РефератыАстрономияІнІнтегровані типи д-р 1-го порядку розвязаних відносно похідної

Інтегровані типи д-р 1-го порядку розвязаних відносно похідної

Реферат на тему:


Інтегровані типи д-р 1-го порядку,


розв

язаних відносно похідної.


а). Неповні р-ня. ДР, яке не містить шуканої функції.


Має вигляд


, (2.33)


Припустимо, що f(x) являється неперервною на функцією.


Тоді ф-я


(2.34)


являэться загальним розв`язком д-р (1) в області a < x < b, -< y < + .(2.35)


Особливих розвязків ДР (2.33) немає.


Разом з ДР (2.33) розглянемо початкові умови
(2.36)


Проінтегруємо ДР (2.34) від до x



Знаходимо с
з умови (2.36)


(2.37) - загальний розвязок ДР (2.33) в формі Коші.


Якщо f(x) - неперервна на за виключенням точки , в якій приймає нескінченне значення, то замість ДР (2.34) будемо розглядати р-ня


(2.331
)


Пряма являється розвязком ДР (2.331
) і ми цей розвязок повинні приєднати до розвязку ДР (2.33). Цей розвязок може бути частинним або особливим в залежності від того зберігається чи порушується в будь-якій його точці єдність. Якщо - частинний розвязок, то його часто можна отримати з загального при нескінченних заначеннях с
, якщо ж він являється особливим, то його отримують з загального при .


Р-ня, яке не містить незалежної змінної має вигляд


(2.38)


Припускаємо, що ф-явизначена і неперевна на інтервалі . Замість (2.38) розглянемо ДР


(2.39)


ДР (2.39) не містить шуканої функції і воно розвязується аналогічно ДР (2.33).


Якщо , yє (c,d), то


(2.40) – загальний рохвязок ДР (2.39) в області


c < y < d, -< x < + .


Аналогічно (2.41) - загальний інтеграл в формі Коші.


Якщо неперервна на (c,d) і приймає нульове значення при , то ми повинні розглядаті ДР (2.38). Розвязок буде частинним, якщо в кожній його точці зберігається єдиність, і осоюливим, якщо в кожній його точці порушується єдиність. Якщо частинний розвязок, то ми його отримуємо при нескінченних значеннях , якщо особливий, то при .


Якщо в тоцчі перетворюється в нескінченність , то розглянемо ДР (2.39), яке має неперервну праву частину на (c,d). При цьому ДР на має єдиний розвязок .


Пр. 2.5


Розглянемо ДР .


Область визначення : .


Поскільки в т. дотичні паралельні осі OY, то розвязок в єдиний , .


б) Рівняння з відокремлюванними змінними.


Розглянемо р-ня в диференціалах виду


(2.42),


де - неперервні ф-ї своїх аргументів.


Деференціальне р-ня (2.42) називається р-ням з відокремленими змінними. Його можна переписати данним чином . Звідки маємо загальний розвязок в квадратурах. (2.43).


Якщо треба записати розвязок задачі Коші, то записують так . З умови (2.36) визначають . Отже (2.44) – розвязок задачі Коші (2.36), (2.42). При данних припущеннях особливих розвязків ДР (4.42) не має.


Рівняння вигляду


(2.45) –


називають р-ням з відокремлюваними змінними.


Припустимо, що , тоді розділемо обидві частини рівняння (2.45) на , отримуємо


(2.46).


Аналогічно записуємо


(2.47) –


загальний розвязок ДР (2.45) і


(2.48) –


розвязок задачі Коші (2.36) , (2.45). При діленні на ми можемо загубити розвязки, які визначаються рівняннями ,. Дійсно, нехай , то


отже - розвязок ДР (2.45).


Аналогічно .


Якщо ці розвязки не входять в (2,47) при деяких , то вони представляють собою особливі розвязки ДР (2.45).


З розвязку ми повинні викинути точку , так як в точці ДР (2.45) не визначає нахил поля . По тій же причині з розвязку викидають точку .


Таким чином розвязки і примикають до точки і можуть бути особливими. Других особливих розвязків не має.


Пр. 2.6.


Знайти загальний розвязок ДР:


.


Розвязок:


. .


.


.


.


.


в). Однорідні і узагальнено-однорідні ДР.


Розглянемо р-ня в диференціалах


(2.5),


в якому ф-ії і являються однорідними функціями одніеї і тієї ж степені однорідності.


Означення 2.4: ф-я називаеться однорідною степеню ,


якщо (2.49).


Якщо (2.49) виконуються при , то ф-я називаеться

додатню-однорідною.


Однорідне р-ня завжди можна звести до рівняння вигляду


(2.50),


в якому функція однорідна функція нулбового виміру.


Однорідні рівняння завжди інтегруються в квадратурах заміною (2.51). При цьому р-ня (2.5) приводиться до рівняння з відокремлюваними змінними. Дійсно


,


,


,


,


,


,


(2.52), де .


При діленні ми могли загубити розвязок , де - корені рівняння (2.53).


