РефератыХимияАнАнализ почвы

Анализ почвы

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ


ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ


ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ


«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙЦ УНИВЕРСИТЕТ»


Кафедра химии


Зачетная задача по предмету:


«Аналитические методы анализа в мониторинге объектов окружающей среды»


на тему:«Анализ почвы»


Выполнил:


студент ХМФ гр. АХ-06-1


Ирхина Э.Е.


Проверил:


Дергунова Елена Сергеевна


Липецк 2010 г.


Введение


Почва – особое природное образование, сформировавшееся в результате длительного преобразования поверхностных слоев литосферы под совместным взаимообусловленным взаимодействием гидросферы, атмосферы, живых и мертвых организмов. Почва состоит из органических, минеральных, органоминеральных комплексных соединений, почвенной влаги, воздуха и живых существ, населяющих ее.


Почва является одним из элементов биосферы, которые обеспечивают циркуляцию химических веществ в системе окружающая среда — человек. Причем это относится не только к эндогенным химическим веществам, но и к экзогенным химическим веществам, поступающим в почву с выбросами промышленных предприятий, сточными водами, выбросами авто- и авиатранспорта, при обработке сельскохозяйственных земель


Почва является местом сбора и хранения большого числа загрязнителей, куда они попадают в результате техногенной деятельности человека и выбросов загрязнителей из природных источников. Она не обладает свойством подвижности, характерным для других природных сред, и наиболее подвержена загрязнению. Кроме того, многие соединения, попадая в почву, вследствие химических и микробиологических превращений могут стать более токсичными, чем исходные. Из почвы может происходить загрязнение воды, воздуха, пищевых продуктов и других элементов биосферы канцерогенными и радиоактивными веществами.


Вследствие этого необходимо регулярно проводить мониторинг почв в различных раонах города и области.


В данной зачетной задаче проводился общий анализ почвы, отобранной в Усманском районе, Липецкой области.


1
Мониторинг почв


Мониторинг состояния почв предназначен для регулярных наблюдений за химическим загрязнением почв, их состоянием; обеспечивает сбор, передачу и обработку полученной информации в целях своевременного выявления негативных процессов, прогнозирования их развития, предотвращения вредных последствий и определения степени эффективности осуществляемых природоохранных мероприятий.


В отличие от воды и атмосферного воздуха, которые являются лишь миграционными средами, почва является наиболее объективным и стабильным индикатором техногенного загрязнения. Она четко отражает эмиссию загрязняющих веществ и их фактического распределения в компонентах городской территории. Наиболее крупные промышленные города образуя обширные зоны загрязнений, постепенно превращаются в сплошные техногенные территории, представляющие серьезную опасность для здоровья проживающего на них населения.


В этой связи, постоянное наблюдение за содержанием промышленных токсикантов в почвах и тенденцией их содержанием является наиболее актуальным.


Одним из наиболее мощным факторов, приводящим к загрязнению окружающей среды, является промышленность.


Зона существенного загрязнения почв химическими элементами в окрестностях промышленных предприятий занимает площадь радиусом 10 км с гораздо большей протяженность (до 30 км и более) в направлении господствующих ветров, а также в направлении стока поверхностных и грунтовых вод.


Источниками загрязнения почвы являются:


· выбросы вредных веществ в атмосферный воздух от стационарных и передвижных источников загрязнения;


· полигоны промышленных и бытовых отходов;


· несанкционированные свалки промышленных и бытовых отходов;


· средства химической защиты растений и минеральные удобрения.


На загрязнение почвы значительное влияние оказывают проливы нефтепродуктов, неорганизованные сбросы ливневых и талых вод, а также санитарное состояние городской территории.


Классификкация почв


Основной единицей классификации почв является тип почв. Понятие «тип почв». Под типом почв понимают почвы, образованные в одинаковых условиях и обладающие сходными строением и свойствами.


К одному типу почв относятся почвы:


· 1) со сходными процессами превращения и миграции веществ;


· 2) со сходным характером водно-теплового режима;


· 3) с однотипным строением почвенного профиля по генетическим горизонтам;


· 4) со сходным уровнем природного плодородия;


· 5) с экологически сходным типом растительности.


Широко известны такие типы почв, как подзолистые, черноземы, красноземы, солонцы, солончаки и др.


Каждый тип почв последовательно подразделяется на подтипы, роды, виды, разновидности и разряды.


Подтипы почв представляют собой группы почв, различающиеся между собой по проявлению основного и сопутствующего процессов почвообразования и являющиеся переходными ступенями между типами. Например, при развитии в почве наряду с подзолистым процессом дернового процесса формируется подтип дерново-подзолистой почвы. При сочетании подзолистого процесса с глеевым процессом в верхней части почвенного профиля формируется подтип глееподзолистой почвы.


Подтиповые особенности почв отражаются в особых чертах их почвенного профиля. При выделении подтипов почв учитываются процессы и признаки, обусловленные как широтнозональными, так и фациальными особенностями природных условий. Среди последних первостепенную роль играют термические условия и степень континентальности климата.


