Содержание:
1. Введение……………………………………………………..стр.3
2. Специфика системного метода исследования………..стр.4
3. Система и её окружение………………………………….стр.8
4. Метод и перспективы системного исследования…...стр.11
5. Список использованных источников…………………..стр.16
Введение
Под системой
понимают совокупность компонентов и устойчивых, повторяющихся связей между ними. Процесс системного рассмотрения объектов широко применяется в самых различных областях общественных, естественных и технических наук, в практике социального планирования и управления в обществе, при решении комплексных социальных проблем, при подготовке и реализации разнообразных целевых программ.
В широком смысле слова под системным исследованием
предметов и явлений окружающего нас мира понимают такой метод, при котором они рассматриваются как части и элементы определенного целостного образования. Эти части или элементы, взаимодействуя друг с другом, определяют новые, целостные свойства системы, которые отсутствуют у отдельных ее элементов. Главное, что определяет систему, — это взаимосвязь и взаимодействие частей в рамках целого. Для системного исследования характерно именно целостное рассмотрение, установление взаимодействия составных частей или элементов совокупности, несводимость свойств целого к свойствам частей.
Корни системного подхода к изучению окружающего мира уходят в глубокую древность. В неявной форме он широко применялся в античной науке, хотя сам термин «система» появился значительно позднее. Древние греки рассматривали природу и мир как нечто единое целое, в котором предметы, явления и события связаны множеством различных связей. Основой такого единства у ранних греческих философов выступает определенное материальное начало: вода у Фалеса, воздух у Анаксимена и огонь у Гераклита. Однако эта верная, в общем, идея не раскрывалась в конкретных связях явлений и процессов, не доказывалась в частностях. Это и вполне понятно, ибо у древних греков не было конкретных наук и все, что можно было назвать положительным знанием, наравне с натурфилософскими спекуляциями входило в состав нерасчлененной философии. Исключением являлась лишь математика, в которой они создали знаменитый аксиоматический метод построения знания, до сих пор служащий важнейшим средством логической систематизации и обоснования не только математического, но и любого знания вообще.
С переходом к опытному изучению природы и возникновением экспериментального естествознания в XVII в. происходит расчленение знаний по отдельным областям природы, группам явлений, отраслям, и научным дисциплинам. Начинается дисциплинарный способ построения и развития научного знания, когда каждая наука тщательно и досконально изучает свой предмет, используя специфические методы исследования, не интересуясь при этом ни целями и задачами, ни способами познания других наук. Такой подход, обладал определенными преимуществами, но в то же время ограничивал возможности исследователей узкими рамками своей дисциплины и тем самым препятствовал установлению связей между другими дисциплинами. В результате этого единая природа оказалась искусственно поделенной между разобщенными науками. Несмотря на это, дифференциация науки продолжала расти, число отдельных научных дисциплин все больше увеличивалось, и, соответственно, ослабевали связи и взаимопонимание ученых. Со временем такое положение становилось все более нетерпимым, и вопреки сопротивлению отдельных групп ученых возникали интегративные, междисциплинарные методы и теории, с помощью которых, используя общие понятия и принципы, решались проблемы, которые выдвигались перед науками, изучавшими взаимосвязанные процессы и формы движения материи, а потом и более общие теории. Так, еще в конце XIX — начале XX в. возникли биофизика и биохимия, геофизика и геохимия, химическая физика и физическая химия и другие. Настоящий прорыв в системных исследованиях произошел после окончания Второй мировой войны, когда возникло мощное системное движение, способствовавшее внедрению идей, принципов и методов системного исследования не только в естествознание, но и в социально-экономические и гуманитарные науки. Именно системный подход способствовал тому, что каждая наука стала рассматривать в качестве своего предмета изучение систем определенного типа, которые находятся во взаимодействии с другими системами. Согласно новому подходу, мир предстал в виде огромного множества систем самого разнообразного конкретного содержания и общности, объединенных в единое целое — Вселенную.
