РефератыХимияМеМетилцеллюлоза и карбоксиметилцеллюлоза: свойства растворов и пленок

Метилцеллюлоза и карбоксиметилцеллюлоза: свойства растворов и пленок

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ РАСТИТЕЛЬНЫХ


ПОЛИМЕРОВ


ОТЧЕТ ПО ИНЖЕНЕРНОЙ ПРАКТИКЕ


Метилцеллюлозаикарбоксиметилцеллюлоза: свойстварастворовипленок


Проверил: в.н.с., д.х.н.


Александр Михайлович Бочек


Выполнила: ст. гр. 144


Татищева Валентина Александровна


САНКТ-ПЕТЕРБУРГ 2003


Введение


Метилцеллюлоза является первым членом гомологического ряда 0-алкильных производных целлюлозы (простых эфиров). По степени замещения метиловые эфиры целлюлозы можно разделить на низкозамещенные, растворимые в водных растворах сильных щелочей определенной концентрации, и высокозамещенные, растворимые как в воде, так и в органических растворителях. Метиловые эфиры целлюлозы могут быть получены при реакции целлюлозы с различными алкилирующими реагентами: диметилсульфатом, хлористым (или йодистым и бромистым) метилом, диазометаном, метиловым эфиром бензолсульфоновой кислоты. В настоящее время метилцеллюлоза (главным образом водорастворимая) является промышленным продуктом.


Препараты 0-карбоксиметилцеллюлозы в зависимости от степени замещения, так же как и других 0-алкильных производных, можно разделить на низкозамещенные и высокозамещенные. Получение препаратов КМЦ со степенью замещения γ более 100, однако, весьма затруднено ввиду электростатических эффектов отталкивания заряженных одноименно групп (хлорацетатного иона и карбоксиметильной группы). Поэтому практически «высокозамещенными» препаратами КМЦ являются продукты, имеющие степень замещения γ=50—100 и являющиеся водорастворимыми.


Получение метилцеллюлозы


В промышленности для получения метилцеллюлозы чаще всего применяют метод, основанный на алкилировании щелочной целлюлозы хлористым метилом [1].


Процесс алкилирования алкилгалогенидами происходит при тем­пературах 353—373 К. Так как хлористый метил имеет точку кипения 248К, реакция алкилирования производится в автоклавах под высоким давлением.


В процессе алкилирования происходят побочные реакции между хлористым метилом и щелочью с образованием спирта и соли и между спиртом и хлористым метилом с образованием диметилового эфира:


NaOH+CH3
Cl+CH3
OH→CH3
OCH3
+NaCl+H2
O


CH3
Cl+NaOH→CH3
OH+NaCl


Поэтому необходимо применять избыток хлористого метила и значи­тельное количество твердой щелочи, так как с увеличением концентрации щелочи разложение хлористого метила уменьшается.


Легче всего подвергается обмену (наиболее подвижен) атом йода, что связано с его большей поляризуемостью, однако алкилиодиды относительно дороги. Хлориды и бромиды мало различаются по реакционной способности, поэтому в промышленных синтезах предпочитают использовать более доступные хлористые алкилы.







Первичные (и вторичные) галоидопроизводные реагируют через переходное соединение[2]:

Скорость реакции, протекающей через переходное состояние, пропорциональна концентрации каждого из реагентов. Следует полагать, что и реакция целлюлозы с хлористым метилом происходит по указанной выше схеме, т. е. является бимолекулярной реакцией нуклеофильного замещения –SN
2.


Получение метилцеллюлозы связано с определенными трудностями ввиду больших расходов реагентов, необходимости работы под давлением и т. п. Поэтому изыскание новых путей синтеза метилцеллюлозы имеет большое практическое значение. С этой точки зрения представляются интересными работы [3,4]. Авторами были применены в качестве алкилирующих агентов эфиры ароматических сульфокислот, а именно эфиры п-толуолсульфоки- слоты, толуолдисульфокислоты, бензолсульфокислоты и нафталинсульфокислоты.


Алкилирование этими эфирами идет по схеме:


С6
Н7
О2
(ОН)3
+xRSO2
OR'→С6
Н7
О2
(ОН)3-х
(ОR')x
+ xRSО2
ОН,


где R= —С6
Н5
, —СН3
С6
Н4
, —С10
Н7
; R'= —СН3
, —С2
Н5
и т. п.


Было установлено, что с ростом длины алкилирующего радикала скорость реакции уменьшается. Основываясь на экспериментальных данных, можно расположить эфиры сульфокислот в следующий ряд по реакционной способности:


С6
Н5
SО2
ОСН3
> С6
Н5
SО2
ОС2
Н5
> С6
Н5
SО2
ОС6
Н7
.


Наиболее часто для алкилирования целлюлозы в лабораторных условиях применяют диметилсульфат (СН3
)2
S04
, который имеет температуру кипения 461К и позволяет получать продукты при нормальном давлении. Но, несмотря на это, применение его в производстве ограничено из-за высокой токсичности. Образование простого эфира целлюлозы в случае действия диметилсульфата может быть выражено в общем виде следующим уравнением:


С6
Н7
О2
(ОН)3
+ x(СН3
)2
SО4
→ Сб
Н7
O2
(ОН)3-
x
(ОСH3
)x
+ xСН3
ОSО3
Na + xН2
О.