В пределах подтипов выделяются роды и виды почв. Роды почв выделяются внутри подтипа по особенностям почвообразования, связанным прежде всего со свойствами материнских пород, а также свойствами, обусловленными химизмом грунтовых вод, или со свойствами и признаками, приобретенными в прошлых фазах почвообразования (так называемые реликтовые признаки).


Роды почв выделяются в каждом типе и подтипе почв. Самые распространенные из них:


· 1) обычный род, т. е. отвечающий по своему характеру подтипу почв; при определении почв название рода «обычный» опускается;


· 2) солонцеватые (особенности почв определяются химизмом грунтовых вод);


· 3) остаточно-солонцеватые (особенности почв определяются засоленностью пород, которая постепенно снимается);


· 4) солончаковатые;


· 5) остаточно-карбонатные;


· 6) почвы на кварцево-песчаных породах;


· 7) почвы контактно-глеевые (формируются на двучленных породах, когда супесчаные или песчаные толщи подстилаются суглинистыми или глинистыми отложениями; на контакте смены наносов образуется осветленная полоса, образующаяся за счет периодического переувлажнения);


· 8) остаточно-аридные.


Виды почв выделяются в пределах рода по степени выраженности основного почвообразовательного процесса, свойственного определенному почвенному типу.


Для наименования видов используют генетические термины, указывающие на степень развития этого процесса. Так, для подзолистых почв — степень подзолистости и глубина оподзоливания; для черноземов — мощность гумусового горизонта, содержание гумуса, степень выщелоченности; для солончаков — характер распределения солей по профилю, морфология поверхностного горизонта (пухлые, отакыренные, выцветные).


Внутри видов определяются разновидности почв. Это почвы одного и того же вида, но обладающие различным механическим составом (например, песчаные, супесчаные, суглинистые, глинистые). Почвы же одного вида и одного механического состава, но развитые на материнских породах разного происхождения и разного петрографического состава, выделяются как почвенные разряды.


Дерново-подзолистые почвы - отличаются невысоким содержанием гумуса (0,5-2,5%) и небольшим гумусовым слоем (10-20 см), в связи с этим - невысоким естественным плодородием и, как правило, кислой реакцией (рН=4-5). В большинстве случаев они пере увлажнены.


Нуждаются в дренажных и других осушительных работах, увеличении гумусового горизонта, а также регулярном известковании и внесении повышенных доз органических удобрений или землевании.


Дерново-карбонатные почвы. В отличие от дерново-подзолистых почв обладают более высокой продуктивностью (гумус - 2-4%), меньшей кислотностью рН=6 и более благоприятными физико-механическими показателями. Для получения высоких урожаев нуждаются только в повышенных дозах органических и минеральных удобрений.


Серые лесные почвы. По многим показателям близки к дерново-карбонатным почвам (только несколько выше кислотность (рН—5,5-6,5). Они склонны к замыванию и переуплотнению. Нуждаются в периодическом известковании, углублении пахотного горизонта, а также в удобрении фосфором и азотом.


Торфяно-болотные почвы. Характеризуются высоким естественным плодородием и большим содержанием азота (2-4%), низким содержанием фосфора, высокой кислотностью (рН=3,5-5) и низкими физико-механическими свойствами. Нуждаются в регулировании водного режима (осушение-орошение), внесении фосфорно-калийных удобрений, регулярном известковании и внесении микроэлементов.


Черноземные почвы. Лучшие из почв по всем показателям (уровню плодородия, глубине гумусового горизонта (если не эродированы), содержанию макро- и микроэлементов и физико-механическим параметрам почвы). Оподзоленные черноземы склонны к заиливанию и переуплотнению, а карбонатные черноземы бедны железом : в доступной для растений форме (провоцируется хлороз винограда и плодовых).


2 Методика определения гигроскопической влаги почвы


Навеску почвы 2-5 г берут на аналитических весах в предварительно высушенных при температуре 100-105 0
С и взвешенных стеклянных бюксах (бюксы взвешивают с крышками). Бюксы с почвой в течение 5 ч выдерживают в сушильном шкафу при температуре 100-1050
С. С помощью щипцов с резиновыми наконечниками бюксы вынимают из сушильного шкафа, закрывают крышками, охлаждают в эксикаторе и взвешивают. Условились считать, что выдерживание почвы в течение 5 ч при температуре 100-1050
С приводит к полной потере гигроскопической влаги. Если необходимо проверить полноту удаления гигроскопической влаги, бюксы с почвой снова ставят в сушильный шкаф на 1,5-3 ч и взвешивают. Высушивание прекращают, если масса равна или больше результата предыдущего взвешивания (увеличение массы может произойти за счет окисления некоторых компонентов почв). Расчет массовой доли гигроскопической влаги (%) проводят по уравнению:



Где m – масса воздушно-сухой почвы, г; m1
– масса высушенной почвы, г.


2.1 Определение C и органических соединений по Тюрину


Приборы и реактивы:Аналитические весы, Колба коническая термостойкая на 100 мл.,воронка стеклянная диаметром 3см,бюретка на 25 мл.,пипетка медицинская,фильтровальная бумага, хромовая смесь 0,4н,соль Мора 0,2 н, ФАК 0,2%,KMnO4
.