Отже півпрямі примикають до початку координат. Ці розвязки можуть міститися в формулі загального розвязку, але можуть бути і особливими. Особливими можуть бути також півосі осі . Других особливих розвязків ДР (2.5) не має.


Рівняння вигляду(2.54) зводиться до однорідного. Якщо , то це однорідне рівняння.


Припустимо, що хоч одне з чисел не дорівнюють 0. Можливі два випадки:


Перший) Проводимо заміну (2.55), де - нові змінні, - параметри. Тоді (2.56).


Параметри вибираємо згідно системи (2.57). Так як то система (2.57) має єдиний розвязок. Таким чином, ми прийшли до однорідного ДР (2.58).


Другий) . В цьому випадку , тобто . Тому (2.59)


Заміною ДР (2.59) приводимо до рівняння з відокремленими змінними (2.60).


Пр 2.7 Знайти загальний розвязок ДР


Це однорідне рівняння, . Зробимо заміну ,


, .


Отже - загальний розвзок нашого рівняння.


ДР (2.5) називається узагальнено-однорідним, якщо існує таке число , при якому ліва частина цього ДР (2.5) стає однорідною функцією від велечин в припущенні, що __ мають віжповідно виміри: перший, -ий, нульвий , -ий. При має просто однорідне рівняння.


В цьому випадку ДР (2.5) заміною (2.61) зводитьчя до р-ня з відоктремлюванними змінними. При р-ня (2.5) являється р-ням з розділеними зміними. Особліви розвязки досліджуються аналогічно.


Пр 2.8 Розвязати ДР:


Знайдемо чилодля данного випадку . Отже , ,формула


Звідки загальний розвязок.


г) Лінійні р-ня порядку.


ДР вигляду (2.62) називаються лінійними ДР порядку.


При воно називається однорідним


Формула (2.63). Так як ліва частина ліній на і однорідна відносно і . Р-ня (2.62) при називається неоднорідним. ДР (2.63) інтирується в квадратурах, так як воно являється ДР з відокремлюваними змінними.. Звідки (2.64).


Якщо то (2.65)


Загальні властивості ОДР :


- Якщо та неперервні, то згідно теореми Пікара розвязок задачі Коші для ДР (2.63) існує і являється єдиним;


- ЛДР (2.63) не має особливих розвязків;


- ІК ОДР (2.63) не можуть пееретинати вісь , так як в противному випадку нарушалися б умови єдиності розвязку задачі Коші;


- ДР (2.63) інваріантно відносно перетворення ;


Дійсно: формула , .


- ДР (2.63) іваріантно відносно заміни (2.66) де -новазмінна, та - неперервні ф-ї, на . Тоді . Якщо - частинний розвязок ДР (2.63), то (2.67), де - константа, являється загальним його розвязком. Справедлива теорема.


Теорема (2.3) (про структуру розвязку лінійного неоднорідного ДР): Якщо - частинний розвязок неоднорідного ДР (2.62), а ДР (2.64)- загальний розвязок ОДР (2.63) то сума (2.68) являється загальним розвязком неоднорідного ДР (2.62).


Теорема доводиться безпосередньою подстановкою (2.68) в


р-ня (2.62).


Якщо відомо два частинних розвязки ДР (2.62), то загальний його розвязок записується без квадратур (2.69).


Розглянемо два методи интигрування неоднорідного ДР (2.67).


Метод Лагранжа
(варіації довільної сталої).


Розвязок шукаємо у вигдяді (2.70). Підставимо (2.70) в (2.62). . Звідки ,


. Остаточно маємо (2.71).


загальний розв’язок ДР (2.62), який записаний через дві квадратури. Довільна стала входить завжди в загальний розв’язок лінійно.


Метод Ейлера
заключається в тому, що ліва частина ДР (2.62) представляється у вигляді точної похідної шляхом домноження на деяку функцію Визначимо звідки тобто (ф-я) називається інтерувальним множником). Тому (2.72) звідки. З останнього співвідношення отримуємо ф-лу (2.71).


Загальний розв’язок при умові можна записати в Формі Коші .


Пр.2.9 Знайти загальний розв’язок ДР


Це лінійне однорідне ДР .


Пр.2.10 Розв’язати ДР .


За формулою (2.71)


д) Рівняння Бернуллі
Це рівняння має вигляд (2.74)


Рівняння (2.74) завжди інтегрується в квадратурах шляхом підстановки (2.75). Так як , то домножимо (2.74) на , маємо (2.76) яке вже являється лінійним.


Прирівняння Бернуллі має особливий розв’язок. При розв’язок міститься в загальному розв’язку при. При не являється розв’язком ДР (2.74)


Пр.2.11 Розв’язати ДР , , ,. Отже - загальний розвязок нашого р-ня.


Відомо, що деференц. – ліннійне р-ня.


Р-ня зводиться до лінійного заміною.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Інтегровані типи д-р 1-го порядку розвязаних відносно похідної

Слов:1378
Символов:10801
Размер:21.10 Кб.