Билет 1.
1. Уравнение Шредингера, его свойства. Статическая интерпретация волновой функции. Ур-е Шредингера – основное ур-е нерелятивистской квантовой механики, которому подчиняется любая волновая ф-ция
ih
Квадрат модуля волновой функции равен плотности вероятности обнаружения частицы в данной точке пространства .
2. Фотопроводимость полупроводников,процессы генерации и рекомбинации носителей заряда
Фотопроводимость полупроводников – увеличение электропроводности полупроводников под действием электромагнитного излучения – может быть обусловлена свойствами, как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т.е. когда энергия фотона равна или больше ширины запрещенной зоны (
Если полупроводник содержит примеси, то фотопроводимость может возникать и при
hv
λ0
λ0
------------------------------------------------------
Билет 2
1.Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний.
Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция
Δ-оператор Лапласа(ΔΨ=∂2
Δψ+(2
2. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров, их применение
Лазер – устройство, при прохождении через которое электромагнитные волны усиливаются за счет вынужденного излучения. Лазер – оптический квантовый генератор. Лазер имеет 3 основных компонента: 1) активная среда, 2) система накачки, 3) оптический резонатор. 1-й лазер был рубиновый, активная среда – рубин
|
Билет 4.
1.Квантовая теория свободных электронов в металле. Плотность электронных состояний. Энергия Ферми. Квантовая теория электропроводности металлов – теория электропроводности основывается на квантовой механике и квантовой статистике Ферми-Дирака. Согласно этой теории выражение для удельной электрической проводимости металлов:
2. Радиоактивность. Закон радиоактивного распада. Виды радиоактивных излучений.
Радиоактивностью называется самопроизвольное превращение одних атомных ядер (нестабильных) в другие, сопровождаемое испусканием элементарных частиц. Радиоактивные процессы: 1) α-распад, 2) β-распад, 3) γ-излучение ядер, 4) спонтанное деление тяжелых ядер, 5) протонная радиоактивность. Радиоактивное ядро – материнское, образующееся при распаде – дочернее. Радиоак-ть подразделяют на естественную и искусственную, принципиальных различий в них нет.
Закон радиоактивного распада. Отдельные радиоактивные ядра распадаются независимо друг от друга. Можно считать, что число ядер dN , распадающихся за малый промежуток времени dt, пропорционально как числу имеющихся ядер N, так и dt: dN = - λNdt, где λ – постоянная распада, характерная для каждого рад. препарата (“-“ т.к. убыль числа ядер). Проинтегрируем, получим: N = N0e-λt, где N0 – количество ядер в начальный момент, N – количество нераспавшихся ядер в момент времени t. Это закон рад-ого распада: число нераспавшихся ядер убывает со временем по экспоненте.
Активность А =│dN/dt│=λN – число ядер, распавшихся за ед. времени. [1 Бк (беккерель) =1 распад/с или 1 Ки(кюри) =3,7∙1010 Бк]. Удельная активность – активность на ед. массы рад. препарата.
Период полураспада Т: из условия N0/2 = N0e-λt, откуда Т = ln2/λ = 0,693/λ.
Среднее время жизни τ = (1/ N0)∫0∞tdN = (1/ N0)∫0∞tλNdt = (1/ N0)∫0∞tλN0e-λtdt = 1/λ.
Виды рад. излучений. α-распад. Самопроизвольное испускание ядром α-частицы (ядра 42Не): AZX → A-4Z-2Y+42Не. Спектр излучения α-частицы дискретный (монохромные волны). Масса материнского ядра > массы дочернего. Энергия α-частицы: 4-9 эВ. α-частица, покидая ядро, преодолевает потенциальный барьер, высота которого больше ее энергии. Внутреняя сторона барьера обусловлена ядерными силами, внешняя – кулоновскими. Преодолевает барьер благодаря туннельному эффекту.
β-распад. Самопроизвольный процесс, в котором исходное ядро превращается в другое ядро с тем же массовым числом А, но с Z, отличающимся от исходного на ±1 (испускание е-е+ или захват). Виды: 1) электронный β--распад (испускается е- и Z→Z+1); 2) позитронный β+-распад (испускается е+ и Z→Z-1); 3) К-захват (ядро захватывает е-, находящийся на К-ой оболочке и Z→Z-1, сопровождается рентгеновским излучением)
γ-излучение. Испускание возбужденным ядром при переходе его в нормальное состояние γ-квантов (их энергия 10кэВ – 5МэВ, спектр дискретный, т.к. дискретны энергетические уровни самих ядер). γ-распад – процесс внутриядерный (β-распад - внутринуклонный). Возбужденные ядра могут переходить в основное состояние, передавая энергию возбуждения внешним е- - внутренняя конверсия электронов (эти е- моноэнергетичны), явление сопровождается рентгеновским излучением.
------------------------------------------------------
Билет 5.
1.Корпускулярно-волновой дуализм материи. Гипотеза де Бройля. Опыты по дифракции микрочастиц.
Де Бройль выдвинул теорию о корп.-волн.дуализме материи, т.е. не только фотоны, но и электроны и любые другие частица материи наряду с корпускулярными обладают также волновыми свойствами. Каждые микрообъект связывают корпуск.характеристики –энергия Е и импульс р, а также волновые – частота ν и длина волны λ. Е=
Волна де Бройля – это волна, связанная с равномерным и прямолинейным движением частицы.
y
y
E=h
|
Билет 3
1. Спонтанное и индуцированное излучение. Коэффициенты «А» и «В» Эйнштейна.
