Сравнительный анализ и общая характеристика истории развития естественнонаучных картин мира
Введение
«Первый шаг – создание из обыденной жизни картины мира – дело чистой науки», – писал выдающийся физик XX в. М. Планк[1]
.
Исторически первой естественнонаучной картиной мира нового времени была механистическая картина, которая напоминала часы: любое событие однозначно определяется начальными условиями, задаваемыми (по крайней мере, в принципе) абсолютно точно, а в таком мире нет места случайности. В нем возможен «демон Лапласа» – существо, способное охватить всю совокупность данных о состоянии Вселенной в любой момент времени, могло бы не только точно предсказать будущее, но и до мельчайших подробностей восстановить прошлое. Представление о Вселенной как о гигантской заводной игрушке преобладало в XVII – XVIII в. в. Оно имело религиозную основу, поскольку сама наука вышла из недр христианства.
Бог как рациональное существо создал мир в основе своей рациональный, и человек как рациональное существо, созданное Богом по своему образу и подобию, способен познать мир. Такова основа веры классической науки в себя и людей в науку. Отринув религию, человек эпохи Возрождения продолжал мыслить религиозно. Механистическая картина мира предполагала Бога как часовщика и строителя Вселенной.
Механистическая картина мира основывалась на следующих принципах: связь теории с практикой; использование математики; эксперимент реальный и мысленный; критический анализ и проверка данных; главный вопрос: как, а не почему; нет «стрелы времени» (регулярность, детерминированность и обратимость траекторий).
Но XIX в. пришел к парадоксальному выводу: «Если бы мир был гигантской машиной, – провозгласила термодинамика, – то такая машина неизбежно должна была бы остановиться, т. к. запас полезной энергии рано или поздно был бы исчерпан»[2]
. Затем пришел Дарвин со своей теорией эволюции и произошел сдвиг интереса от физики в сторону биологии.
Главный результат современного естествознания, по Гейзенбергу, в том, что оно разрушило неподвижную систему понятий XIX в. и усилило интерес к античной предшественнице науки – философской рациональности Аристотеля.
«Одним из главных источников аристотелевского мышления явилось наблюдение эмбрионального развития – высокоорганизованного процесса, в котором взаимосвязанные, хотя и внешне независимые события происходят, как бы подчиняясь единому глобальному плану. Подобно развивающемуся зародышу, вся аристотелевская природа построена на конечных причинах. Цель всякого изменения, если оно сообразно природе вещей, состоит в том, чтобы реализовать в каждом организме идеал его рациональной сущности.
В этой сущности, которая в применении к живому есть в одно и то же время его окончательная, формальная и действующая причина, – ключ к пониманию природы. Рождение современной науки – столкновение между последователями Аристотеля и Галилея – есть столкновение между двумя формами рациональности»[3]
.
Итак, можно выделить три картины мира: электромагнитную, механистическую, эволюционную. В современной естественнонаучной картине мира имеет место саморазвитие. В этой картине присутствует человек и его мысль. Она эволюционна и необратима. В ней естественнонаучное знание неразрывно связано с гуманитарным.
1. Механистическая картина мира.
К совершенству стремились в XVII-XIX веках именно частные науки, которые только-только начинали обретать статус самостоятельности и науки. Это был период прорыва их к новым горизонтам истин.
Классическая механика выработала иные представления о мире, материи, пространстве и времени, движении и развитии, отмеченные от прежних и создала новые категории мышления - вещь, свойство, отношение, элемент, часть, целое, причина, следствие, система - сквозь призму которых сама стала смотреть на мир, описывать и объяснять его.
Новые представления об устройстве мира привели к созданию и Новой Картины мира - механистической, в основе которой лежали представления о вселенной как замкнутой системе, уподобляемой механическим часам, которые состоят из незаменимых, подчиненных друг другу элементов, ход которых строго подчиняется законам классической механики[4]
.
Законам механики подчиняются все и вся, входящие в состав вселенной, а, следовательно, законам этим приписываются универсальность. Как и в механических часах, в которых ход одного элемента строго подчинен ходу другого, так и во вселенной, согласно механистической картине мира, все процессы и явления строго причинно связаны между собой нет места случайности и все предопределено.