Специфика системного метода исследования
Приведенное выше определение системы достаточно для того, чтобы отличать системы от таких совокупностей предметов и явлений, которые системами не являются. В нашей литературе для них не существует специального термина. Поэтому мы будем обозначать их заимствованным из англоязычной литературы термином агрегаты. Кучу камней, вряд ли кто-либо назовет системой, в то время как физическое тело, состоящее из большого числа взаимодействующих молекул, или химическое соединение, образованное из нескольких элементов, а тем более живой организм, популяцию, вид и другие сообщества живых существ всякий будет интуитивно считать системой.
Чем мы руководствуемся при отнесении одних совокупностей объектов к системам, а других — к агрегатам? Очевидно, что в первом случае мы замечаем определенную целостность, единство составляющих систему элементов, а во втором такое единство и взаимосвязь отсутствуют и поэтому речь должна идти о простой совокупности, или агрегате, элементов.
Таким образом, для системного подхода характерно именно целостное рассмотрение, установление взаимодействия составных частей или моментов совокупности, несводимость свойств целого к свойствам частей.
Следует, однако, отметить, что различие между системами и агрегатами, или просто совокупностями объектов, имеет не абсолютный, а относительный характер и зависит от того, как подходят к исследованию совокупности. Ведь даже кучу камней можно рассматривать как некоторую систему, элементы которой взаимодействуют по закону всемирного тяготения. Тем не менее, здесь мы не обнаруживаем возникновения новых целостных свойств, которые присущи настоящим системам. Этот отличительный признак систем, заключающийся в наличии у них новых интегративных, целостных свойств, которые возникают вследствие взаимодействия составляющих их частей или элементов, всегда следует иметь в виду при определении систем.
В последние годы предпринималось немало попыток дать логическое определение понятию системы. Поскольку в логике типичным способом является определение через ближайший род и видовое отличие, постольку в качестве родового понятия обычно выбирались наиболее общие понятия математики и даже философии. В современной математике таким понятием считается понятие множества, введенное в конце прошлого века немецким математиком Г. Кантором (1845—1918) для обозначения любой совокупности математических объектов, обладающих некоторым общим свойством. Поэтому Р. Фейджин и А. Холл воспользовались понятием множества для логического определения системы. «Система, — пишут они, — это множество объектов вместе с отношениями между объектами и между их атрибутами (свойствами)». Такое определение нельзя назвать корректным, хотя бы потому, что самые различные совокупности объектов можно назвать множествами и для многих из них можно установить определенные отношения между объектами, так что видовое отличие для систем (differentia specified) не указано. Дело, однако, не столько в формальной некорректности определения, сколько в его содержательном несоответствии действительности. В самом деле, в нем не отмечается, что объекты, составляющие систему, взаимодействуют таким образом, что они обусловливают возникновение новых, целостных, системных свойств. По-видимому, такое предельно широкое понятие, как система, нельзя определить чисто логически через другие существующие понятия. Поэтому его следует признать исходным и неопределяемым понятием, содержание которого можно объяснить с помощью примеров. Именно так обычно поступают в науке, когда приходится имен, дело с исходными, первоначальными ее понятиями, например с множеством в математике или массой и зарядом в физике.
Для лучшего понимания природы систем необходимо рассмотреть, сначала их основные свойства, строение и структуру, а затем и классификацию.
Основными свойствами
систем являются:
· всеобщий характер, поскольку в качестве системы могут рассматриваться все без исключения предметы и явления окружающего мира;
· невещественность;
· внутренняя противоречивость (конкретность и абстрактность, целостность и дискретность, непрерывность и прерывность);
· способность к взаимодействию;
· упорядоченность и целостность;
· устойчивость и взаимообусловленность.
Способность процессов и явлений мира образовывать системы, наличие систем, системного строения материальной действительности и форм ее познания получила название системности. Понятие системности отражает одну из характерных признаков действительности: способность вступать в такого рода взаимодействия, в результате которых образуются новые качества, не присущие исходным объектам взаимодействия.
Строение
системы характеризуется теми компонентами, из которых она образована. Такими компонентами являются: подсистемы
, части
или элементы системы
, в зависимости оттого, что принимается за основу деления.
