, обращаясь в нуль. Дальше тело движется равномерно с установившейся скоростью v
¥
.Аналитическое решение уравнения движения при нулевой начальной скорости выражается формулой


,


где t - время релаксации. Соответствующая зависимость скорости движения тела в диссипативной среде от времени представлена на рис. 2.


где h
– высота расположения тела над дном сосуда



Передача энергии жидкой среде, окружающей движущееся тело, происходит за счет совершения работы против сил трения. Энергия при этом превращается в тепло, идет процесс диссипации энергии. Скорость диссипации энергии (мощность потерь) в установившемся режиме


.


Учитывая, что m
/ t = r
, получим уравнение баланса энергии на участке установившегося движения


Рис. 2


.


Указания по выполнению наблюдений


Масштабной линейкой измерить расстояние Dh
между средней и нижней меткой на боковой поверхности сосуда.
На аналитических весах взвесить поочередно 5 шариков, и записать массу каждого шарика в таблицу Протокола наблюдений.
Поочередно опуская шарики в жидкость через впускной патрубок, измерить секундомером время прохождения каждым шариком расстояния между двумя метками на боковой поверхности сосуда. Результаты записать в таблицу Протокола наблюдений.
На панели макета установки указаны значения плотности жидкости в сосуде и плотности материала шариков. Эти данные также следует записать в Протокол наблюдений.

Задание на подготовку к работе


Выполните индивидуальное домашнее задание №2
Изучите описание лабораторной работы.
Выведите формулу для определения коэффициента сопротивления r
, полагая что известно значение установившейся скорости v
¥
. Выведите также формулу погрешности Dr
.
Выведите формулу для определения коэффициента вязкости h на основе рассчитанного коэффициент сопротивления r
, массы и плотности материала шариков.
Подготовьте бланк Протокола наблюдений, основываясь на содержании раздела «Указания по проведению наблюдений». Разработайте и занесите в бланк Протокола наблюдений таблицу результатов наблюдений.

Задание по обработке результатов


По данным таблицы результатов наблюдений определите значения установившихся скоростей шариков. Рассчитайте значения коэффициентов сопротивления r
для каждого опыта.
Определите коэффициент вязкости h исследуемой жидкости. Найдите его среднее значения и погрешность полученного результата.
Промежуточные вычисления и окончательные результаты, полученные в п. 1, 2 сведите в таблицу.
Для одного из опытов определите мощность рассеяния и проверьте баланс энергии на участке установившегося движения.
Также для одного из опытов найдите время релаксации t, постройте графики скорости и ускорения от времени.

Результаты, полученные в п. 3 и 4, следует округлить, основываясь на значениях погрешностей величин, рассчитанных ранее.


Министерство Образования РФ


Санкт-Петербург


Государственный Электротехнический Университет “ЛЭТИ”


Кафедра физики


ОТЧЕТ


по лабораторно-практической работе № 1


ИССЛЕДОВАНИЕ


ДВИЖЕНИЯ ТЕЛ В ДИССИПАТИВНОЙ СРЕДЕ


Выполнил Чистяков А.О.


Факультет РТ


Группа № 4121


Преподаватель Дедык А.И.










Оценка лабораторно-практического занятия
Выполнение ИДЗ Подготовка к лабораторной работе Отчет по лабораторной работе Коллоквиум Комплексная оценка

«Выполнено» «____» ___________


Подпись преподавателя __________


ПРОТОКОЛ НАБЛЮДЕНИЙ


ЛАБОРАТОРНАЯ РАБОТА №1


ИССЛЕДОВАНИЕ


ДВИЖЕНИЯ ТЕЛ В ДИССИПАТИВНОЙ СРЕДЕ


Таблица 1















































Измеряемая величина Номер наблюдения
1 2 3 4 5
206
136 119 90 89 80
t (сек) 5,45 5,55 7,1 7,15 7,75
0,038 0,037 0,029 0,029 0,027



Выполнил Чистяков А.О.


Факультет РТ


Группа № 4121


«1» октября 2004


Преподаватель Дедык А.И.


Обработка результатов


1.По полученным данным рассчитываем скорость движения V∞
для каждого шарика.


Формула для расчета скорости движения , где


Δh – расстояние между метками,


t – время прохождения шариком расстояния Δh между метками в сосуде.







1.1 Рассчитываем диаметр и радиус каждого шарика.