В механистической картине мира задаются мировоззренческие ориентации и методологические принципы познания. Механицизм, детерминизм, редукционизм образуют систему принципов, регулирующих исследовательскую деятельность человека. Открывая законы, описывающие природные явления и процессы, человек противопоставляет себя природе, возвышает себя до уровня хозяина природы.
Так человек ставит свою деятельность на научную основу, ибо он, исходя из механистической картины мира, уверился в возможность с помощью научного мышления выявить универсальные законы функционирования мира. Эта деятельность оформляется в рационалистическую. Безусловно, предполагается, что такая деятельность целиком должна основываться на целевых установках, принципах, нормах, методах познания объекта. Поступки (научные) и действия исследователя, основанные на предписаниях методического характера обретают черты устойчивого образа деятельности.
В рассматриваемый период исследовательская деятельность в астрономии, механике, физике была достаточно рационализирована, а сами эти науки занимали лидирующее место в естествознании.
Физика как наиболее разработанная область естествоиспытания, задавала фон для развития других отраслей науки. Последние же тяготели к рационально-методологическим принципам и понятиям физики, механики. Как это на самом деле происходило можно проследить на историко-научном материале биологии.
В XVII – нач. XIX вв. был период господства механической картины мира. Законы механики рассматриваются как универсальные и единые для всех отраслей естествознания.
Эмпирические факты биологии, являющиеся фиксацией наблюдаемых в периоде единичных явлений, редуцируются к механическим закономерностям, Иными словами, способ формирования фактов в биологии строится на механистических представлениях о мире.
Например, такие факты, как: "Птица, которую потребность влечет к воде, чтобы найти здесь себе жизненное пропитание, раздвигает пальцы на ногах, готовясь грести и плыть по водной поверхности"; "Кожа, соединяющая пальцы при основании, привыкает растягиваться благодаря этим беспрестанно повторяющимся раздвиганиям пальцев[5]
.
Так, со временем образовались те широкие перепонки между пальцами уток, грей, какие видим сейчас", целиком детерминированы идеями механистического детерминизма. Это однозначно видно из интерпретации указанных фактов. "Частое пользование органом, обратившееся в привычку, увеличивает способность того органа, развивает его самого и сообщает ему размеры и силу действия"; "Неупотребление органа, сделавшееся постоянным вследствие усвоенных привычек, постепенно ослабляет этот орган и, в конце концов, приводит его к исчезновению и даже к полному уничтожению".
Механистический подход к системе адаптации "животный организм – окружающая среда" дает соответствующий эмпирический материал.
2. Электромагнитная картина мира
.
Уже в прошлом веке физики дополнили механистическую картину мира электромагнитной. Электрические и магнитные явления были известны им давно, но изучались обособленно друг от друга. Дальнейшее их исследование показало, что между ними существует глубокая взаимосвязь, что заставило ученых искать эту связь и создать единую электромагнитную теорию[6]
.
Действительно, ученый Эрстед (1777-1851), поместив над проводником, по которому идет электрический ток, магнитную стрелку, обнаружил, что она отклоняется от первоначального положения. Это привело ученого к мысли, что электрический ток создает магнитное поле[7]
.
Позднее английский физик Майкл Фарадей (1791-1867), вращая замкнутый контур в магнитном поле, обнаружил, что в нем возникает электрический ток. На основе опытов Фарадея и других ученых английский физик Джеймс Клерк Максвелл (1831-1879) создал свою электромагнитную теорию[8]
. Таким путем было доказано, что в мире существуют не только вещество в виде тел, но и разнообразные физические поля. Одно из них было известно и во времена Ньютона и теперь называется гравитационным полем, а раньше рассматривалось просто как сила притяжения, возникающая между материальными телами. После того как объектом изучения физиков наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер. Тем не менее, это была картина классической физики, которая изучала знакомый нам макромир. Положение коренным образом изменилось, когда ученые перешли к исследованию процессов в микромире. Здесь их ожидали новые необычайные открытия и явления.