· Подсистемы составляют части системы, которые обладают определенной автономностью, но в то же время они подчинены системе и управляются ею. Обычно подсистемы выделяются в системах, организованных особым образом которые называются иерархическими
.
· Элементами обычно называют наименьшие единицы системы, хотя в принципе любую часть можно рассматривать в качестве элемента, если отвлечься от ее размера.
В качестве типичного примера можно привести человеческий организм, который состоит из нервной, дыхательной, пищеварительной и других подсистем, часто называемых просто системами. В свою очередь, подсистемы содержат в своем составе определенные органы, которые состоят из тканей, а ткани — из клеток, а клетки — из молекул. Многие живые и социальные системы построены по такому же иерархическому принципу, где каждый уровень организации, обладая известной автономностью, в то же время подчинен предшествующему, более высокому уровню. Такая тесная взаимосвязь и взаимодействие различных компонентов обеспечивают системе как целостному, единому образованию наилучшие условия для существования и развития.
Структурой системы
называют совокупность тех специфических взаимосвязей и взаимодействий, благодаря которым возникают новые целостные свойства, присущие только системе и отсутствующие у отдельных ее компонентов. В западной литературе такие свойства называют эмерджентными, или возникающими в результате взаимодействия и присущими только системе. В зависимости от конкретного характера взаимодействия компонентов различают различные типы
систем: электромагнитные, атомные, ядерные, химические, биологические и социальные. В рамках этих типов можно, в свою очередь, рассматривать отдельные виды систем.
В принципе к каждому отдельному объекту можно подойти с системной точки зрения, поскольку он представляет собой определенное целостное образование, способное к самостоятельному существованию. Так, например, молекула воды, образованная из двух атомов водорода и одного атома кислорода, представляет собой систему, компоненты которой взаимосвязаны силами электромагнитного взаимодействия.
Система и ее окружение.
Весь окружающий нас мир, его предметы, явления и процессы оказываются совокупностью самых разнообразных по конкретной природе и уровню организации систем. Каждая система в этом мире взаимодействует с другими системами. Для более тщательного исследования обычно выделяют те системы, с которыми данная система взаимодействует непосредственно, и которые называют окружением или внешней средой системы. Все реальные системы в природе и обществе являются, как уже указывалось, открытыми и, следовательно, взаимодействующими с окружением путем обмена веществом, энергией и информацией. Представление о закрытой, или изолированной, системе является далеко идущей абстракцией, не отражающей адекватно реальность, поскольку никакая реальная система не может быть изолирована от воздействия других систем, составляющих ее окружение. В неорганической природе открытые системы могут обмениваться с окружением либо веществом, как это происходит в химических реакциях, либо энергией, когда система получает свежую энергию из окружения и рассеивает в нем «отработанную» энергию в виде тепла. В живой природе системы обмениваются с окружением, кроме вещества и энергии, также и информацией, посредством которой происходит управление и передача наследственных признаков от организмов к потомкам. Особое значение обмен информацией приобретает в социально-экономических и культурно-гуманитарных системах, где такой обмен служит основой для всей коммуникативной деятельности людей.
Классификация систем
может производиться по самым разным основаниям. Прежде всего, все системы можно разделить на системы материальные
и идеальные
, или концептуальные
. К материальным системам относится подавляющее большинство систем неорганического, органического и социального характера. Все материальные системы, в свою очередь, могут быть разделены на основные классы соответственно той форме движения материи, которую они представляют. В связи с этим обычно различают гравитационные, физические, химические, биологические, геологические, экологические и социальные системы. Среди материальных систем выделяют также искусственные, специально созданные обществом технические и технологические системы, служащие для производства материальных благ.
Все эти системы называются материальными или объективными потому, что их содержание и свойства не зависят от познающего субъекта. Однако субъект может все глубже, полнее и точнее познавать их свойства и закономерности с помощью создаваемых им концептуальных систем. Такие системы называются идеальными именно потому, что представляют собой отражение материальных, объективно существующих в природе и обществе систем.