Одновременно с основной реакцией алкилирования целлюлозы протекает и побочная реакция разложения диметилсульфата по схеме:


(СН3
)2
SО4
+ 2NаОН → Nа2
SО4
+ 2СН3
ОН.


Образующаяся при главной реакции метилсерная кислота может реагировать с метиловым спиртом, давая диметиловый эфир и в присутствии избытка щелочи сульфат Nа:



Реакция метилирования протекает только в щелочной среде, что, очевидно, связано с преимущественным реагированием целлюлозы в виде диссоциированного щелочного соединения.


Получение полностью замещенных продуктов при метилировании целлюлозы по этому методу встречает значительные трудности. Так, после 18 — 20 операций метилирования хлопка Денхам и Вудхоуз[5] получили продукт с содержанием 44.6 % ОСН3
(теоретическая величина для триметилцеллюлозы 45.58 %ОСН3
), а Ирвайн и Хирст[5] - - с содержанием 42 — 43 %ОСН3
; Берль и Шупп[5] после 28-кратного метилирования получили эфир с содержанием 44.9 %ОСН3
.


Существование вышеописанной побочной реакции является одной из причин, обусловливающих трудность получения высокозамещенного продукта. Разложение диметилсульфата во время получения метилцеллюлозы требует применения его большого избытка, что, в свою очередь, приводит к необходимости использовать и большой избыток щелочи, ибо реакция среды всегда должна оставаться щелочной.


Было установлено, что при более высокой концентрации щелочи удается получить более высокую степень замещения метилцеллюлозы[5,6]. Этот факт объясняют различными причинами. Во-первых, было показано, что степень разложения диметилсульфата уменьшается при увеличении концентрации щелочи. Во-вторых, можно предположить, что при повышении концентрации NаОН сдвигается вправо равновесие в системе


С6
Н7
О2
(ОН)3
+ Na+
+ ОН −
→ С6
Н7
О2
(ОН)2
О −
+ Nа+
+ Н2
О.


Однако в ряде случаев удается получить высокозамещенную метилцеллюлозу и без многократных повторений метилирования.


Так, Хэуорз и др. [7], предварительно размельчив фильтровальную бумагу до состояния тонкого порошка и суспендировав ее в ацетоне, получили содержание метоксилов 45 % уже после 2-кратного метилирования. Наиболее просто высокое содержание метоксилов может быть получено при растворении вторичной ацетилцеллюлозы в ацетоне и постепенном добавлении диметилсульфата и водной щелочи. Таким путем в одну операцию может быть достигнуто содержание метоксилов в продукте реакции близкое к 45 % [5].


Получение карбоксиметилцеллюлозы


Низкозамещенную Nа-карбоксиметилцеллюлозу получали при взаимодействии щелочной целлюлозы с монохлоруксусной кислотой в различных условиях. В связи с тем, что хлоруксусная кислота является твердым, кристаллическим веществом и для получения низкозамещенных продуктов она требуется в небольшом количестве по сравнению сцеллюлозой, особенное значение имеет равномерное распределение реагирующих компонентов смеси. В одном из способов [8,9] реакция была осуществлена путем обработки воздушно-сухой целлюлозы раствором натриевой соли монохлоруксусной кислоты в 17.5— 18%-ном растворе NaOН при жидкостном модуле, равном 5 (отношение количества жидкости в мл к массе целлюлозы в г). Раствор соли приготавливался перед реакцией путем растворения соответствующей навески монохлоруксусной кислоты в щелочи такой концентрации, чтобы после нейтрализации она оставалась в пределах указанной величины.


Степень замещения низкозамещенной Nа-соли карбоксиметилцеллюлозы определяют по содержанию в ней Na.Содержание натрия в карбоксиметилцеллюлозе можно определить весовым методом в виде сульфата, путем озоления навески в тигле, обработки золы серной кислотой и прокаливания при 973 К или объемным методом путем обратного титрования избытка серной кислоты щелочью в присутствии бромфенолсинего в качестве индикатора (область перехода должна быть в кислой среде, чтобы не происходило обратного связывания щелочи карбоксильными группами).


Растворимость, вязкость растворов и другие свойства карбок­симетил- целлюлозы в значительной степени зависят от способа ее получения.


Известно несколько способов получения Nа-КМЦ, основанных на одной и той же реакции:


Целл(ОН)n
+ 2mNaОН + mСН2
С1СООН →


Целл(ОН)n
-
m
(ОСН2
СОONa)m
+ mNаСl + 2mН20,


но выполненных в различных модификациях. Поэтому представляет интерес сравнительное сопоставление образцов Nа-КМЦ, полученных из одной и той же целлюлозы, но различными методами.


Применялись следующие методы получения КМЦ.


1.Мерсеризованная 17.5%-ным раствором NаОН целлюлоза отжималась до 3-кратной массы и обрабатывалась в измельчителе типа Вернера и Пфлейдерера сухой натриевой солью монохлоруксусной кислоты (СН2
С1СООNа) при температуре 313 К в течение 30 мин. Затем реакционная смесь выдерживалась в стационарных условиях при 295 К и в течение 24 ч в закрытом сосуде. За это время происходит окислительно-щелочная деструкция целлюлозы: степень по­лимеризации снижается с 1200 до 300—400 и растворимость образцов КМЦ в воде улучшается. По этому способу алкилирование протекает при максимальных концентрациях действующих масс (целлюлозы и монохлоруксусной кислоты), в результате чего достигается высокая степень алкилирования. Однако условия смешения компонентов реакции не благоприятствуют получению равномерно алкилированных образцов Nа-КМЦ.