Изучение экономики предполагает и предварительное рассмотрение панорамы современного естествознания, поскольку исследование происходящих экономических процессов невозможно без применения современных научных методов для понимания природных явлений как неотъемлемой части жизнедеятельности человека, в том числе и экономической. В то же время рассмотрение тенденций развития современного естествознания позволит различать экстенсивный и интенсивный характер изменения способов познания природы по аналогии с экстенсивным и интенсивным развитием экономики. Так, экстенсивное развитие естествознания обеспечивается проявлением и совершенствованием уже имеющихся способов исследования природы, в то время как интенсивный – возникновением качественно новых способов.
В конце прошлого и начале нынешнего веков в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, своеобразными кирпичиками, из которых состоит природа, считались атомы, то в конце прошлого века были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишенных заряда частиц).
Согласно первой модели атома, построенной английским ученым Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной Солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся датским физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергии. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую[9]
.
Значительно изменились также взгляды на энергию. Если раньше предполагалось, что энергия излучается непрерывно, то тщательно поставленные эксперименты убедили физиков, что она может испускаться отдельными квантами. Об этом свидетельствует, например, явление фотоэффекта, когда кванты видимого света вызывают электрический ток. Это явление, как известно, используется в фотоэкспонометрах, которыми пользуются в фотографии для определения выдержки при экспозиции.
В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля – свойства корпускул. Это получило название дуализма волны и частицы и было представлением, которое никак не укладывалось в рамки обычного здравого смысла.
До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а физические поля — волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов ученые вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.
В 1925-1927 гг. для объяснения процессов, происходящих в мире мельчайших частиц материи – микромире, была создана новая волновая, или квантовая, механика. Последнее название и утвердилось за новой наукой. Впоследствии возникли и разнообразные другие квантовые теории: квантовая электродинамика, теория элементарных частиц и другие, которые исследуют закономерности движения в микромире.
Другая фундаментальная теория современной физики – теория относительности, в корне изменившая научные представления о пространстве и времени. В специальной теории относительности получил дальнейшее применение установленный еще Галилеем принцип относительности в механическом движении. Согласно этому принципу во всех инерциальных системах, т.е. системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические процессы происходят одинаковым образом, и поэтому их законы имеют ковариантную, или ту же самую математическую, форму. Наблюдатели в таких системах не заметят никакой разницы в протекании механических явлений. В дальнейшем принцип относительности был использован и для описания электромагнитных процессов. Точнее говоря, сама специальная теория относительности появилась в связи с преодолением трудностей, возникших при описании физических явлений.
Важный методологический урок, который был получен из специальной теории относительности, состоит в том, что она впервые ясно показала, что все движения, происходящие в природе, имеют относительный характер. Это означает, что в природе не существует никакой абсолютной системы отсчета и, следовательно, абсолютного движения, которые допускала ньютоновская механика.
Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения, принципиально отличной от классической ньютоновской теории. Эта теория впервые ясно и четко установила связь между свойствами движущихся материальных тел и их пространственно-временной метрикой. Теоретические выводы из нее были экспериментально подтверждены во время наблюдения солнечного затмения. Согласно предсказаниям теории луч света, идущий от далекой звезды и проходящий вблизи Солнца, должен отклониться от своего прямолинейного пути и искривиться, что и было подтверждено наблюдениями. Более подробно эти вопросы мы рассмотрим в следующей главе. Здесь же достаточно отметить, что общая теория относительности показала глубокую связь между движением материальных тел, а именно тяготеющих масс, и структурой физического пространства – времени.
Научно-техническая революция, развернувшаяся в последние десятилетия, внесла много нового в наши представления о естественно-научной картине мира. Возникновение системного подхода позволило взглянуть на окружающий нас мир как на единое, целостное образование, состоящее из огромного множества взаимодействующих друг с другом систем[10]
.
С другой стороны, появление такого междисциплинарного направления исследований, как синергетика, или учение о самоорганизации, дало возможность не только раскрыть внутренние механизмы всех эволюционных процессов, которые происходят в природе, но и представить весь мир как мир самоорганизующихся процессов. Заслуга синергетики состоит прежде всего в том, что она впервые показала, что процессы самоорганизации могут происходить в простейших системах неорганической природы, если для этого имеются определенные условия (открытость системы и ее неравновесность, достаточное удаление от точки равновесия и некоторые другие). Чем сложнее система, тем более высокий уровень имеют в ней процессы самоорганизации. Так, уже на предбиологическом уровне возникают автопоэтические процессы, т.е. процессы самообновления, которые в живых системах выступают в виде взаимосвязанных процессов ассимиляции и диссимиляции. Главное достижение синергетики и возникшей на ее основе новой концепции самоорганизации состоит в том, что они помогают взглянуть на природу как на мир, находящийся в процессе непрестанной эволюции и развития.