Спонтанный переход – переход атомов с более высоких на более низкие энергетические уровни. Такие переходы приводят к спонтанному испусканию атомами фотонов. Индуцированные переходы – переходы с более низких на более высокие уровни энергии под действием излучения. Для возможности установления равновесия при произвольной интенсивности падающего излучения необходимо существование «испускательных переходов», вероятность ктр. возрастала бы с увеличением интенсивности излучения, т.е. «испуск. переходов», вызываемых излучением. Возникающее при таких переходах излучение назыв. вынужденным или индуцированным.
Вынужденное и вынуждающее излучения являются строго когерентными. Пусть- вероятность вынужденного перехода атома в ед. времени с энергетического уровня на уровень, -вер-ть обратного перехода. При одинаковой интенсивности излучения . и - вероятность вынужденных переходов пропорциональна плотности энергии вынуждающего переход магнитного поля, приходящейся на частоту , соответствующую данному переходу (). Величины назыв. коэф. Эйнштейна. Равновесие между веществом и излучением будет достигнуто при условии, что число атомов , совершающих в ед. времени переход из состояния n в сост. m, будет равно числу атомов , совершающих переход в обр. направ. Пусть , тогда переходы смогут происх. только под воздействием излучения, переходыбудут совершаться как вынужденно, так и cпонтан.,,
Усл. равновесия:имеем ,
(-числа атомов в сост. m и n). Вероятность спонтанного перехода атома в ед. времени из сост. n в сост m через. Тогда число атомов совершающих в ед. вр. спонтанный переход, опр. т.е.
. определяем равновесное значение(1), Согласно з-ну Больцмана При малых частотах сравнивая с формулой Рэлея-Джинса находим, что подставляя в (1) получаем формулу Планка.
2. Движение микрочастицы в области одномерного потенциального порога
Одномерный потенциальный порог.
и ;Решения ур-ий Шредингера для стац. сост. имеет вид
и где и
волновые ф-ии частицы в обл-тях I и II соотв. и , Вер-ть того что частица отразится от порога опр-ся коэф. отражения , Вероятность прохождения частицы ===============================
Потенциальный барьер. Пусть ч-ца движущаяся слева направо, встречает на своем пути потенц. барьер высоты .Рассм. случай тогда (1) для обл. I и III
(2) для обл-ти II причем . Будем искать реш. ур-я (1) в виде подставляя получаем отсюда , где , т.о. реш. ур-я (1) имеет вид для обл-ти I, для обл-ти III, аналогично для ур-я (2) для обл. II, . Заметим,что реш. вида соотв. волне распростр. в положит. направлении оси х, а реш. вида - в противополож.
В обл. III имеется только волна, прошедшая через барьер и распр. слева направо следов. =0. Для того чтобы была непрерывна должно вып. усл. и . Для того чтобы не имела изломов необх.: и , причем - отношение квадратов модулей амплитуд отраженной и падающих волн определяет вер-ть отражения частицы от потенц. барьера – коэф. отражения. - отнош. квадратов модулей амплитуд прошедшей и падающей волн – вер-ть прохождения частицы через барьер – коэф. прохождения.. Из ур-ний получившихся из условий непрерывности и гладкости пси-ф-ии, находим
, т.е. вер-ть прохождения частицы через потенц. барьер сильно зависит от ширины барьера
. При преодолении потенц. барьера ч-ца как бы проходит через туннель в этом барьере – рассм. нами явление – туннельный эффект.
|
Билет 6
1. Волновая ф-ция, ее статический смысл и условие, которым она должна удовлетворять. Принцип суперпозиции в квантовой механике.
С движением частицы связывается волновой процесс, описываемый волновой ф-цией
2.Эффект Комптона.
Эффектом Комптона наз.упругое рассеяние коротковолнового электромагнитного излучения на свободных электронах вещества, сопровождающееся увеличением длины волны. Комптон экспериментально доказал Δλ=λ`-λ=2λ
------------------------------------------------------
Билет 7
2. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров, их применение
Лазер – устройство, при прохождении через которое электромагнитные волны усиливаются за счет вынужденного излучения. Лазер – оптический квантовый генератор. Лазер имеет 3 основных компонента: 1) активная среда, 2) система накачки, 3) оптический резонатор. 1-й лазер был рубиновый, активная среда – рубин
2.Деление ядер и цепные реакции. Термоядерный синтез.
Реакция деления ядра заключается в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на ядра, близких по массе. Оно сопровождается испусканием 2-3 вторичных нейтронов, называемых нейтронами деления. Т.к. для средних ядер число нейтронов примерно равно числу протонов, а для тяжелых ядер число нейтронов значительно превышает число протонов, то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными.
Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деления, что делает возможным осуществления цепной реакции деления - ядерной реакции, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Цепная реакция характеризуется коэффициентом размножения
N
Реакция синтеза атомных ядер – образование из легких ядер более тяжелых. Реакция синтеза проходящая при сверхвысоких температурах (примерно 107
|
Билет 8.
1.Работа выхода электронов из металла. Термоэлектронная эмиссия. Формула Ричардсона и Ричардсона-Дешмана. Работа выхода – это работа, которую нужно совершить для удаления электрона с уровня Ферми. Авых
1)
2) Если
2. Структура атомного ядра. Характеристика ядер: заряд, размеры, масса, энергия связи. Свойства и обменные характер ядерных сил.