П. Воздушно-сухую целлюлозу обрабатывали раствором натриевой соли монохлоруксусной кислоты в 18%-ном растворе NаОН при жидкостном модуле 5 и температуре 313 К. Окислительно-щелочную деструкцию проводили вышеописанным способом 1 после отжима реакционной смеси до


3-кратной массы по от­ношению к целлюлозе. Этот метод характеризуется равномерным проникнове­нием алкилирующего реагента — монохлоруксусной кислоты — внутрь цел­люлозных волокон при набухании, что позволяет получать однородно замещенные продукты [10]. Однако, как было показано [9], большая часть взятого количества СH2
СlСООН идет на побочную реакцию ее омыления.


III. Целлюлозу мерсеризовали 18%-ным раствором NаОН. Отжатую до 5-кратной массы алкалицеллюлозу промывали на воронке Бюхнера пропанолом (с настаиванием) от избытка NаОН и воды. Добавляли пропанол до желаемого модуля и помещали целлюлозную массу в измельчитель. После 10 мин измельчения добавляли сухую соль СH2
ClCOONa. Реакцию вели при постоянной температуре. По этому способу размеры побочной реакции омыления СН2
ClCOONa сведены до минимума, тем самым эффективность использования алкилирующего реагента повышается. Промывка образцов КМЦ во всех случаях проводилась горячим 70%-ным этанолом в аппарате Сокслетта до отрицательной реакции на NаОН по фенолфталеину и на Cl−
с раствором AgNO3
.


Как видно наибольшая степень замещения при одинаковом количестве СН2
С1СООН достигается по способу III - в среде пропанола. Это объясняется, очевидно, уменьшением расхода СH2
ClСООН на побочную реакцию омыления.


Свойства растворов метилцеллюлозы


Растворимость низкозамещенной метилцеллюлозы в воде при комнатной температуре и ниже и состав фракций, переходящих в раствор, зависят от ее степени замещения, однородности и степени полимеризации.


В табл. 1 представлены данные по определению растворимости различных препаратов метилцеллюлозы в воде. При анализе данных таблицы прежде всего обращает на себя внимание следующее обстоятельство: растворимость метилцеллюлозы в воде очень незначительна даже при сравнительно высоком содержании метоксилов (для метилцеллюлоз с большой степенью полимеризации). Метилцеллюлозы, имеющие более низкую степень полимеризации, растворимы в большей мере.


Способ получения метилцеллюлозы является существенным фактором, определяющим границы растворимости метилцеллюлозы в том или ином растворителе.


При получении метилцеллюлозы в растворе исходная кристаллическая структура разрушается, а новая решетка при регенерации из раствора строится не сразу (в специальных условиях), поэтому продукт получается аморфным и, следовательно, легче растворимым. Большое значение имеет различная доступность целлюлозы, благодаря чему получается смесь продуктов реакции, степень замещения которых различна. Такая неоднородность приводит к уменьшению количества растворимого вещества.


Весьма интересным является эффект замораживания, который проявляется в значительном увеличении растворимости.


Таблица 1.


Растворимость метилцеллюлозы в воде













































































Номер образца


Содержание ОСН3
,%


Растворимость, в % от абсолютно сухой навески


Растворимость, в % от исходной навески


Содержание ОСНз в нерастворившейся части,% Содержание ОСНз в растворенной части, %
До замораживания После замораживания и оттаивания До замораживания После замораживания и оттаивания
1 11,4 0,5 3,5 - 10,8 - 29,1
2 20,75 0 5,3 - 20,25 - 29,6
3 21,7 3,6 9,8 21,5 20,60 30,5 31,8
4 22,3 5,3 11,1 21,8 21,3 32,0 30,3
5 28,10 9,3 25,8 27,9 27,4 30,0 30,0
6 19,8 16,9 22,3 17,8 17,2 29,5 29,1
7 26,3 51,5 58,7 22,2 20,6 30,0 30,3

В табл. 2 представлены данные по растворимости низкозамещенной метилцеллюлозы в 6.5%-ном NаОН. В отличие от растворения в воде метилцеллюлоза уже при степени замещения около 5 растворяется на 95 % после замораживания в 6.5%-ном растворе NаОН. При замораживании низкозамещенной метилцеллюлозы средняя степень ее полимеризации (в случае относительно высокомолекулярных продуктов СП=1100—1200) уменьшается примерно до 1000. Продукты, полученные из предварительно деструктированной целлюлозы (путем окислительно-щелочной деструкции) и имевшие СП около 400, после замораживания почти не изменяют своей молекулярной массы.


Исследованию подвергались растворы низкозамещенной метилцеллюлозы с концентрацией 1—2 %,. которые можно отнести к концентрированным растворам. Необходимо отметить, что понятие о «концентрированных» растворах высокомолекулярных веществ в смысле концентрации условно и значительно отличается от обычного представления о концентрированных растворах.