В каком отношении синергетический подход находится к общесистемному? Прежде всего подчеркнем, что два этих подхода не исключают, а, наоборот, предполагают и дополняют друг друга. Действительно, когда рассматривают множество каких-либо объектов как систему, то обращают внимание на их взаимосвязь, взаимодействие и целостность.
Синергетический подход ориентируется на исследование процессов изменения и развития систем. Он изучает процессы возникновения и формирования новых систем в процессе самоорганизации[11]
. Чем сложнее протекают эти процессы в различных системах, тем выше находятся такие системы на эволюционной лестнице. Таким образом, эволюция систем напрямую связана с механизмами самоорганизации. Исследование конкретных механизмов самоорганизации и основанной на ней эволюции составляет задачу конкретных наук. Синергетика же выявляет и формулирует общие принципы самоорганизации любых систем, и в этом отношении она аналогична системному методу, который рассматривает общие принципы функционирования, развития и строения любых систем. В целом же системный подход имеет более общий и широкий характер, поскольку наряду с динамическими, развивающимися системами рассматривает также системы статические.
Эти новые мировоззренческие подходы к исследованию естественно-научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы научных революций в естествознании. А ведь именно с революционными преобразованиями в естествознании связано изменение представлений о картине мира.
В наибольшей мере изменения в характере конкретного познания коснулись наук, изучающих живую природу. Переход от исследований на клеточном уровне к молекулярному ознаменовался крупнейшими открытиями в биологии, связанными с расшифровкой генетического кода, пересмотром прежних взглядов на эволюцию живых организмов, уточнением старых и появлением новых гипотез происхождения жизни и многого другого. Такой переход стал возможен в результате взаимодействия различных естественных наук, широкого использования в биологии точных методов физики, химии, информатики и вычислительной техники.
В свою очередь, живые системы послужили для химии той природной лабораторией, опыт которой ученые стремились воплотить в своих исследованиях по синтезу сложных соединений. По-видимому, в неменьшей степени учения и принципы биологии оказали свое воздействие на физику. Действительно, как мы покажем в последующих главах, представление о закрытых системах и их эволюции в сторону беспорядка и разрушения находилось в явном противоречии с эволюционной теорией Дарвина, которая доказывала, что в живой природе происходят возникновение новых видов растений и животных, их совершенствование и адаптация к окружающей среде. Это противоречие было разрешено благодаря возникновению неравновесной термодинамики, опирающейся на новые фундаментальные понятия открытых систем и принцип необратимости.
Выдвижение на передний край естествознания биологических проблем, а также особая специфика живых систем дали повод целому ряду ученых заявить о смене лидера современного естествознания. Если раньше таким бесспорным лидером считалась физика, то теперь в т
По-видимому, вопрос о лидерстве в естествознании зависит от множества разнообразных факторов, среди которых решающую роль играют: значение лидирующей науки для общества, точность, разработанность и общность методов ее исследования, возможность их применения в других науках. Несомненно, однако, что самыми впечатляющими для современников являются наиболее крупные открытия, сделанные в лидирующей науке, и перспективы ее дальнейшего развития. С этой точки зрения биология второй половины XX столетия может рассматриваться как лидер современного естествознания, ибо именно в ее рамках были сделаны наиболее революционные открытия.
Различение способов рассмотрения организации сферы природы приводит к формированию различных концепций описания природы, что соответствует также существованию аналогичных способов рассмотрения экономики. Так, корпускулярная и концептуальная концепции описания природы отображаются соответственно в микро- и макроэкономике посредством наличия общих алгоритмов исследования природы и экономики, либо как состоящих из отдельных элементов, либо как представляющих собой единое целое. В то же время концепции существования порядка или беспорядка в природе находят свое отражение и в сфере экономики, где различают концепцию самодостаточности экономической системы, не нуждающейся в ее упорядочении со стороны государства, и концепцию необходимости государственного регулирования экономической системы, неспособной к автоматическому установлению равновесия (порядка).