Атомное ядро состоит из элементарных частиц – протонов и нейтронов. Протон имеет положительный заряд, равный заряду электрона. Нейтрон – нейтральная частица. Протоны и нейтроны называют нуклонами. Общее число нуклонов в атомном ядре называется массовым числом А. Атомное ядро характеризуется зарядом
Энергия, которую необходимо затратить на расщепление ядра на отдельные нуклоны, называется энергией связи нуклонов в ядре:
Энергия связи ядра
1.ядерные силы являются силами притяжения
2.ядерные силы являются короткодействующими – их действие проявляется только на расстоянии 10-15
3.ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между 2 протонами или 2 нейтронами, одинаковы по величине. Ядер.силы имеют неэлектрическую природу.
4.ядерным силам свойственно насыщение – каждый нуклон в ядре взаимодействует с ограниченным числом ближайших к нему нуклонов.
5.ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов.
6.ядерные силы не являются центральными, т.е. действующими по линии, соединяющей центры взаимодействия нуклонов.
|
Билет 12
1.Прохождение частицы через потенциальный барьер. Туннельный эффект.
Рассмотрим простейший потенциальный барьер прямоугольной формы. Для одномерного (по оси х) движения частицы.
ì
U
î
где
для областей 1 и 3
Общие решения этих диф.уравнений:
Ψ
В частности, для области 1 полная волновая, будет иметь вид ψ1
Получили
Качественный характер функций ψ1
2. Атом во внешнем магнитном поле. Эффект Зеемана.
Эффект Зеемана – расщепление энергетических уровней при действии на атомы магнитного поля. Атом обладающий магнитным моментом, приобретает в магнитном поле дополнительную энергию где - проекция полного магнитного момента атома на направление поля В . Запишем выражение для энергии каждого подуровня: , где -энергия уровня в отсутствие магн. поля.
Отсюда следует, что ур-ни с кв. числом расщепляются в магн. поле на равноотстоящих др. от др. подуровней, причем величина расщепления зависит от множителя Ланде, т.е. интервалы между соседними подуровнями пропорциональны . Возможны только такие переходы между подуровнями, принадлежащими разным уровням, при ктр. вып-ся правила отбора . Компоненты, соотв. назыв. -компонентами, а компонентами. При наблюдении перпендикулярно магн. полю присутствуют и икомпоненты. При набл. вдоль – только .Частоты зеемановских компонент спектральной линии с частотой опр. ф-лой , - зеемановское смещение(отн. несмещ. линии)
Простой эффект Зеемана Эффект в ктр. спектральная линия расщепляется на три компоненты. Простой эф. присущ спектральным линиям, не имеющим тонкой структуры. Эти линии возникают при переходах между синглетными ур-нями () , т.е. (1). Слева (рис.) расщепление ур-ней для перехода (При включении поля возникают три зеемановские компоненты в соотв с (1)) На рис. справано и здесь тоже только три зеемановские компоненты (в соотв. с правилом отбора)
Сложный эффект Зеемана. Когда спектральная линия распадается на число более трех. Это связано с зав-тью расщепления самих ур-ней от множителя Ланде
P.S. Обозначение уровней где =2s+1, s- спин, L –символ состояния , -квантовое число полного мом
|
Билет 10
1.Опыты по рассеянию
α-частицы возникают при радиоактивных превращениях; они являются положительно заряженными частицами с зарядом 2е и массой во много раз больше массы электрона. Пучки α-частиц обладают высокой монохроматичностью.
Резерфорд, исследуя прохождение α-частиц в веществе(через золотую фольгу толщиной 1 мкм), показал, что основная их часть испытывает незначительные отклонения, но некоторые α-частицы резко отклоняются от первоначального направления(даже до 180˚). Т.к. электроны не могут существенно изменить движение столь тяжелых и быстрых частиц, как α-частицы, то Резерфорд сделал вывод что значительное отклонение α-частиц обусловлено из взаимодействием с положительным зарядом большой массы. Однако значительное отклонение испытывают лишь немногие α-частицы; следовательно, лишь некоторые из них проходят вблизи данного положительного заряда. Это означает что положительный заряд атома сосредоточен в объеме, очень малом по сравнению с объемом атома.
На основании своих исследований Резерфорд в 1991г. предположил ядерную (планетарную) модель атома. Вокруг положительного ядра, имеющего заряд
Первый постулат Бора (постулат для стационарных состояний): в атоме существуют стационарные состояния( не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса, удовлетворяющие условию
me
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией
2. Примесная проводимость полупроводников. Концентрация основных и неосновных носителей в полупроводнике p-типа. Уровень Ферми примесного полупроводника p-типа. Температурная зависимость проводимости примесного полупроводника p-типа.
Концентрация основных и неосновных носителей в полупроводниках p-типа.
В полупроводнике с примесью, валентность которой на единицу меньше валентности основных атомов, имеется только один вид носителей тока – дырки. Такой полупроводник обладает дырочной проводимостью и является полупроводником p-типа. Атомы примеси, вызывающие появление дырок, называют акцепторами. Акцепторные уровни оказывают существенное влияние на электрические св-ва кристалла, если они расположены недалеко от потолка валентной зоны. Образованию дырки отвечает переход э-на из валентной зоны на акцепторный уровень. Обратный переход соответствует разрыву одной из четырех ковал. связей атома примесей с его соседями и рекомбинации образовавшегося при этом электрона и дырки
Уровень Ферми примесного полупроводника p-типа.