Таблица 2


Растворимость низкозамещенной метилцеллюлозы в 6,5%-ном растворе NаОН










































































































Номер образца Степень замещения у Содержание ОСНз в метилцеллюлозе , % Растворимость, в % от исходной навески
При 291 К После замораживания и оттаивания
1 68,6 12,4 3,4 100,0
2 66,9 12,1 3,4 97,8
3 64,5 11,66 2,8 100,0
4 50,3 9,1 2,3 99,3
5 47,5 8,6 Не опред. 98,0
6 30,4 5,5 Не опред. 99,2
7 24,3 4,4 0,5 99,0
8 22,7 4,1 Не опред. 98,5
9 16,6 3,0 Не опред. 96,0
10 11,6 2,1 Не опред. 95,3
11 9,4 1,7 Не опред. 95,1
12 6,6 1,2 Не опред. 48,0
13 1,3 0,25 Не опред. 35,6
14 21,5 3,9 7,6 100,0
15 29,9 5,4 9,57 100,0
16 32,1 5,8 11,87 100,0

Концентрированными растворами в химии высокомолекулярных соединений называются такие, в которых имеет место взаимодействие между отдельными частицами диспергированного вещества. В результате такого взаимодействия растворы высокомолекулярных веществ показывают целый ряд отклонений от законов, характерных для нормальных жидкостей. Эти отклонения имеют место уже в сравнительно разбавленных 0.3—0.5 %-ных растворах.


Изучавшиеся растворы низкозамещенной метилцеллюлозы имели концентрацию значительно большую, чем указанные величины, и довольно высокую степень полимеризации цепных молекул, поэтому их можно отнести к концентрированным растворам.


Как правило, концентрированные растворы эфиров целлюлозы являются достаточно устойчивыми во времени. То или иное изменение вязкости таких растворов во времени обусловливается влиянием ряда факторов, а именно: изменением степени этерификации растворенного продукта, изменением степени сольватации и возможностью образования трехмерных структур.


Наиболее подробно мы рассмотрим свойства водорастворимой метилцеллюлозы.


Свойства водорастворимой метилцеллюлозы


С повышением степени метилирования до γ=50 гигроскопичность получаемого эфира увеличивается. Это объясняется тем, что в макромолекулах целлюлозы имеет место взаимонасыщение большинства гидроксильных групп с образованием водородных связей.


При достижении более высокой степени замещения в области 26,5— 32,5 % содержания метоксильных групп метилцеллюлоза растворяется в воде. При дальнейшем увеличении метоксильных групп до 38 % и выше она теряет свою растворимость в воде (при комнатной температуре и выше). Высокометилированные продукты растворимы также в органических растворителях.


Водные растворы метилцеллюлозы (γ=160—200), так же как и в случае низкозамещенных метилцеллюлоз, не стабильны.


При нагревании растворов происходит ухудшение растворимости вплоть до осаждения полимера. Верхний предел температурной устойчивости раствора составляет для такого продукта 313—333 К (в зависимости от СП и концентрации). Объясняется это явление образованием «гидроксониевого соединения» алкоксильной группы с водой, которое при повышении температуры разрушается, приводя к осаждению полимера.


Была показана возможность переведения в раствор (водный) трех-замещенной метилцеллюлозы (триметилцеллюлоза предварительно переосаждалась петролейным эфиром из раствора в хлороформе). Верхний предел температурной устойчивости раствора триметилцеллюлозы в воде при концентрации около 2 % составляет 288 К. Такие растворы обладают хорошими пленкообразующими свойствами. Пленки, сформированные в эксикаторе над Р2
05
при низкой температуре, имеют прочность на разрыв (5—7).
107
Н/м2
.


Тот факт, что триметилцеллюлоза может быть растворена в воде, свидетельствует непосредственно о способности ОСН3
-групп гидрати-роваться. Выпадение же триметилцеллюлозы из раствора при не­значительном повышении температуры свидетельствует об очень малой


прочности этих связей. При увеличении доли гидроксильных групп в эфире, т. е. при снижении γ до 160, верхний предел температурной устойчивости раствора увеличивается до 313—333 К. Эти выводы были подтверждены исследованиями гомолога метилцеллюлозы − этилцеллюлозы. Высокозамещенная этилцеллюлоза (γ=200) в отношении растворимости в воде ведет себя аналогично триметилцеллюлозе. При обычных условиях она растворяется в воде лишь незначительно − на 9 % .


Переосажденная ЭЦ при комнатной температуре практически не растворяется, но при 273 К растворимость в воде составляет 50—60 %. Таким образом, осуществлено фракционирование «высокозамещенной» ЭЦ, в результате которого были получены следующие фракции: переосажденная, растворимая и нерастворимая в воде. Для характеристики растворившейся в воде части ЭЦ и для объяснения причин перехода в водный раствор лишь части вещества все фракции были охарактеризованы по содержанию ОС2
Н5
-групп, по величине характеристической вязкости, а также по методам ИК спектроскопии. Результаты при­ведены в табл. 3.


Таблица 3


Характеристика фракций этилцеллюлозы


























фракция ОС2
Н5
,%
Степень замещения, γ Характеристическая вязкость, дл/г
Исходная 45,5 230
td>
1,32
Переосажденная 45,5 230 1,55
Растворимая 44,5 220 1,32
Нерастворимая 45,2 230 1,66

Водные растворы ЭЦ с γ=220 могут быть получены при концентрации не более 1.4%.Растворы с концентрацией не выше 0.8 % прозрачны и устойчивы во времени при низких температурах. Мутность 0.82%-ного раствора экстремально начинает возрастать при температуре выше 279 К. В случае более концентрированного раствора резкое повышение мутности наступает при более низкой температуре.


Таким образом, для ЭЦ характерна та же закономерность, что и для МЦ: с повышением степени замещения снижается предел температурной устойчивости раствора (как известно, обычная водорастворимая ЭЦ с γ=100, так же как МЦ, коагулирует при нагревании до 323—333 К). Поэтому вероятнее всего предположить, что группы —ОС2
Н5
принимают участие во взаимодействии ЭЦ с водой.