Научный метод представляет собой яркое воплощение единства всех форм знаний о мире. Тот факт, что познание в естественных, технических, социальных и гуманитарных науках в целом совершается по некоторым общим принципам, правилам и способам деятельности, свидетельствует, с одной стороны, о взаимосвязи и единстве этих наук, а с другой — об общем, едином источнике их познания, которым служит окружающий нас объективный реальный мир: природа и общество[12]
.
Широкое распространение идей и принципов системного метода способствовало выдвижению ряда новых проблем мировоззренческого характера. Более того, некоторые западные лидеры системного подхода стали рассматривать его в качестве новой научной философии, которая в отличие от господствовавшей раньше философии позитивизма, подчеркивавшей приоритет анализа и редукции, главный упор делает на синтез и антиредукционизм. В связи с этим особую актуальность приобретает старая философская проблема о соотношении части и целого.
Многие сторонники механицизма и физикализма утверждают, что определяющую роль в этом соотношении играют части, поскольку именно из них возникает целое. Но при этом они игнорируют тот непреложный факт, что в рамках целого части не только взаимодействуют друг с другом, но и испытывают действие со стороны целого. Попытка понятъ целое путем сведения его к анализу частей оказывается несостоятельной именно потому, что она игнорирует синтез, который играет решающую роль в возникновении любой системы. Любое сложное вещество или химическое соединение по своим свойствам отличается от свойств составляющих его простых веществ или элементов. Каждый атом обладает свойствами, отличными от свойств образующих его элементарных частиц. Короче, всякая система характеризуется особыми целостными, интегральными свойствами, отсутствующими у ее компонентов.
Противоположный подход, опирающийся на приоритет целого над частью, не получил в науке широкого распространения потому, что он не может рационально объяснить процесс возникновения целого. Нередко поэтому его сторонники прибегали к допущению иррациональных сил, вроде энтелехии, жизненной силы, и других подобных факторов. В философии подобные взгляды защищают сторонники холизма (от греч. holos — целый), которые считают, что целое всегда предшествует частям и всегда важнее частей. В применении к социальным системам такие принципы обосновывают подавление личности обществом, игнорирование его стремления к свободе и самостоятельности.
На первый взгляд может показаться, что концепция холизма о приоритете целого над частью согласуется с принципами системного метода, который также подчеркивает большое значение идей целостности, интеграции и единства в познании явлений и процессов природы и общества. Но при более внимательном знакомстве оказывается, что холизм чрезмерно преувеличивает роль целого в сравнении с частью, значение синтеза по отношению к анализу. Поэтому он является такой же односторонней концепцией, как атомизм и редукционизм.
Системный подход избегает этих крайностей в познании мира. Он исходит из того, что система как целое возникает не каким-то мистическим и иррациональным путем, а в результате конкретного, специфического взаимодействия вполне определенных реальных частей. Именно вследствие такого взаимодействия частей и образуются новые интегральные свойства системы. Но вновь возникшая целостность, в свою очередь, начинает оказывать воздействие на части, подчиняя их функционирование задачам и целям единой целостной системы.
Мы видели, что не всякая совокупность или целое образуют систему, и в связи с этим ввели понятие агрегата. Но всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Таким образом, процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом, а анализ сопровождаться синтезом.
3. Представления об эволюционной картине мира.
«Что такое эволюция – теорема, система, гипотеза?. Нет, нечто гораздо большее, чем все это: она - основное условие, которому должны отныне подчиняться и удовлетворять все теории, гипотезы, системы, если они хотят быть разумными и истинными. Свет, озаряющий факты, кривая, в которой должны сомкнуться все линии, - вот что такое эволюция»[13]
.
В словах П.Тейяра де Шардена слово «эволюция» следует заменить на слово «эволюционизм», поскольку у него идет здесь речь не об эволюции как таковой, под которой понимают развитие мира, а об эволюционном мировоззрении или эволюционизме. Эволюционизм - это мировоззрение будущего. Сама эволюция, как бы человечество ни сопротивлялось ей, заставит эволюционизм овладеть массовым, общественным сознанием.