Наиболее типичным примером концептуальной системы является научная теория, которая выражает с помощью своих понятий, обобщений и законов объективные, реальные связи и отношения, существующие в конкретных природных и социальных системах.
Системный характер научной теории выражается в самом ее построении, когда отдельные ее понятия и суждения не просто перечисляются, а объединяются в рамках определенной Целостной структуры. В этих целях обычно выделяются несколько основных, или первоначальных, понятий, на основе которых, во-первых, по правилам логики определяются другие, производные, или вторичные, понятия. Аналогично этому среди всех суждений теории выбираются некоторые исходные, или основные, суждения, которые в математических теориях
Все наше знание не только в области науки, но и в других сферах деятельности мы стремимся определенным образом систематизировать, чтобы стала ясной логическая взаимосвязь отдельных суждений, а также всей структуры знания в целом. Отдельное, изолированное суждение не представляет особого интереса для науки. Только тогда, когда его удается логически связать с другими элементами знания, в частности с суждениями теории, оно приобретает определенный смысл и значение. Поэтому важнейшая функция научного познания состоит как раз в систематизации всего накопленного знания, при которой отдельные суждения, выражающие знание о конкретных фактах, объединяются в рамках определенной концептуальной системы.
Другие классификации в качестве основания деления рассматривают признаки, характеризующие состояние системы, ее поведение, взаимодействие с окружением, целенаправленность и предсказуемость поведения, и другие свойства.
Наиболее простой классификацией является деление систем на статические и динамические
, которое в известной мере является условным, так как все в мире находится в постоянном изменении и движении. Поскольку, однако, даже в механике мы различаем статику и динамику, то кажется целесообразным рассматривать специально также статические системы. Среди динамических систем обычно выделяют детерминистические и стохастические системы. Такая классификация основывается на характере предсказания динамики или поведения систем. Как отмечалось в предыдущих главах, предсказания, основанные на изучении поведения детерминистических систем, имеют вполне однозначный и достоверный характер. Именно такими системами являются динамические системы, исследуемые в классической механике и астрономии. В отличие от них стохастические системы, которые чаще всего называют вероятностно-статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них, как отмечалось в предыдущих главах, имеют недостоверный, а лишь вероятностный характер.
По характеру взаимодействия с окружающей средой
различают, как мы уже знаем, системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, ибо представление о закрытых системах возникло в классической термодинамике как определенная абстракция, оказавшаяся не соответствующей объективной действительности, в которой подавляющее большинство систем, если не все они, являются открытыми. Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть отличными и даже прийти в конфликт между собой.
Классификация систем дает возможность рассмотреть множество существующих в науке систем ретроспективно, т.е. задним числом, и поэтому не представляет для исследователя такого интереса, как изучение метода и перспектив системного подхода в конкретных условиях его применения.
Метод и перспективы системного исследования
В неявной форме системный подход в простейшем виде применялся в науке с самого начала ее возникновения. Даже тогда, когда отдельные науки занимались накоплением и обобщением первоначального фактического материала, идея систематизации и единства лежала в основе всех поисков новых фактов и приведения их в единую систему научного знания.
Как было уже сказано возникновение системного метода как особого способа исследования многие относят, ко времени Второй мировой войны и наступившему мирному периоду. Во время войны ученые столкнулись с проблемами комплексного характера, которые требуют учета взаимосвязи и взаимодействия многих факторов в рамках целого. К таким проблемам относились, в частности, планирование и проведение военных операций, вопросы снабжения и организации армии, принятие решений в сложных условиях и т.п. На этой основе возникла одна из первых системных дисциплин, названная исследованием операций. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Пожалуй, самым значительным шагом в формировании идей системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. В ней наиболее отчетливо виден новый подход к исследованию различных по конкретному содержанию систем управления. Хотя отдельные теории управления существовали и в технике, и в биологии, и в социальных науках, тем не менее, единый, междисциплинарный подход дал возможность раскрыть более глубокие и общие закономерности управления, которые заслонялись массой второстепенных деталей при конкретном исследовании частных систем управления. В рамках кибернетики впервые было ясно показано, что процесс управления с самой общей точки зрения можно рассматривать как процесс накопления, передачи и преобразования информации. Само же управление можно отобразить с помощью определенной последовательности алгоритмов, или точных предписаний, посредством которых осуществляется достижение поставленной цели. Вскоре после этого алгоритмы были использованы для решения различных других задач массового характера, например управления транспортными потоками, технологическими процессами в металлургии и машиностроении, организации распределения продукции, регулирования движения и многочисленных подобных процессов. Появление быстродействующих компьютеров явилось той необходимой технической базой, с помощью которой можно было обрабатывать разнообразные алгоритмически описанные процессы. Алгоритмизация и компьютеризация целого ряда производственно-технических, управленческих и других процессов явилась, как известно, одним из составных элементов современной научно-технической революции, связавшей воедино новые достижения науки с результатами развития техники.