Уровень Ферми располагается в нижней половине запрещенной зоны.
При повышении температуры уровень Ферми() в полупроводниках обоих типов смещается к середине запрещенной зоны.
Температурная зависимость проводимости примесного полупроводника p-типа.
При повышении температуры концентрация примесных носителей тока быстро достигает вершины. Это значит, что практически освобождаются все донорные или заполняются электронами все акцепторные уровни. По мере роста температуры все больше сказывается собственная проводимость полупроводника, обусловленная переходом электронов из валентной зоны в зону проводимости. → при высоких температурах проводимость полупроводника складывается из примесной и собственной проводимостей. При низких температурах преобладает примесная, а при высоких – собственная проводимость.
|
Билет 11.
1.Тепловое излучение. Интегральные и спектральные характеристики излучения. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина.
Тепловое излучение – вид излучения, который может находится в термодинамическом равновесии с излучателем и к анализу такого излучения применимы законы термодинамики.
Спектральная плотность энергетической светимости тела – мощность излучения с единицы площади поверхности тела а интервале частот единичной ширины:
RT
Re
====================================================
|
Билет 12
(2. Статистика Ферми-Дирака. Функция распределения Ф-Д. Вырожденный электронный газ. Энергия Ферми. Частицы с полуцелым спином называются фермионами. Системы фермионов описываются квантовой статистикой Ф-Д. Фермионы подчиняются правилу Паули: в данном квантовом состоянии системы фермионов не может находиться более 1-й частицы. Ф-ции распределения Ф-Д называются средняя «заселенность» фермионами состояний с данной энергией:
D N ( Wi )/ D gi , где D N ( Wi ) – число частиц с энергией в интервале от Wi до Wi + D Wi , D gi – число квантовых состояний в этом интервале энергии. Решение задачи о наиболее вероятном распределении фермионов: f Ф=1/( exp [( Wi - m )/ kT ]+1) m =( U - TS + PV )/ N – химический потенциал, работа при увеличении числа частиц в системе на 1, U – внутреняя энергия системы, S – энтропия, V – объем, p – давление. Энергия Ферми – максимальная энергия у электрона находящегося на уровне Ферми при T =0К. Вырожденный электронный газ: система частиц называется вырожденной, если её св-ва, описываемые квантовыми закономерностями, отличаются от св-в обычных систем, подчиняющихся классическим законам. Параметром вырождения А называется величина: А= exp ( m / kT ), где m - химический эквивалент. Параметр вырождения показывает классический или квантовый случай газа: EF / kT >1 – квантовая, <<1 – классическая. ))
2.Предельный переход квантовых статических распределений Ферми-Дирака и Бозе-Эйнштейна в классическое распределение Максвелла-Больцмана. Параметр вырождения.
1) Распределение Ф-Д:
2) распределение Б-Э:
3) Распределение М-Б:
Функции распределения в классической и квантовых статиках, введенные как среднее число частиц в одном состоянии, могут быть выражены единой формулой:
|
Билет 13
1. Частица в трехмерном потенциальном ящике. Энергетический спектр частицы. Понятие о вырождении энергетических уровней. Найдем собств. зн-я энергии и соотв. им собств. ф-ии для частицы находящейся в одномерной потенциальной яме с беск. выс. стенками. Пусть движение ограничено непроницаемыми для частицы стенками x=0 и x=l . U=0 при , U=∞ при , Ур-е Шредингера , т.к. за пределы ямы частица вырваться не может, то .
В области где , ур-е имеет вид , вводим , придем к , реш. имеет вид , т.к. , то , откуда =0 , тогда , т.е. (), откуда , спектр энергии – дискретный. Подставив зн-е k получим , для нахождения воспользуемся условием нормировки , откуда , т.е.
Ч-ца в 3-мер ящ.
, , ; , Причем
при будет , а при или или
Когда одной энергии соотв. несколько равных сост. называется вырождением, а число этих сост. – кратностью вырождения
2. Симметрия и законы сохранения в мире элементарных частиц.
Симметрия и законы сохранения в мире элементарных частиц.
Симметрия. Каждой частице соответствует античастица. е+ и р- отличаются от е- и р+ знаком электрического заряда. n от ň знаком магнитного момента. е+ + е- = γ + γ.
Законы сохранения в мире элементарных частиц. В мире элементарных частиц есть ЗС энергии, импульса, момента импульса + всех зарядов: барионного, электрического и трех лептонных.
ЗС барионного заряда B: В = +1 для барионов; В = -1 для антибарионов; для остальных В=0. Для всех процессов с участием барионов и антибарионов суммарный барионный заряд сохраняется.
ЗС лептонных зарядов: электронный Le ( для е и νе (нейтрино)), мюонный Lμ ( для μ и νμ ), таонный Lτ (для τ и ντ ). Le = Lμ = Lτ = +1 (для лептонов); -1 (для антилептонов). Для всех остальных L = 0. Для всех процессов с участием лептонов и антилептонов суммарный лептонный заряд сохраняется.
Существуют ЗС странности S, очарования C, прелести b, изотопического спина
|
Билет 14
1.Частица в одномерной потенциальной яме с бесконечно высокими стенками. Квантование энергии. Плотность вероятности для различных энергетических уровней.