Но что это такое - эволюционное мировоззрение?
Под мировоззрением вообще понимают систему взглядов, сквозь призму которой человек видит мир. Результатом такого видения и является та или иная картина мира. Носитель эволюционного мировоззрения видит в мире результат его многомиллионного развития. Вот почему его картину мира можно назвать эволюционной.
Каким образом можно изобразить эволюционную картину мира в самом общем виде?
С эволюционной точки зрения все мироздание (этим словом мы можем метафорически назвать наш мир) имеет четыре этажа. Первый его этаж составляет физическая (мертвая, неорганическая, косная) природа. Она вечна, хотя и она эволюционирует. Физическую эволюцию мы будем называть физиогенезом. Частью этой эволюции является геогенез - происхождение и развитие Земли.
Второй этаж мироздания - живая природа. Она вышла из недр физической материи. Ее происхождение - величайшая тайна. Происхождение жизни и ее эволюцию иначе называют биогенезом.
Третий этаж мироздания нематериален. Это психика. Она результат эволюции животного мира. Ее эволюция называется психогенезом.
Четвертый этаж мироздания - культура. Что это такое? Культуру составляет все то, что создано человеком для удовлетворения его биологических (в пище, одежде, жилище) и духовных (в религии, науке, искусстве, нравственности и т.д.) потребностей. Культурную эволюцию мы будем называть культурогенезом.
Культурогенез есть не что иное, как процесс очеловечивания или гоминизации. Культура и человек - понятия синхронные: с того момента, как наши животные предки, благодаря их долгой психической эволюции, стали способны создавать первые продукты культуры, они перестали быть животными, а точнее - они вступили на путь гоминизации, превращения в людей. Этот процесс продолжается. У одного человека он достиг большего прогресса, у другого - меньшего. Это значит, что первый в большей мере стал человеком, а другой - в меньшей, т.е. сохранил большую близость с нашими животными предками.
Таким образом, понятие «человек» есть понятие эволюционное. Кроме того, понятия «культура» и «человек» - это понятия однородные. Вот почему очеловечивание (гоминизация) есть не что иное, как окультуривание. Окультуриваться (или очеловечиваться) - значит усваивать культурные ценности, созданные в прошлом, воспроизводить их в настоящем и создавать новые для будущего.
Итак, подытожим сказанное. Первый этаж мироздания - физическая природа (внутри него осуществляется физиогенез), второй этаж мироздания - живая природа (внутри него происходит биогенез), третий этаж мироздания - психика (внутри него протекает психогенез) и четвертый этаж мироздания - культура, внутри которого осуществляется культурогенез. Самый старый из этих этажей - первый, самый молодой - последний. Вот почему мироздание скорее похоже не на современный многоэтажный дом, а не крыльцо. Правда, у нижней его ступеньки нет ни начала, ни конца. Что касается трех последующих ступенек, то у них есть начало и, как это ни печально признавать, возможен конец. Он возможен, скажем, с прекращением солнечной энергии, поступающей на Землю.
Дело в том, что в каждом этаже мироздания (или «мирокрыльца») протекают не только прогрессивные, эволюционные, процессы, но и регрессивные, инэволюционные. Прогресс всегда борется с регрессом, эволюция - с инэволюцией. Так, в живой природе инэволюционные процессы связаны с биологическим вырождением, в психике - с психической дегенерацией, в культуре - с ее разрушением[14]
.
Но не только внутри каждого этажа мироздания происходит борьба эволюции с инэволюцией, эта борьба осуществляется и между разными его этажами: мертвая природа губит живую, живая природа наступает на мертвую и т.д. Но наибольшим инэволюционным потенциалом сейчас обладает культура. Она не только оберегает сама себя и весь мир, но и разрушает его: загрязняет физическую природу, уничтожает живую, перенасыщает психику человека зловредной информацией, которая делает нас психопатами.
Что же отсюда следует? Отсюда следует, что эволюционист видит в мире не только одну эволюцию, он видит в нем и ее противоположность - инэволюцию. Он видит в мире единство и борьбу эволюции с инэволюцией. Но мало видеть, надо и что-то делать! Что же делать людям, вступившим на путь эволюционизма? Содействовать победе эволюции над инэволюцией! Но для начала следовало бы разобраться с понятием эволюционной картины мира.