В водных растворах метилцеллюлоза проявляет свойства неионогенных высокомолекулярных веществ. Характеристическая вязкость в этих растворах связана с молекулярной массой зависимостью Куна-Марка:



Винк [11] для определения изменения характеристической вяз­кости в зависимости от молекулярной массы и определенияконстант этого уравнения проводил деструкцию метилцеллюлозы кислым гидролизом.


Метилцеллюлоза предварительно очищалась путем осаждения из водно-этанольного раствора эфиром. Степень замещения исходной целлюлозы была равна 1.74 и степень полимеризации 2000.


На основе измерений абсолютных значений молекулярной массы с помощью осмометрии и определения концевых групп была установлена зависимость характеристической вязкости полученных фракций метилцеллюлозы от ее молекулярной массы (или степени полимеризации Ру
):



Винком было установлено, что характеристическая вязкость метилцеллюлозы не зависит от присутствия в растворе постороннего электролита — кислоты.


Необходимо отметить, что другими авторами (которые определяли абсолютные молекулярные массы с помощью седиментации на ультрацентрифуге и светорассеяния) были получены для метилцеллюлозы несколько другие значения показателя степени «а» в уравнении Куна— Марка. Так, в работе [12] а=О.63 и в [13] а=0.55.. Эти расхождения сами авторы объясняют большой способностью метилцеллюлозы к агрегации в водных растворах.


Свойства растворов карбоксиметилцеллюлозы


Данные о растворимости различных препаратовкарбоксиметилцеллюлозы показывают, что низкозамещенные КМЦ после замораживания почти целиком растворяются уже при низком значении γ (около 2).


Таким образом, полностью подтверждается влияние очень небольшого замещения и низких температур на растворимость и этих производных целлюлозы.


Растворимость низкозамещенных карбоксиметилцеллюлоз в щелочи и эффективность использования монохлорацетата натрия могут быть увеличены путем сухого размола целлюлозы перед реакцией. Растворимость препаратов низкозамещенной карбоксиметилцеллюлозы может быть увеличена также при снижении степени полимеризации путем окислительной деструкции в щелочной среде. В этом случае после окончания реакции, которую ведут в течение 4 ч при 313 К, КМЦ отжимают до 2.6—2.8-кратной массы, измельчают и подвергают «созреванию», т. е. окислительно-щелочной деструкции. По прошествии определенного времени «созревания» Nа-КМЦ промывают водой до нейтральной реакции и сушат. Таким путем может быть получена Nа-КМЦ, имеющая полную растворимость в щелочи при γ=10—12 и дающая 6—8%-ные растворы.


Была исследована устойчивость растворов низкозамещенной карбоксиметилцелллюлозы при разбавлении.


Приготовленные путем замораживания в 4- и 6%-ном едком натре растворы КМЦ разбавлялись дистиллированной водой в несколько раз, после чего отмечалась минимальная концентрация щелочи, соответствующая появлению мути или выделению осадка. Данные этих опытов показали, что растворы низкозамещенной Nа-карбоксиметилцеллюлозы ведут себя довольно устойчиво даже при разбавлении до очень малой концентрации по щелочи, до 0.5 %. Указанное обстоятельство является весьма важным при приготовлении растворов Nа-соли карбоксиметилцеллюлозы для практи­ческих целей, например для аппретирования ткани.


В работе [14] было исследовано влияние температуры на вязкость водных растворов Nа-КМЦ, а также метилцеллюлозы, оксиэтилцеллюлозы и метилкарбоксиметилцеллюлозы.


Температурно-вязкостные соотношения для водных растворов эфиров целлюлозы имеют большое практическое значение, так как от этого во многих случаях зависит их использование.


Сэвэдж [14] получил в полулогарифмической шкале координат прямолинейную зависимость вязкости от температуры для растворов Nа-КМЦ. Зависимость вязкости от температуры при обратном охлаждении таких растворов выражается прямой линией, лежащей несколько ниже, чем первая. Эти опыты подтверждают гистерезисный характер изменений вязкости растворов Nа-КМЦ под действием температуры.


Уменьшение вязкости является, очевидно, следствием весьма низкой скорости релаксации в таких высокомолекулярных системах, как водный раствор Nа-КМЦ. Время установления равновесия в них может быть весьма велико, так что за измеряемый промежуток времени система не успевает вернуться в исходное состояние. Не исключена возможность и некоторой деградации молекул при нагревании, что должно вести, конечно, к необратимым изменениям вязкости.


Современные представления о растворах производных целлюлозы в различных растворителях основаны на том, что эти вещества образуют истинные растворы, в которых макромолекулы являются, кинетически свободными. Однако это не исключает того факта, что если промышленный продукт этерификации целлюлозы является крайне неоднородным по степени этерификации, то отдельные его фракции будут плохо растворимы. В результате этого в растворе наряду с большей частью молекулярно-диспергированного вещества могут находиться и остатки структуры исходной целлюлозы.


Концентрированные растворы карбоксиметилцеллюлозы, как и растворы многих других высокомолекулярных соединений, являются не ньютоновскими жидкостями.


