РефератыФизикаБоБольшое каноническое распределение Гиббса

Большое каноническое распределение Гиббса

Лекция: Большое каноническое распределение Гиббса.


План:


1. Функция распределения системы, ограниченной воображаемыми стенками.


2. Большой канонический формализм.


3. Термодинамическая интерпретация распределений Гиббса.


1.
Рассмотрим построение термодинамического формализма, связанного с выделением термодинамической системы с помощью воображаемых стенок (). Несмотря на то, что определение химического потенциала представляется весьма сложной задачей (эта величина непосредственно не измеряется, а вычисляется на основе косвенных измерений, причем, достаточно сложным образом), отказ от точной фиксации числа частиц существенно упрощает рассмотрение ряда задач.


Очевидно, что рассмотренная ранее фиксация числа частиц N
с точностью до 1 шт. носит идеализированный характер и по большому счету представляет формальный прием, облегчающий анализ. В действительности же не только не только энергия, но и число частиц оказываются размыты о числу частиц около среднего значения . Как и для разброса , разброс захватывает сравнительно большое число частиц ().


Полагая далее, что система выделена с помощью воображаемых стенок и число N
не может быть включено в число переменных состояния системы, воспользуемся сопряженной к величиной – химическим потенциалом . Поскольку величина внутренней энергии также зависит от числа частиц ее необходимо заменить на величину (см. тему №3)


Тогда II-е начало термодинамики для квазистатических процессов, имеющее вид:


(7.1а)


преобразуется к виду:


(7.1б)


Найдем функцию распределения по микроскопическим состояниям термодинамической системы. Очевидно, эта функция должна удовлетворять ряду требований:


1. Распределение должно определять вероятность обнаружить систему в состоянии с заданными значениями N
и n
. Здесь N
– число частиц в системе (с точностью до 1 штуки), - набор квантовых чисел, определяющих микроскопическое состояние системы N
тел.


2. Желательно, чтобы в качестве макроскопических переменных, описывающих состояние термодинамической системы, использовались величины ().


3. Полученное распределение должно быть сосредоточенным около значения по числу частиц N
и около значения по энергии.


Сформулированное требование позволяет использовать закономерности и допущения, положенные в основу микроканонического и канонического распределений.


Очевидно, величина при фиксированном представляет среднее значение микроскопических характеристик . Тогда, учитывая сформулированную выше аксиому о равновероятности микросостояний, соответствующих заданному макросостоянию, выражение для распределения по микроскопическим состояниям , можно записать, по аналогии с микроскопическим распределением Гиббса (5.12):


. (7.2)


Здесь - сосредоточенная около нуля квазикронекоровская функция (), - нормировочная сумма (аналог статистического веса):


(7.3)


Как известно, основная асимптотика статистического веса Г
при не зависит от выбора типа стенок, ограничивающих термодинамическую систему. То есть она не зависит от выбора набора макроскопических параметров : (), (), () и т.д., фиксирующих равновесное состояние системы. Тогда введенная величина и связанная с ней по сути являются статистическим весом Г
и энергией S
термодинамической системы


Учитывая (6.8), представляющей явное выражение функции , перепишем (7.2) в виде:



При записи (7.4) было использовано выражение (3.21) для термодинамического потенциала “омега” .


Найдем выражение для нормировочной суммы , подставляя в (7.3) выражение (6.8) для функции :



Поскольку, согласно (5.11)


получим:


(7.5)


Для дальнейшего анализа разложим энтропию в степенной ряд по отношению числа частиц N
от среднего термодинамического значения , ограничиваясь членами второго порядка. При этом учтем: (см. ф-лу (3.28)). Тогда получим:



Подставляя полученный результат в (7.5), находим:



Учитывая большое число частиц N
и, пологая , перейдем от суммирования в последнем выражении к интегралу. Получаем:


(7.6)


Вычислим интеграл в полученном равенстве:



Подставляя полученный результат в (7.6), получаем:



Тогда вычисляя в обеих частях последнего равенства предел при и отбрасывая в правой части сомножители, растущие медленнее, чем , получаем:


(7.6)


Подставляя (7.6) в (7.4), находим:


(7.7)


Выражение (7.7) получило название большого канонического распределения Гиббса. Включая в себя каноническое распределение (6.15) как частный случай, это распределение также содержит распределение по числу частиц. Если , то (7.7) принимает вид (6.15).


Нормировочная сумма:


(7.8)


получила название большой статистической сумы. Эта величина связана с термодинамическим потенциалом посредством соотношения:


(7.9)


При необходимости, используя аппарат макроскопической термодинамики можно осуществить в (7.8) переход к другим переменным. Покажем, что на примере перехода от () и (). Из (7.1) следует:


или и т.д.


Полученные равенства можно рассматривать как термодинамические уравнения относительно химического потенциала, решением которых будет выражение . А учитывая (3.21): , можно исключить и переменную , выражая ее в виде . Тогда для энтропии и, соответственно статистического веса, можно записать:


(7.10)


Аналогичным образом осуществляется пересчет и для других переменных состояния и параметров термодинамической системы.