Под картиной мира обычно понимают «совокупность мировоззренческих знаний о мире»[15]
. Эволюционист видит в современном мире результат его долгого развития. Он может выделить в нем четыре части - физическую (мертвую) природу, живую природу, психику и культуру.
Каждая из частей мира составляет предмет четырех частных наук - физики (в широком понимании этого термина), биологии, психологии и культурологии. Эти науки называют частными потому, что каждая из них изучает соответственную часть мира.
Над частными науками возвышается общая наука - наука о мире в целом. Это философия. Она исследует все четыре вида объектов - физические, биологические, психологические и культурологические, но со стороны их общих особенностей. Эти особенности - объективная основа философских категорий (часть и целое, сущность и явление, качество и количество, время и пространство и т.п.). Каждый объект - часть и целое, сущность и явление и т.д[16]
.
Любая часть мира имеет сложное строение. Так, физическая природа состоит из звезд, к которым принадлежит и Солнце, и планет, к числу которых относится и Земля. Нашу Землю покрывают атмосфера и гидросфера, а сама она состоит из ядра, мантии и земной коры. Физический мир изучается физическими науками, куда входят астрономия, геология, география, химия, микрофизика и др.
Пожалуй, наибольшей сложностью среди четырех частей мира отличается культура. Ее составляет все то, что создано человеком для удовлетворения его материальных и духовных потребностей. Вот почему она делится на материальную и духовную. Основными компонентами материальной культуры являются пища, одежда, жилище и техника; основными компонентами духовной культуры - религия, наука, искусство, нравственность, политика и язык.
Каждый из выделенных компонентов культуры изучается соответственной наукой.
Так, религия изучается религиеведением, наука - науковедением, искусство - искусствоведением, нравственность - этикой, политика - политологией, а язык - лингвистикой (языкознанием). Более того, шесть сфер духовной культуры - религия, наука, искусство, нравственность, политика и язык - изображают наш мир по-своему. Иначе говоря, этот мир отображается в разных его картинах. Вот почему существует шесть базовых разновидностей картины мира - религиозная (мифологическая), научная, художественная, нравственная, политическая и языковая.
Профессиональными носителями религиозной картины мира являются священники, научной - ученые, художественной - художники, нравственной - нравственные учители (моралисты), политической - политики и языковой - рядовые носители конкретного языка.
Заключение
На рубеже ХХI века естествознание, по-видимому, вступает в новую историческую фазу своего развития - на уровень постнеклассической науки.
Для постнеклассической науки характерно выдвижение на первый план междисциплинарных, комплексных и проблемно-ориентировочных форм исследовательской деятельности. Все чаще в определении познавательных целей науки начинают играть решающую роль не внутринаучные цели, а цели экономического и социально-политического характера.
Объектами современных междисциплинарных исследований все чаще становятся уникальные системы, характеризующиеся открытостью и саморазвитием. Исторически развивающиеся системы представляют собой более сложный тип объекта даже по сравнению с саморегулирующимися системами. Исторически развивающаяся система формирует с течением времени новые уровни своей организации, изменяет свою структуру, характеризуется принципиальной необратимостью процессов и др. Среди таких систем особое место занимают природные комплексы, в которые включен сам человек (объекты экологии, медико-биологические объекты, объекты биотехнологии, системы “человек-машина” и др.)
Становление постнеклассической науки приводит к изменению методологических установок естественнонаучного познания[17]
:
формируются особые способы описания и предсказания возможных состояний развивающегося объекта - построение сценариев возможных линий развития системы (в том числе и в точках бифуркации);
идеал построения теории как аксиоматическо-дедуктивной системы все чаще сочетается с созданием конкурирующих теоретических описаний, основанных на методах аппроксимации, компьютерных программах и т.д.;
в естествознании все чаще применяются методы исторической реконструкции объекта, сложившиеся в гуманитарном знании;
по отношению к развивающимся объектам изменяется и стратегия экспериментального исследования: результаты экспериментов с объектом, находящимся на разных этапах развития, могут быть согласованы только с учетом вероятностных линий эволюции системы; особенно это относится к системам, существующим лишь в одном экземпляре - они требуют и особой стратегии экспериментального исследования, поскольку нет возможности воспроизводить первоначальные состояния такого объекта;
нет свободы выбора эксперимента с системами, в которые непосредственно включен человек;
изменяются представления классического и неклассического естествознания о ценностно-нейтральном характере научного исследования - современные способы описания объектов (особенно таких, в которые непосредственно включен сам человек) не только допускают, но даже предполагают введение аксиологических факторов в содержание и структуру способа описания (этика науки, социальная экспертиза программ и др.).