Растворы Nа-КМЦ обладают значительной аномалией вязкости. Характерной особенностью ее реальных растворов является также наличие различных немолекулярно-дисперсных частиц и агрегатов макромолекул,особенно в присутствии многовалентных катионов. Поэтому как при вискозиметрических, так и осмометрических измерениях степени полимеризации (СП) необходимо учитывать эти особенности и реальный состав раствора и до проведения таких измерений отделить фракции, мешающие получению правильных результатов.


При исследовании водных растворов Nа-КМЦ с концентрацией от 0.0025 до 0.1 г/л в работе [15] получены данные, свидетельствующие о значительной полярности ее молекул. Приведенные выше данные характеризуют карбоксиметилцелюлозу как вещество, обладающее рядом свойств, присущих многим полиэлектролитам. Наличие большого электрического момента, казалось, должно было бы обусловливать в ряде случаев возможность проявления электростатической адсорбции. Однако если принять во внимание агрегацию молекул КМЦ при повышении ее концентрации в растворе и экранировку ее зарядов, то необходимо отметить, что электростатическая адсорбция может проявляться главным образом в разбавленных растворах.


Свойства регенерированной из растворов метилцеллюлозы (пленок)


Растворенная в воде и в водно-щелочных растворах метилцеллюлоза различной степени замещения может быть регенерирована из них в виде пленок. Получение пленок низкозамещенной метилцеллюлозы, растворимой в щелочи, осуществляется «мокрым» способом - путем коагуляции в специально подобранных осадительных ваннах. Удовлетворительные результаты получены с осадительными ваннами, состоящими из раствора сернокислого аммония (NH4
)2
SO4
(100 г/л).


Действие осадительной ванны из сульфатаммония может быть выражено следующим образом:


2NаОН + (NН4
)2
SО4
=Nа2
SO4
+ 2NН3
↑ + 2Н2
0.


Вследствие изменения состава растворителя и частичной дегидратации растворенной метилцеллюлозы происходит сближение ее цепей и стеклование, т. е. образование сильно набухшей пленки.


При формировании пленки на твердой подложке вследствие известного натяжения (в результате сил сцепления) в ней возникает плоскостно-ориентированная структура. В то же время в свежесформованной пленке благодаря ее сильно набухшему состоянию возможна некоторая подвижность цепей, обусловленная тепловым движением. Все это влечет за собой релаксационные процессы, т. е. возврат структуры пленки в наиболее устойчивое положение, соответствующее изотропному состоянию. В силу изложенных обстоятельств при формировании метилцеллюлозной пленки на стекле из ее щелочного раствора происходит сокращение размеров пленки по плоскости и увеличение ее толщины.


По механической прочности щёлочерастворимые пленки близки к обычным пластифицированным целлофановым пленкам, так как имеют


прочность на разрыв в продольном направлении (6.8-8.8).
107
Н/м2
, удлинение при разрыве около 20 %.


Данные о гигроскопичности и водопоглощении пленок низкозамещенной метилцеллюлозы, представленные в табл. 4, показывают, что


Таблица 4


Гигроскопичность и водопоглощение метилцеллюлозных пленок[16]






















Содержание ОСНз, %


Гигроскопичность пленки,


%


Водопоглощение пленки, %
3,9 16,7 106
5,8 18,3 206
7,1 20,8 438
9,1 21,3 684

гигроскопичность и водопоглощение метилцеллюлозных пленок достигают больших величин, которые в значительной мере зависят от степени этерификации исходной метилцеллюлозы; увеличение содержания ОСН3
-групп в исходном продукте влечет за собой увеличение гигроскопичности и набухаемости в воде метилцеллюлозных пленок.


Структура регенерированной метилцеллюлозы и ее связь с физико-механическими свойствами пленок изучены в работе [16]. В целях сравнения исследовались пленки низкозамещенной метилцеллюлозы и метилцеллюлозы высокой степени замещения, вплоть до 3. Пленки одной и той же метилцеллюлозы высокой степени замещения получены из таких резко различных растворов, как вода и органические растворители. Такое сравнение представляет особенный интерес, ибо оно позволяет сделать вывод о построении решетки метилцеллюлозы при регенерации из раствора в зависимости не только от степени замещения, но и от растворителя. Для этого получена метилцеллюлоза высокой степени замещения (близкой к 3), способная растворяться как в воде, так и в органическом растворителе −хлороформе. Пленки из водных растворов и растворов в хлороформе получены путем отлива на стекле и испарения растворителя.


Пленки из водного раствора метилцеллюлозы (γ=180), полученные медленным испарением растворителя при комнатной температуре, имеют аморфную структуру. Однако при такой высокой степени замещения в определенных условиях вполне вероятна возможность упорядочения структуры метилцеллюлозы в готовых пленках. Такими условиями оказались прогрев пленок в среде, вызывающей набухание. Так, уже кипячение пленки в воде (метилцеллюлоза в горячей воде нерастворима) в течение 30 мин вызывает заметное увеличение порядка. Прогрев пленки в глицерине при температуре 473 К вызывает еще большее упорядочение.


Особый интерес представляет формование пленок из водных растворов метилцеллюлозы при повышенных температурах. При кипячении пленки в воде кроме упорядочения происходит уплотнение структуры, уничтожение различных внутренних дефектов, чем объясняется, по-видимому, увеличение


прочности пленки.


Формование пленок при 343 К приводит к значительному увеличению эластичности, что может объясняться более свернутой конфигурацией макромолекул, поскольку горячая вода не является растворителем для метилцеллюлозы.