Проведем качественный анализ решений уравнений Шредингера применительно к частице в одномерной прямоугольной потенциальной с бесконечно высокими стенками. Такая яма описывается потенциальной энергией вида(частица движется вдоль оси х):
ì
U
î
Уравнение Шредингера для стационарных состояний запишется в виде: (∂2
Общее решение диф.ур-ния ψ(
Из всего этого следует что
Т.е. стационарное уравнение Ш, описывающее движение частицы в потенциальной яме с бесконечно высокими стенками удовлетворяется только при собственных значениях
2.Явление радиоактивного распада. Источники радиоактивного излучения. Радиоизотопный анализ.
Радиоактивность – способность некоторых атомов ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Различают естественную (наблюдается у неустойчивых изотопов, сущ. в природе) и искусственную( у изотопов, полученных в термоядерных реакциях) радиоактивность. Радиоактивное излучение бывает 3 типов:
α-Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей и малой проникающей способностью. α-Излучение представляет собой поток ядер гелия.
β-Излучение отклоняется электрическим и магнитными полями, его ионизирующая способность значительно меньше, а проникающая гораздо больше чем у α-частиц. β-Излучение представляет собой поток быстрых электронов.
γ-Излучение не отклоняется электрическим и магнитным полями, обладает относительно малой ионизирующей и очень большей проникающей способностью, при прохождении через кристаллы обнаруживается дифракция. γ-Излучение представляет собой коротковолновое электромагнитное излечение с чрезвычайно малой длиной волны λ<10-10
Радиоактивные распад – естественное радиоактивное превращение ядер, проходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад называется материнским, возникающее ядро – дочерним.
λ
Единица активности в СИ – беккерель(Бк):1 Бк-активость нуклида, при которой за 1 с происходит один акт распада. До сих пор единица применяется внесистемная единица активности нуклида в радиоактивном источнике – кюри(Ки) 1КИ=3,7·1010
Билет 15
1.Уравнение Шредингера для гармонического осциллятора и анализ его решений
Линейный гармонический осциллятор – система, совершающая одномерное движение под действием квазиупругой силы – является моделью, используемой во многих задачах классической и квантовой теории. Пружинный, физический и математический маятники – примеры классических гармонических осцилляторов. Потенциальная энергия осциллятора равна
U
Гармонический осциллятор в квантовой механике – квантовый осциллятор – описывается уравнением Шредингера, учитывающим выражение для потенциальной энергии. Тогда стационарные состояния квантового осциллятора определяются ур-нием Шредингера вида
где Е- полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что это уравнение решается
только при собственных значениях энергии
Строгое решение задачи о квантовом осцилляторе приводит еще к отличию от классического рассмотрения. Квантово-механический расчет показывает, что частицу можно обнаружить за пределами дозволенной области, в то время как с классической точки зрения она не может выйти за пределы области. Т.о. имеется отличная от нуля вероятность обнаружить частицу в области, которая является классически запрещенной.
2...Представление физических величин операторами. Вычисление средних значений физических величин. А) Оператор координаты. Действие сводится к умножению волновой функции на эту координату:
б) Оператор проекций импульса. Выражаются с помощью операторов дифференцирования по соответствующим координатам:
В) Оператор момента импульса:
L
L^x
Г) Оператор кинетической энергии. Определим
|
Билет 16
1.Корпускулярно-волновой дуализм материи. Гипотеза де Бройля. Опыты по дифракции микрочастиц
Де Бройль выдвинул теорию о корп.-волн.дуализме материи, т.е. не только фотоны, но и электроны и любые другие частица материи наряду с корпускулярными обладают также волновыми свойствами. Каждые микрообъект связывают корпуск.характеристики –энергия Е и импульс р, а также волновые – частота ν и длина волны λ. Е=hν,p=h/λ. Т.о. любой частице обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемо по формуле де Бройля λ=h/p. Можно добавить то, что на частице вещества переносится связь между полной энергией частицы ε и частотой ν волн де Бройля:ε=hν , h-постоянная Планка=6,625·10-34 Дж·с
Волна де Бройля – это волна, связанная с равномерным и прямолинейным движением частицы.
y
y
E=h
2. Собственная проводимость полупроводников. Концентрация электронов и дырок в чистых полупроводниках. Уровень Ферми в чистых полупроводниках. Температурная зависимость проводимости беспримесных полупроводников.
Проводимость полупроводников.
Полупроводниками являются кристаллические вещества, у которых при 0К валентная зона полностью заполнена электронами, а ширина запрещенной зоны невелика. Характерная черта – проводимость растет с повышением температуры.
Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется несколько носителей тока – электронов, занимающих место вблизи дна зоны; одновременно в валентной зоне освобождается такое же число мест на верхних уровнях, в результате чего появляются дырки.
Типичные полупроводники – кремний и германий. На рис. - атомные остатки(ктр. остаются после удаления валентных э-нов) «-» - валентные э-ны, двойные линии – ковал. связь. При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один э-н . Покинутое место э-ном перестает быть нейтральным, в его окрестности возникает избыточный положительный заряд «+е», т.е. образуется дырка (пунктирный кружок). На это место может перескочить э-н одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся э-н.
При встрече своб. э-на с дыркой они рекомбинируют (соединяются). Рекомбинация приводит к одновр. исчезновению своб. э-на и дырки. В собств. полупроводнике идут два процесса одновременно: рождение попарно свободных э-нов дырок и рекомбинация .
Вероятность первого процесса быстро растет с температурой. Вер-ть рекомбинации пропорциональна как числу дырок, так и числу э-нов. Следов, каждой температуре соотв. опр. равновесная концентрация э-нов и дырок, ктр. изменяется пропорционально T (1)
Концентрация электронов и дырок в чистых полупроводниках.