Есть все основания считать, что по мере дальнейшего развития науки все эти современные особенности естественнонаучного познания будут проявлять себя в еще более контрастных и очевидных формах.
Список литературы
Ващекин Н.П. Концепции современного естествознания. – М.: МГУК, 2003 г., 234 с.
Гейзенберг В. Физика и философия. Часть и целое. – М.: 2001., 220 с.
Горелов А.А. Концепция современного естествознания. – М.: Изд. “Центр”, 1999., 332 с.
Грушевская Т. Г., Садохин П.П. Концепции современного естествознания: Учеб. Пособие: Высшая школа. – М.: 2003., 178 с.
Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000., 257 с.
Дубнищева Т. Я. Концепции современного естествознания. – Новосибирск: ООО “Издательство ЮКЭА”, 2005., 832с.
Кокин А.В. Концепции современного естествознания. – М.: «ПРИОР», 1998., 190 с.
Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. — М.: ЮНИТИ-ДАНА, 2000., 356 с.
Концепции современного естествознания. / Под ред. С.И. Самыгина. – Ростов /нД: “Феликс”, 2002. – 448с.
Краткая философская энциклопедия // Под ред. Е.Ф.Губского. – М., 1994. – С.201.
Материалы сайта http://www.helpeducation.ru/
Найдыш В.М. Концепция современного естествознания. “Гардарики”. – М.: 2001., 285 с.
Планк М. Введение в теоретическую физику. Механика деформируемых тел. – М.: 3-е изд., испр. – 2005.
Потеев М. И. Концепции современного естествознания, Санкт-Петербург., «Питер», 2002., 319 с.
Пригожин И., Стенгерс И. Порядок из хаоса. – М.: 1986.
Пьер Тейяр де Шарден Феномен человека. – М., 1987.
Работа предоставлена пользователем Student.km.ru.
[1]
Планк М. Введение в теоретическую физику. Механика деформируемых тел. – М.: 3-е изд., испр. – 2005.
[2]
Гейзенберг В. Физика и философия. Часть и целое. – М.: 2001., 220 с.
[3]
Пригожин И., Стенгерс И. Порядок из хаоса. – М.: 1986.
[4]
Ващекин Н.П. Концепции современного естествознания. – М.: МГУК, 2003 г., 234 с.
[5]
Горелов А.А. Концепция современного естествознания. – М.: Изд. “Центр”, 1999., 332 с.
[6]
В работе были использованы материалы сайта http://www.helpeducation.ru/
[7]
Потеев М. И. Концепции современного естествознания, Санкт-Петербург., «Питер», 2002., 319 с.
[8]
Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. — М.: ЮНИТИ-ДАНА, 2000., 356 с.
[9]
Найдыш В.М. Концепция современного естествознания. “Гардарики”. – М.: 2001., 285 с.
[10]
Концепции современного естествознания. / Под ред. С.И. Самыгина. – Ростов /нД: “Феликс”, 2002. – 448с.
[11]
Пригожин И., Стенгерс И. Порядок из хаоса. – М.: 1986.
[12]
Грушевская Т. Г., Садохин П.П. Концепции современного естествознания: Учеб. Пособие: Высшая школа. – М.: 2003., 178 с.
[13]
Пьер Тейяр де Шарден Феномен человека. – М., 1987.
[14]
Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000., 257 с.
[15]
Краткая философская энциклопедия // Под ред. Е.Ф.Губского. – М., 1994. – С.201.
[16]
В работе были использованы материалы сайта http://www.helpeducation.ru/
[17]
Потеев М. И. Концепции современного естествознания, Санкт-Петербург., «Питер», 2002., 319 с.