Переходя далее к рассмотрению структуры пленок триметил-целлюлозы, следует отметить интересную особенность этого эфира. Триметилцеллюлоза способна растворяться не только в органических растворителях, но и в холодной воде (Т==273 К). Структура пленок триметилцеллюлозы как стереорегулярного полимера отличается высокой кристалличностью. Вода для триметилцеллюлозы является v-растворителем, поэтому пленки, сформованные из водного рас­твора, отличаются меньшей кристалличностью.


Электронно-микроскопическое исследование поверхности пленок МЦ и поверхности сколов, полученных в результате излома пленки, вдоль оси вытяжки при температуре жидкого азота позволило установить более мелкомасштабные детали строения пленок. При степенях вытяжки λ≤2.0 поверхность ориентированных пленок остается достаточно гладкой и ровной. Фибриллярная структура, видимая в оптический микроскоп, электронно-микроскопическим способом не обнаруживается. При λ≈2.2—2.5 на поверхности пленок появляется рельеф, образованный довольно регулярными и протяженными бороздами шириной 0.2—0.4 мкм, направленными перпендикулярно оси вытяжки. При сканировании перпендикулярно оси вытяжки (рис.1) видны поперечные складки шириной 0.3—0.5 мкм, а на некоторых участках обнаруживаются расслоения в виде микротрещин размером по ширине 0.1—0.2 мкм и длине 1.0—1.5 мкм, направленных параллельно оси вытяжки. При сканировании параллельно оси вытяжки кроме складчатой структуры становятся видимыми неровности с преимущественной ориентацией вдоль оси вытяжки. Изучение поверхности сколов обнаруживает наличие пористой структуры, размер пор колеблется от 0.1 до 1.0 мкм.


Рис 1.



Свойства регенерированной из щелочного раствора
Na
-КМЦ (в виде
пленок)


В связи с возможностью получения вязких растворов низкозамещенной карбоксиметилцеллюлозы с достаточно высокой степенью полимеризации были приготовлены пленки и изучены их свойства.


Формование пленок проводили по методике, применявшейся и для метилцеллюлозных растворов. В табл. 5 приведены данные механической прочности пленок. Пленки из низкозамещенной карбоксиметилцеллюлозы имели хорошую механическую прочность, но малую эластичность; удлинение при разрыве этих пленок составляло всего 5—6 % .


Таблица 5


Прочность на разрыв пленок из низкозамещенной карбоксиметилцеллюлозы












































Номер образца Степень замещения γ Концентрация раствора, %

Прочность на разрыв σ .
10-7
,


Н/м2


Растяжение при разрыве, %
1 5,0 2,0 9,0 5,3
2 10,4 2,0 9,3 6,0
3 9,8 2,0 7,9 5,0
4 9;8 4,0 11,8 6,0
5 9,2 2,0 8,3 5,0
6 9,2 4,0 11,3_ -

Данные о гигроскопичности и водопоглощении пленок из низкозамещенной карбоксиметилцеллюлозы представлены в табл.6. Гигроскопичность определяли при выдерживании пленок в атмосфере с относительной влажностью 80 %; водопоглощение измеряли при замачивании пленок в дистиллированной воде в течение двух суток при 293 К.


Таблица 6


Гигроскопичность и водопоглощение пленок из низкозамещенной


карбоксиметилцеллюлозы
































Номер образца

Степень замещения γ


Гигроскопичность,


%


Водопоглощение, %
1 23,5 23,3 3290
2 5,0 20,4 259
3 10,4 22,4 544
4 9,8 22,1 388
5 9,2 21,5 321

Как видно из табл. 6, гигроскопичность и водопоглощение пленок из низкозамещенной карбоксиметилцеллюлозы быстро увеличиваются по мере


повышения степени замещения продукта. Особенно заметно влияние степени замещения на водопоглощение пленок.


Эффект возрастания гидрофильных свойств целлюлозы при введении в нее небольшого количества объемистых радикалов объясняется, как уже говорилось, тем, что в начальной стадии этерификации происходит перераспределение прочности водородных связей в поперечной структуре волокна, характеризуемое накоплением более слабых связей.


Применение метилцеллюлозы


Наибольшее значение получили высокозамещенные растворимые в воде препараты метилцеллюлозы (γ=150—200) [5]. Эти продукты обладают комплексом ценных технических свойств и выпускаются промышленностью в виде мелких гранул или порошка белого или слегка желтоватого цвета. Практически не имеют запаха и вкуса. При температуре 433 К окрашиваются и разлагаются. Водные растворы метилцеллюлозы дают нейтральную реакцию.


В большинстве случаев метилцеллюлозу применяют для загущения водной среды. Эффективность загущения зависит от вязкости (т. е. от степени полимеризации). Метилцеллюлоза позволяет водонерастворимые вещества переводить в водной среде в устойчивое тонкодисперсное состояние, так как она образует гидрофильные мономолекулярные защитные слои вокруг отдельных частиц.


Ценными свойствами метилцеллюлозы являются ее высокое свя­зующее действие для пигментов, высокая адгезия в сухом состоянии и способность образовывать пленки. Эти интересные свойства используются при приготовлении водных малярных красок и клеящих веществ. Особенно пригодны для этого метилцеллюлозы с низкой величиной вязкости, так как их можно наносить на самые различные подложки.


В текстильной промышленности метилцеллюлоза используется в качестве шлихты для шерстяной основы и для мягкого аппретирования тканей с целью получения элегантного грифа и глянца.