Распределение электронов по уровням валентной зоны и зоны проводимости описывается функцией Ферми-Дирака. (на рис.) Уровни зоны проводимости лежат на хвосте кривой распределения, поэтому вероятность их заполнения электронами (1).
В собственном полупроводнике одинаковые концентрации э-нов и дырок будут равны , где А – коэф. пропорциональности.
Уровень Ферми в чистых полупроводниках.
, где ΔЕ – ширина запрещенной зоны, а и - эффективные массы электрона и дырки. Обычно второе слагаемое пренебрежимо мало, поэтому можно сказать, что уровень Ферми для чистых полупроводников лежит посередине запрещенной зоны.
Температурная зависимость проводимости беспримесных полупроводников.
Электропроводность собственных полупроводников:, где - ширина запрещенной зоны, - величина, изменяющаяся с температурой гораздо медленнее, чем экспонента, поэтому ее в первом приближении можно считать константой.
|
Билет 17
1.Уравнение Шредингера для атома водорода. Квантовые числа и их физический смысл.
Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze(для атома водорода Z=1)
где r-расстояние между электроном и ядром
Состояние электрона в атоме водорода описывается волновой функцией ψ, удовлетворяющей стационарному уравнению Шредингера, учитывающие значение U(r):
m-масса электрона, Е- полная энергия электрона в атоме.
В квантовой механике доказывается, что уравнению Шредингера удовлетворяют собственные функции ψnlm(r,θ,φ), определяемые 3 квантовыми числами: главным n,орбитальным l и магнитным ml. Главное квантовое число n определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения n=1,2,3….Орбитальное квантовое число l , при заданном n принимает значения l=0,1,…,(n-1) т.е. всего n значений и определяет момент импульса электрона в атоме. Магнитное квантовое число ml, при заданном l может принимать значения ml=0,±1,±2,…,±l, т.е. всего 2l+1 значений. Т.о. магнитное квантовое число определяет проекцию момента импульса на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентаций. Квантовые числа n и l характеризуют размер и форму электронного облака, а квантовое число ml характеризует ориентацию электронного облака в пространстве.
2. Эффект Холла в полупроводниках, его практическое применение
Эффект Холла. Если металлическую пластинку, вдоль которой течет постоянный электрический ток, поместить в перпендикулярное к ней магнитное поле, то между параллельными току и полю гранями возникает разность потенциалов .
Величина ее определяется выражением UH = RbjB, где b –ширина пластинки, j – плотность тока, B – магнитная индукция поля, R – разный для разных металлов коэффициент пропорциональности, получившей название постоянной Холла.
В полупроводниках. По знаку эффекта Холла в полупроводниках можно судить о принадлежности полупроводника к n или p типу.
На рисунке сопоставлен эффект Холла для образцов с положительными и отрицательными носителями. Направление силы Лоренца изменяется на противоположное как при изменении направления движения заряда, так и при изменении его знака. Следовательно, при одинаковом направлении тока сила Лоренца, действующая на положительные и отрицательные носители, имеет одинаковое направление. Поэтому в случае положительных носителей потенциал верхней (на рисунке) грани выше, чем нижней, а в случае отрицательных носителей – ниже. Таким образом определив знак холловской разности потенциалов, можно установить знак носителей тока.
Билет 18
2.Электрон в периодическом поле кристалла. Образование энергетических зон. Энергетический спектр электронов в модели Кронинга-Пенни.
В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы- ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать. Что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки находятся неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер.
Далее используем приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими заменяется действием на него стационарного эл.поля, обладающего периодичностью кристалл.решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Пока атомы изолированы, т.е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней. (см.рис). По мере сжатия нашей модели до кристал.решетки, т.е. когда расстояния между атомами станут равными межатомным, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются
Образование зонного энергетического спектра в кристалле является квантово-механическим дефектом и вытекает из соотношения неопределенностей. В кристалле валентные электроны атомов, связанные слабее с ядрами, чем внутренние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т.е. перемещаться без изменения потенциальной энергии (туннельный эффект).
Энергия внешних может принимать значения в пределах закрашенных областей (см.рис), называемых разрешенными энергетическими зонами. Разрешенные энергетические зоны разделяются зонами запрещенных значений энергии, называемые запрещенными энергетическими зонами.
|
Билет №19.
1.Орбитальный, спиновый и полный угловой и магнитный момент электрона. Электрон обладает собственным моментом импульса
m
Знак (-) потому что
2.Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний.
Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция
Δ-оператор Лапласа(ΔΨ=∂2
Δψ+(2
Билет 21.
1.Предельный переход квантовых статических распределений Ферми-Дирака и Бозе-Эйнштейна в классическое распределение Максвелла-Больцмана. Параметр вырождения.
1) Распределение Ф-Д:
2) распределение Б-Э:
3) Распределение М-Б:
Функции распределения в классической и квантовых статиках, введенные как среднее число частиц в одном состоянии, могут быть выражены единой формулой:
2.Условия возможности одновременного измерения разных величин. Соотношение неопределенностей Гейзенберга.
Если коммутатор [
Гейзенберг предположил, что невозможно определить точно положение и импульс. Неопределенность положения х и рх
ì
í
î
|
Билет №20.