Как и в рассмотренном ранее каноническом распределении, для большого канонического распределения можно показать, что является чрезвычайно сосредоточенным распределением как по числу частиц N
, так и по энергии Е
.


Воспользуемся аналогией с выполненным в предыдущей теме рас

четом ширины канонического распределения по энергии. Тогда ширина распределения по N
рассчитывается на основе дисперсии и оказывается равной


(7.11)


Здесь - макроскопические усреднения концентрации частиц.


Тогда для относительной флуктуации числа частиц, получаем:


(7.12)


Таким образом, допустимые большим каноническим распределением состояния с числом частиц N
сосредоточены в узком интервале значений вблизи точки . Ширина этого интервала в предельном статистическом случае стремится к нулю по закону . Несложно получить и вид распределения по числу частиц. Выполняя ту же последовательность действий, что и в предыдущей теме для получения распределения по энергии , приходим к следующему распределению:


(7.13)


Легко видеть, что (7.13) с математической точки зрения представляет распределение Гаусса с математическим ожиданием и дисперсией .


Кроме того, большое математическое распределение может быть использовано для определения дисперсии энергии . Используя соотношение , проводя непосредственные вычислении и учитывая (6.19), в итоге получим:


(7.14)


2.
Введеный в предыдущем вопросе большой канонический формализм Гиббса представляет собой замкнутый аппарат равновесной статистической механики.


Запишем алгоритм проведения конкретных расчетов с использованием большого канонического распределения:


1. Ищется решение уравнения Шредингера для каждого значения N
в пределах :


(7.15)


2. Осуществляется вычисление в главной по V
(или по ) асимптотике большой кинетической суммы:


(7.16)


Зная явный вид выражения (7.16), могут быть вычислены термодинамический потенциал “омега” и все термодинамические характеристики системы:


и т.д.


Заметим, что все термодинамические характеристики задаются в переменных ().


Кроме того, может быть найдено большое каноническое распределение



Это распределение позволяет рассчитать средние значения любых динамических величин, дисперсии флуктуации (при фиксированных ) и т.д.


В случае необходимости, которая, как правило, возникает, производится пересчет полученных результатов от переменных () к переменным (), который производится на термодинамическом уровне. Уравнение



разрешается относительно .


Это позволяет исключить из результатов, полученных в пункте 2. Например,



Заметим, что процедура пересчета результатов в других переменных может быть осуществлено и при вычислении статистических сумм.


3.
Подведем итог полученным результатам в соответствии с различными способами выделения термодинамической системы из окружения. То есть фактически приведем общую структуру равновесной статистической механики, которая нами была построена, применительно к различным способам термодинамического описания систем многих частиц:


1) Система с адиабатическими стенками. В этом случае фиксируются параметры (). Функция распределения Wn
, определяющая структуру смешанного состояния, выражается при помощи микроканонического распределения Гиббса:


,


а аналитический вес



связан с макроскопической характеристикой – энтропией:


,


которая является термодинамическим потенциалом для переменных состояния ().


Такое представление имеет преимущественно общетеоретический интерес, поскольку на его основе четко просматриваются основные постулаты и ограничения. На основе которых осуществляется построение статистической механики.


2) Система в термостате, - состояние задается параметрами (). Функция распределения Wn
задается каноническим распределением Гиббса:



Статистическая сумма



связана с макроскопическим параметром – свободной энергией


,


являющейся термодинамическим потенциалом в переменных ().


3) Система, выделенная с помощью воображаемых стенок. Выбранный способ описания очень удобен и широко используется, особенно в статистической механике классических систем. В этом случае фиксированными оказываются параметры (), а число частиц N
оказывается микроскопическим параметром. В этом случае функция распределения вводится с помощью большого канонического распределения Гиббса:



Для выбранного способа описания связь с макроскопическими характеристиками системы осуществляется посредством большой статистической суммы:



Соответствующим термодинамическим потенциалом является потенциал :


,


который и является термодинамическим потенциалом для системы с воображаемыми стенками.


Этот способ описания также широко используется. Наиболее удобным оказалось использование этого способа в квантовой статистической механике. Относительное неудобство большого канонического формализма связано с часто возникающей необходимостью пересчета результатов к более удобным параметрам ().


4) Система под поршнем. В этом случае фиксируются параметры (), а объем V
рассматривается в качестве микроскопического параметра. Тогда функция распределения , задающая структуру смешанного состояния, имеет вид:



Здесь - “гибсовская” статистическая сумма, равная:



и связанная с термодинамическим потенциалом Гиббса:


,


характеризующим систему, заданную в переменных ().


Этот подход также оказывается удобным при рассмотрении некоторых частных задач.


В случае необходимости состояние термодинамической системы может быть описано и с помощью другого набора параметров. Тогда необходимо ввести соответствующие функции распределения и статистические суммы, связав последние с соответствующим термодинамическим потенциалом. Выбор конкретного способа описания не влияет на окончательный результат, однако способен существенно упростить или усложнить процесс исследования термодинамической системы. Это относится как к точным, так и к приближенным методам.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Большое каноническое распределение Гиббса

Слов:1446
Символов:12656
Размер:24.72 Кб.