Обратимся теперь к вопросу о преимуществах и перспективах системного метода исследования.
Прежде всего, заметим, что возникновение самого системного метода и его применение в естествознании и других науках знаменуют значительно возросшую зрелость современного этапа их развития. Прежде чем наука могла перейти к этому этапу, она должна была исследовать отдельные стороны, особенности, свойства и отношения тех или иных предметов и явлений, изучать части в отвлечении от целого, простое отдельно от сложного.
Такому периоду соответствовал дисциплинарный
подход, когда каждая наука сосредоточивала все внимание на исследовании специфических закономерностей изучаемого ею круга явлений. Со временем стало очевидным, что такой подход не дает возможности раскрыть более глубокие закономерности, присущие широкому классу взаимосвязанных явлений, не говоря уже о том, что он оставляет в тени взаимосвязь разных классов явлений, каждый из которых был предметом обособленного изучения отдельной науки.
Междисциплинарный
подход, сменивший дисциплинарный, стал все шире применяться для установления закономерностей, присущих разным областям явлений, и получил дальнейшее развитие в различных формах системных исследований, как в процессе своего становления, так и в конкретных приложениях.
Фундаментальная роль системного метода заключается в том, что с его помощью достигается наиболее полное выражение единства научного знания. Это единство проявляется, с одной стороны, во взаимосвязи различных научных дисциплин, которая выражается в возникновении новых дисциплин на «стыке» старых (физическая химия, химическая физика, биофизика, биохимия, биогеохимия и др.), в появлении междисциплинарных направлений исследования (кибернетика, синергетика, экологические программы и т.п.).
С другой стороны, системный подход дает возможность выявить единство и взаимосвязь в рамках отдельных научных дисциплин. Единство, которое выявляется при системном подходе к науке, заключается, прежде всего, в установлении связей и отношений между самыми различными по сложности организации, уровню познания и целостности охвата концептуальными системами, с помощью которых как раз и отображается рост и развитие нашего знания о природе. Чем обширнее рассматриваемая система, и чем сложнее она по уровню познания, иерархической организации, тем больший круг явлений она в состоянии объяснить. Таким образом, единство знания находится в прямой зависимости от его системности.
С позиций системности, единства и целостности научного знания становится возможным правильно подойти к решению таких проблем, как редукция, или сведение одних теорий естествознания к другим, синтез, или объединение, кажущихся далекими друг от друга теорий, их подтверждение и опровержение данными наблюдений и экспериментов. Редукция, или сведение одних теорий к другим, представляет вполне допустимую теоретическую процедуру, ибо выражает тенденцию к установлению единства научного знания. Когда Ньютон создал свою механику и теорию гравитации, то тем самым он продемонстрировал единство законов движения земных и небесных тел. Аналогично этому использование спектрального анализа для установления единства химических элементов в структуре небесных тел было крупным достижением в физике. В наше время редукция некоторых свойств и закономерностей биологических систем к физико-химическим свойствам явилась основой эпохальных открытий в области изучения наследственности, синтеза белковых тел и эволюции.