1. Собственные механический и магнитный моменты электрона. Опыт Штерна и Герлаха
Электрон обладает собственным моментом импульса , не связанным с движ. э-на в пр-ве. Этот собственный момент – спин. Спин характеризует внутр. св-во э-на подобно массе и заряду. , где s – спиновое квантовое число, , . Электрон наряду с собств. мех. моментом облад. собств. магнитным моментом . Причем ,тогда
-магнетон Бора (единица магнитного момента) .
Опыт Штерны и Герлаха. Пучок атомов пропускается через сильно неоднородное поперечное магнитное поле а). Неоднородность достигалась с помощью спец. формы полюсных наконечников б). Далее пучок атомов попадал на фотопластинку Р и оставлял на ней след. Если атомы обладают магнитным моментом, то на них будет действовать сила, пр-я ктр. -пр-я магнитного момента атома. При малых
необх. обеспечить дост. большую неоднородность поля, т.е . в отсутствие магн. поля след пучка на Р имел вид полоски z=0. При включении магнитного поля наблюдалось расщепление пучка в), что являлось следствием квантования пр-ии . Обнаружилось также, что для разных атомов число компонент, на ктр. расщеплялся пучок, было то четным, то нечетным. Нечетно – у атомов облад. только орбитальным мех. моментом , магн. поле снимает вырождение по L и число компонент (значений ) ,будет равно т.е. нечетным. Если же момент = сумме орбитального и спинового, т.е. определяется кв. числом J , то число компонент будет равно 2J+1, и в зав-ти от того, полуцелым или целым будет J , число компонент будет четным или нечетным.
2. Контактные явления в полупроводниках. P-n переход, его вольт-амперная характеристика.
Контактные явления в полупроводниках.
Если привести два разных полупроводника в соприкосновение, между ними возникает разность потенциалов, которая называется контактной. В результате в окружающем пространстве возникает электрическое поле. Контактная разность потенциалов обусловлена тем, что при соприкосновении поверхностей часть электронов переходит из одного полупроводника в другой.
Внешняя контактная разность потенциалов: ;
Внутренняя разность потенциалов: .
p-n переход, его вольтамперная характеристика.
p-n переход – тонкий слой на границе между двумя областями одного и того же кристалла, отличающимися типом примесной проводимости.
В р-области основные носители тока – дырки (акцепторы становятся отрицательными ионами). В n-области – электроны, отданные донорами в зону проводимости.
Диффундируя во встречных направлениях через пограничный слой, дырки и электроны рекомбинируют друг с другом.→ меньше носителей и большое сопротивление p-n-перехода. Одновременно на границе между областями возникает двойной электрический слой, образованный отрицательными ионами акцепторной примеси, заряд которых не компенсируется дырками, и положительными ионами донорной примеси, заряд которых теперь не компенсируется электронами. Электрическое поле в этом слое направлено так, что противодействует дальнейшему переходу через слой основных носителей. Равновесие достигается при такой высоте потенциального барьера, при которой уровни Ферми обеих областей располагаются на одинаковой высоте.
В направлении от p-области к n-области p-n-переход пропускает ток, сила которого быстро нарастает при увеличении приложенного напряжения (прямое направление).
В обратном направлении p-n-переход обладает гораздо большим сопротивлением, чем в прямом. Поле, возникающее в кристалле при наложении обратного напряжения, «оттягивает» основные носители о границы между областями, что приводит к возрастанию ширины переходного слоя, обедненного носителями.
ВАХ p-n-перехода
|
Билет 22 1. Статистика Ферми-Дирака. Функция распределения Ф-Д. Вырожденный электронный газ. Энергия Ферми. Частицы с полуцелым спином называются фермионами. Системы фермионов описываются квантовой статистикой Ф-Д. Фермионы подчиняются правилу Паули: в данном квантовом состоянии системы фермионов не может находиться более 1-й частицы. Ф-ции распределения Ф-Д называются средняя «заселенность» фермионами состояний с данной энергией:
2. Контактные явления в полупроводниках. P-n переход, его вольт-амперная характеристика.
Контактные явления в полупроводниках.
Если привести два разных полупроводника в соприкосновение, между ними возникает разность потенциалов, которая называется контактной. В результате в окружающем пространстве возникает электрическое поле. Контактная разность потенциалов обусловлена тем, что при соприкосновении поверхностей часть электронов переходит из одного полупроводника в другой.
Внешняя контактная разность потенциалов: ;
Внутренняя разность потенциалов: .
p-n переход, его вольтамперная характеристика.
p-n переход – тонкий слой на границе между двумя областями одного и того же кристалла, отличающимися типом примесной проводимости.
В р-области основные носители тока – дырки (акцепторы становятся отрицательными ионами). В n-области – электроны, отданные донорами в зону проводимости.
Диффундируя во встречных направлениях через пограничный слой, дырки и электроны рекомбинируют друг с другом.→ меньше носителей и большое сопротивление p-n-перехода. Одновременно на границе между областями возникает двойной электрический слой, образованный отрицательными ионами акцепторной примеси, заряд которых не компенсируется дырками, и положительными ионами донорной примеси, заряд которых теперь не компенсируется электронами. Электрическое поле в этом слое направлено так, что противодействует дальнейшему переходу через слой основных носителей. Равновесие достигается при такой высоте потенциального барьера, при которой уровни Ферми обеих областей располагаются на одинаковой высоте.
В направлении от p-области к n-области p-n-переход пропускает ток, сила которого быстро нарастает при увеличении приложенного напряжения (прямое направление).