Пусть – объем шарика, D – диаметр шарика, R – радиус шарика, тогда


теперь приравниваем и получаем формулы для расчета диаметра и радиуса шариков;







1.2 Вычислим коэффициент вязкости исследуемой жидкости, для каждого из опытов








2. Упорядочим ; проверим на промахи; найдем и ;







































N 1 2 3 4 5
1,095 1,162 1,163 1,173 1,175
119 89 90 80 136
t (сек) 5,55 7,15 7,1 7,75 5,45
206

R– размах выборки



Up
1
n
=0,64; N=5; P≈95%





Из этого видно что промах поэтому


исключаем его из таблицы. Теперь таблица


выглядит так:









































N 1 2 3 4
1,162 1,163 1,173 1,175
89 90 80 136
t (сек) 7,15 7,1 7,75 5,45
2,5 2,5 2,4 2,8
206






2.1 Теперь находим среднее значение



2.2 Находим среднеквадратическое отклонение результатов измерения



2.3 Найдем средний квадрат отклонения



2.4 Высчитаем случайную погрешность результатов измерений


=0,72; =3,2 ;N=4; P≈95%


I.


II.


2.5 Производим вывод выражений для частных производных от функции










rdf










2.6 По каждому набору совместно измеренных значений аргументов и их приборных погрешностей рассчитаем приборную погрешность функции







2.7 Вычислить среднюю приборную погрешность функции



2.8 Вычисляем полную погрешность функции



2.9 Запишем результат измерения и округлим его



3. Рассчитайте значения коэффициентов сопротивления r
для каждого опыта


Для шара радиуса R
коэффициент сопротивления определяется формулой Стокса




















4. Определим время релаксации. Предположим, что скорость прохождения шарика между слоями равна постоянной скорости (скорости равномерного падения шарика), то есть


νi
=ν¥
;
где














Время релаксации ti
очень мало, поэтому шарики до прохождения первой отметки успевают принять постоянную скорость ν¥
, т.е. их движение является установившимся на пути от верхней метки к нижней.


5. Определим мощность рассеяния для каждого шарика








6. Графики


См. в конце на миллиметровке


7. Сведем все данные в таблицу

























































































113 114 112 120 117


0.5*
t (сек) 5.86 5.87 5.85 5.37 5.45
0.5*
200
0.5*
0,03413 0,03407 0,03419 0,03724 0,03670

1,161 1,169 1,1531 1,1092 1,1055
1,1396
0,003918

1,162
1,163
1,173
1,175

0,001
0,01
0,002

-0,006
-0,005
0,005
0,006
SDi
=
0
(Di
)2
36∙
10-6
25∙
10-6
25∙
10-6
36∙
10-6
S(Dfi
)2
=122

10-6

0,03555
0,03550
0,03657
0,03393









8. Упорядочим ; проверим на промахи; найдем и ;







































N 1 2 3 4 5
0,0262 0,0269 0,0271 0,028 0,0314
80 89 90 119 136
t (сек) 7,75 7,15 7,1 5,55 5,45
206

R– размах выборки



Up
1
n
=0,64; N=5; P≈95%





Из этого видно что промах поэтому исключаем его из таблицы. Теперь таблица выглядит так:



































N 1 2 3 4
0,0262 0,0269 0,0271 0,028
80 89 90 119
t (сек) 7,75 7,15 7,1 5,55
206






2.1 Теперь находим среднее значение



2.2 Находим среднеквадратическое отклонение результатов измерения



2.3 Найдем средний квадрат отклонения



2.4 Высчитаем случайную погрешность результатов измерений


=0,72; =3,2 ;N=4; P≈95%


I.


II.


2.5 Производим вывод выражений для частных производных от функции



















2.6 По каждому набору совместно измеренных значений аргументов и их приборных погрешностей рассчитаем приборную погрешность функции







2.7 Вычислить среднюю приборную погрешность функции



2.8 Вычисляем полную погрешность функции



2.9 Запишем результат измерения и округлим его



Вывод: Коэффициент вязкости () полученный и рассчитанный в ходе лабораторных измерений отличается от стандартного значения, в основном из-за погрешностей, допущенных в ходе измерения массы шарика и времени прохождения им между двумя отметками. Для более точного измерения нам необходим электронный секундомер.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Исследование движения тел в диссипативной среде 2

Слов:1766
Символов:19803
Размер:38.68 Кб.