Однако редукция оказывается приемлемой и эффективной только тогда, когда она используется для объяснения однотипных по содержанию явлений и систем. Действительно, когда Ньютону удалось свести законы движения небесной механики к законам земной механики и установить единство между ними, то это оказалось возможным только потому, что они описывают однотипные процессы механического движения тел. Чем больше одни процессы отличаются от других, и чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем и форм движения нельзя полностью свести к законам низших форм или более простых систем.
Таким образом, преимуществами и перспективами системного метода исследования являются следующие пункты:
1. Системный метод дает возможность раскрыть более глубокие закономерности, присущие широкому классу взаимосвязанных явлений. Предмет этой теории составляет установление и вывод тех принципов, которые справедливы для систем в целом.
2. Фундаментальная роль системного метода заключается в том, что с его помощью достигается наиболее полное выражение единства научного знания. Это единство проявляется, с одной стороны, во взаимосвязи различных научных дисциплин, которая выражается в возникновении новых дисциплин на "стыке" старых (физическая химия, химическая физика, биофизика, биохимия, биогеохимия и др.), а с другой — в появлении междисциплинарных направлений исследования (кибернетика, синергетика, экология и т. п.).
3. Единство, которое выявляется при системном подходе к науке, заключается прежде всего в установлении связей и отношений между самыми различными по сложности организации, уровню познания и целостности охвата системами, с помощью которых отображаются рост и развитие нашего знания о природе. Чем обширнее система, чем сложнее она по уровню познания и структурной организации, тем больший круг явлений она в состоянии объяснить. Таким образом, единство знания находится в прямой зависимости от его системности.
4. С позиций системности, единства и целостности научного знания становится возможным правильно подойти к решению таких проблем, как редукция, или сведение одних теорий естествознания к другим, синтез, или объединение кажущихся далекими друг от друга теорий, их подтверждение и опровержение данными наблюдений и экспериментов.
5. Системный подход в корне подрывает прежние представления о естественнонаучной картине мира, когда природа рассматривалась как простая совокупность различных процессов и явлений, а не тесно взаимосвязанных и взаимодействующих систем, различных как по уровню своей организации, так и по сложности.
Системный подход исходит из того, что система как целое возникает не каким-то мистическим и иррациональным путем, а в результате конкретного, специфического взаимодействия вполне определенных реальных частей. Именно вследствие такого взаимодействия частей и образуются новые интегральные свойства системы.
Таким образом, процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом, анализ будет сопровождаться синтезом.
Вместе с тем представляются ошибочными взгляды сторонников философского учения холизма (от греч. holos — целое), которые считают, что целое всегда предшествует частям и всегда важнее частей. В применении к социальным системам такие принципы обосновывают подавление личности обществом, игнорирование его стремления к свободе и самостоятельности. На первый взгляд, может показаться, что концепция холизма о приоритете целого над частью согласуется с принципами системного метода, который также подчеркивает большое значение идей целостности, интеграции и единства в познании явлений и процессов природы и общества. Но при более внимательном знакомстве оказывается, что холизм преувеличивает роль целого в сравнении с частью, значение синтеза по отношению к анализу. Поэтому он является такой же односторонней концепцией, как атомизм и редукционизм. Системный метод избегает этих крайностей в познании мира. Именно вследствие взаимодействия частей образуются новые интегральные свойства системы. Но вновь возникшая целостность, в свою очередь, начинает оказывать воздействие на части, подчиняя их функционирование задачам и целям единой целостной системы.
Список использованных источников:
1. А.Г. Войтов. «Философия: учебное пособие аспирантам Системный метод (анализ), М., Изд. "Дашков и К°", 2004.
2. М. К. Гусейханов, О. Р. Раджабов. «
Концепции Современного Естествознания» , М., Изд. "Дашков и К°", 2007.
3. Информационный портал http://naturalsciences.ru/
4. Самыгина С.И. «Концепции современного естествознания: Сер. «Учебники и учебные пособия», Ростов н/Д, Изд. «Феникс», 2000.
5. Уемов А.И. «Системный подход и общая теория систем», М., перераб. Изд., 2006
6. Беляев А.А., Коротков Э.М. «Системология», М.,ИНФРА-М, 2000