В обратном направлении p-n-переход обладает гораздо большим сопротивлением, чем в прямом. Поле, возникающее в кристалле при наложении обратного напряжения, «оттягивает» основные носители о границы между областями, что приводит к возрастанию ширины переходного слоя, обедненного носителями.
ВАХ p-n-перехода
|
Билет 23 1.Дискретный испускания и поглощения электромагнитного излучения веществом. Формула Планка для равновесного твердого излучения. Поместим абсолютно черное тело в куб с зеркальными стенками (отражающими). Равновесное тепловое излучение.
Формула Планка:
Замечания: R=òfw
1. Примесная проводимость полупроводников. Концентрация основных и неосновных носителей в полупроводнике
Примесная проводимость полупроводников.
Примесная проводимость полупроводников возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов.
Концентрация основных и неосновных носителей в полупроводниках n-типа.
В полупроводнике с примесью, валентность которой на единицу больше валентности основных атомов, имеется только один вид носителей тока – электроны. Такой полупроводник обладает электронной проводимостью и является полупроводником n-типа. Атомы примеси, поставляющие электроны проводимости, называют донорами.
когда расстояние донорных уровней от дна зоны проводимости гораздо меньше запрещенной зоны, энергия теплового движения даже при обычных температурах оказывается достаточной для того, чтобы перевести электрон с донорного уровня в зону проводимости.
Уровень Ферми примесного полупроводника n-типа.
Уровень Ферми располагается в верхней половине запрещенной зоны.
При повышении температуры уровень Ферми() в полупроводниках обоих типов смещается к середине запрещенной зоны.
Температурная зависимость проводимости примесного полупроводника n-типа.
При повышении температуры концентрация примесных носителей тока быстро достигает вершины. Это значит, что практически освобождаются все донорные или заполняются электронами все акцепторные уровни. По мере роста температуры все больше сказывается собственная проводимость полупроводника, обусловленная переходом электронов из валентной зоны в зону проводимости. → при высоких температурах проводимость полупроводника складывается из примесной и собственной проводимостей. При низких температурах преобладает примесная, а при высоких – собственная проводимость.
Билет 26-2
2. Зонная теория твёрдых тел. Структура зон в металлах, полупроводниках и диэлектриках.
Энергия валентных электронов в кристалле изменяется квазинепрерывно – спектр разрешенных значений энергии состоит из множества близкорасположенных дискретных уровней. В действительности валентные электроны в кристалле движутся не вполне свободно – на них действует периодическое поле решетки, что приводит к тому, что спектр возможных значении энергии валентных электронов распадается на ряд чередующихся разрешенных и запрещенных зон. В пределах разрешенных зон энергия изменяется квазинепрерывно. Значения энергии, принадлежащие запрещенным зонам, не могут реализоваться.
Валентной зоной (в случае металла ее также называют зоной проводимости) называют разрешенную зону, возникшую уровня, на котором находятся валентные электроны в основном состоянии атома.
Структура зон в металлах, полупроводниках и диэлектриках.
Разрешенную зону, возникшую из того уровня, на ктр. находятся валентные э-ны в осн. состоянии атома будем называть валентной зоной. В случае металла электроны заполняют валентную зону неполностью, поэтому достаточно сообщить э-нам, находящимся на верхних уровнях, совсем небольшую энергию(10-22 эВ), чтобы перевести их на более высокие уровни. В случаях полупроводника и диэлектрика уровни валентной зоны полностью заняты электронами. Для того чтобы увеличить энергию э-на необходимо сообщить ему кол-во энергии не меньшее, чем ширина запрещенной зоны. Электрическое поле сообщить такую энергии э-ну не в состоянии. Если эта ширина невелика (неск. десятых эВ), то энергии теплового движения оказывается достаточно для перевода части э-нов в верхнюю свободную зону. Эти э-ны будут нах-ся в усл-ях аналогичных тем, в ктр. находятся валентные э-ны в металле. Свободная зона окажется для них зоной проводимости. Одновременно станет возможным переход э-нов вал. зоны на ее освободившиеся верхние уровни. Такое в-во – полупроводник. Если ширина запрещенной зоны порядка неск. эВ, тепловое движение не сможет забросить в своб. зону заметное число э-нов. В этом случае кристалл – диэлектрик.
|
Билет 24
1. Зонная теория твердых тел. Структура зон в металлах, полупроводниках и диэлектриках.
В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы- ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать. Что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер. Далее используем приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими заменяется действием на него стационарного эл.поля, обладающего периодичностью кристалл.решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Пока атомы изолированы, т.е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней. (см.рис). По мере сжатия нашей модели до кристал.решетки, т.е. когда расстояния между атомами станут равными межатомным, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются
Образование зонного энергетического спектра в кристалле является квантово-механическим дефектом и вытекает из соотношения неопределенностей. В кристалле валентные электроны атомов, связанные слабее с ядрами, чем внутренние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т.е. перемещаться без изменения потенциальной энергии (туннельный эффект).
Энергия внешних может принимать значения в пределах закрашенных областей (см.рис), называемых разрешенными энергетическими зонами. Разрешенные энергетические зоны разделяются зонами запрещенных значений энергии, называемые запрещенными энергетическими зонами.
2. Ядерная модель атома. Постулаты Бора.
На основании своих исследований Резерфорд в 1991г. предположил ядерную (планетарную) модель атома. Вокруг положительного ядра, имеющего заряд
Первый постулат Бора (постулат для стационарных состояний): в атоме существуют стационарные состояния( не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарные состояния атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса, удовлетворяющие условию
me
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией
|