Метилцеллюлоза с успехом применяется в мыловаренной про­мышленности. В фармацевтической практике она используется в качестве обезжиренной основы для так называемых слизистых и эмульсионных мазей типа масло/вода, которые служат для защиты кожи от световых ожогов и для обработки ран. Кроме того, метилцеллюлоза служит самостоятельным лекарственным препаратом.


В косметике водорастворимые простые эфиры целлюлозы используют для получения зубных паст и элексиров, защитных эмульсий и обезжиренных кремов для кожи.


Во всевозможных эмульсиях метилцеллюлозу применяют в качестве эмульгаторов и стабилизаторов для растительных масел.


Очень широко используется она также в пищевой промышленности.


Так, в производстве мороженого ее применение обеспечивает необходимую пышность, стабильность и вкус. Метилцеллюлоза используется в ароматических эмульсиях, подливах, для фруктовых соков, консервов и т. д.


Любопытное применение в пищевой промышленности находит способность растворов метилцеллюлозы желатинизироваться при нагревании. Так, например, добавление метилцеллюлозы к фруктовым начинкам пирогов или к сладкой начинке из варенья препятствует вытеканию этих компонентов при выпечке, что значительно улучшает внешний вид и сохраняет вкус изделий.


На карандашных фабриках метилцеллюлоза используется вместо гуммитрагаканта для цветных и копировальных стержней, для пастельных стержней, школьных мелков и красок и т. д.


Таким образом, применение водорастворимой метилцеллюлозы, хотя и является меньшим по масштабу, чем КМЦ, чрезвычайно разнообразно.


Что же касается низкозамещенной (щёлочерастворимой) метил-целлюлозы, то она не получила пока значительного применения.


Применение карбоксиметилцеллюлозы


Пленки, состоящие из 100 % Н-КМЦ растворимы начиная только с рН=11. Пленки указанного состава могут быть использованы в тех случаях, когда желательно ограничить их растворимость в небольших пределах значений рН, например в оболочках фармацевтических препаратов. Такая оболочка не должна растворяться, например, в слабокислой среде желудочного сока, но хорошо растворяется в слабощелочной среде кишечника.


Натриевая соль карбоксиметилцеллюлозы со степенью замещения от 0.5 до 1 −1.2 производится промышленностью в больших количествах, так как она находит широкое применение в нефтяной, текстильной, пищевой, фармацевтической технологиях, в производстве детергентов и т. д. как стабилизирующее, загущающее, клеящее, пленкообразующее и т. п. вещество. Эта соль хорошо растворяется в воде.


Ряд исследований, проведенных при испытании Nа-КМЦ в качестве добавки к моющим средствам, показал, что этот продукт значительно улучшает их моющие свойства.


Литература


1.Прокофьева М.В., Родионов Н.А., Козлов М.П.//Химия и технологияпроизводных целлюлозы. Владимир, 1968.С. 118.


2. Несмеянов А.Н., Несмеянов Н.А. Начала органической химии. М.,1969.Т.1. 663с.


3. Плиско Е.А.//ЖОХ.1958. Т. 28, № 12. С, 3214.


4. Плиско Е.А.//ЖОХ.1961. Т. 31, №2. С. 474


5. Heuser E. The Chemistry of Cellulose. New York, 1944. 660 p.


6. Глузман MX., Левитская И.Б. //ЖПХ. 1960. Т. 33, N 5. С. 1172


7. Петропавловский Г.А., Васильева Г.Г., Волкова Л. А. // Cell. Chem.Technol. 1967. Vol. 1, N2. P. 211.


8. Никитин Н.И., Петропавловский Г.А. //ЖПХ. 1956. Т. 29. С. 1540


9. Петропавловский Г.А., Никитин Н.И. //Тр. Ин-та леса АН СССР. 1958. Т.45. С. 140.


10.Васильева Г.Г. Свойства щелочерастворимой карбоксиметилцеллюлозы ивозможности ее использования в бумажной промышленности: Дис. канд. техн. наук. Л. 1960.


11. VinkH. //Macromoleculare Chemie. 1966. Bd. 94. S. 1.


12. Vole K., Meyerhoff G. //Macromoleculare Chemie. 1961. Bd. 47. S. 168.


13. NeelyW.B.//J. Organ. Chem. 1961. Vol. 26. P. 3015.


14. Savage A.B. //Ind. Eng. Chem. 1957. Vol. 49. P. 99.


15. Allgen L. //J. Polymer Sci. 1954. Vol. 14, N 75.P. 281.


16. Подгородецкий Е. К. Технология производства пленок извысокомолекулярных соединений. М: Искусство, 1953. 77 с.


Оглавление


Введениестр. 2


Получение метилцеллюлозы стр. 2


Получение карбоксиметилцеллюлозы стр. 4


Свойства растворов метилцеллюлозыстр. 6


Свойства водорастворимой метилцеллюлозыстр. 8


Свойства растворов карбоксиметилцеллюлозыстр. 11Свойства регенерированной из растворов метилцеллюлозы


(пленок)стр. 12Свойства регенерированной из щелочного раствора Na-КМЦ


(в виде пленок)стр. 15


Применение метилцеллюлозыстр. 16


Применение карбоксиметилцеллюлозыстр. 18


Литературастр. 19

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Метилцеллюлоза и карбоксиметилцеллюлоза: свойства растворов и пленок

Слов:5136
Символов:48953
Размер:95.61 Кб.