Ход работы:


Взять мелкодисперсную навеску 0,5 г,Поместить в колбу емкостью 100 мл. Затем в колбочки пипеткой прилить по каплям 10 мл 0,4 н р-ра K2
Cr2
O7
в H2
SO4
.Осторжно взболтать и поставить на эл. плитку.Кипятят 5 минут,одновременно проводят холостое кипячение без почвы, только 10 млK2
Cr2
O7.


После кипячения колбы охлаждают. Смывают капли хромовой смеси дистиллированной водой в колбочку и, добавив 4-5 капель 0,2% р-ра ФАК, титруют 0,2 н соли Мора.Переход окраски из вишнево-фиолетовой в зеленую. Одновременно проводят холостое титрование. По объему соли Мора, пошедшего на титрование,определяют колличество хромовой смеси, не израсходованной на окисление органического вещ-ва почвы. При титровании солью Мора избытка K2
Cr2
O7
происходит реакция:


6FeO4
(NH4
) 2
SO4
+K2
Cr2
O7
+7H2
SO4
=Cr2
(SO4
)3
+3Fe2
(SO4
)3
+6(NH4
)2
SO4
+ K2
SO4
+7H2
O


Содержание углерода вычисляют по формуле:


C%=((Vхол
-Vраб
)*N*0.003*100)/a ,


Где Vхол
-объем соли Мора(мл) пошедший на титрование 10 мл K2
Cr2
O7
.


2.2 Определение фенола в почве


Приборы и реактивы: п-нитроаналин,NaNo2
(1н), Н2
SО4
(разбавл), Na2
CO3
(2н), смесь: уксуская кислота- бутанол- вода (3:5:2)


Ход работы:


Растворяют 5г фенола в дистиллированной воде , разбавляют до 1л.Отбирают 1мл этого раствора , содержащий 5 мл фенола , вносим в делительную воронку, прибавляем 1 мл H2
SО4
, 25 мл Na2
СО3
, 2,5 мл п-нитроаналина. Затем прибавляем еще 50 мл H2
SО4
и экстрагируют краситель 50 мл хлорбензола. Бензольный экстракт фильтруют в 50 мл колбу и доводят до метки чистым хлорбензолом (0,1 мл фенола содержит).


Далее вносим на покрытое смесью стекло, следующие концентрации: 5,0; 10,0; 20,0; 70,0; и Х мкг. Помещаем пластинку в хроматографическую камеру. Пятна фенола (розово-сиреневого цвета) появляются на расстоянии 1-15 см от стартовой линии.(Rf
=0.1).


Каждое пятно экстрагируют изопропанольной смесью и измеряют оптическую плотность экстрактов при λ=540нм.


По градуировочному графику находят содержание фенола.


2.3 Определение общей щелочности и щелочности, обусловленной карбонат-ионами


Навеску почвы массой 40,0 г помещают в сухую колбу или другую емкость вместимостью 250 мл. К почве с помощью мерного цилиндра приливают 100 мл. 1 М раствора KCl. Содержимое колбы взбалтывают 1 час и фильтруют через складчатый фильтр в сухую коническую колбу. Чтобы получить прозрачные фильтраты, на фильтр переносят как можно больше почвы. Первые порции фильтрата могут опалесцировать, их перефильтровывают. Вытяжка должна быть прозрачной.


В полученной 1 М KCl-вытяжке определяют концентрацию карбонат-ионов. Для этого из мерной колбы в коническую колбу для титрования вместимостью 100 мл прибавляют 25 мл аликвоты раствора и несколько капель фенолфталеина. Титруют 0,01 М раствором H2
SO4
до обесцвечивания розовой окраски раствора. Записывают объем титранта V1
, пошедший на титрование.


Далее определяют общую щелочность. Для этого из мерной колбы в коническую колбу для титрования вместимостью 100 мл прибавляют 25 мл аликвоты раствора и несколько капель метилового-оранжевого. Титруют 0,01 М раствором H2
SO4
до изменения окраски раствора из желтой в оранжевую. Записывают объем титранта V2
, пошедший на титрование.


Концентрацию карбонат-ионов и общую щелочность вычисляют по формулам:


= ;


;


где н – нормальность кислоты; Vа
– объем аликвоты, мл; V0
– объем, добавленный к навеске почвы, мл; m – навеска почвы, г.


2.4 Методика комплексонометрического определения валового содержания железа в почвах


На конических колбах вместимостью 250 мл делают отметку на уровне, соответствующем объему 50 мл. В колбу помещают 25 мл фильтрата, полученного после отделения кремниевой кислоты, добавляют 5-7 капель концентрированной азотной кислоты и нагревают до кипения, окисляя Fe(II).


Затем в колбу добавляют 10-15 капель 25%-ного раствора аммиака, помещают кусочек индикаторной бумаги Конго-рот и добавляют по каплям сначала 25%-ный раствор аммиака, а затем 10%-ный до перехода синей окраски индикаторной бумаги в бурую. Если при этом выпадет осадок, его растворяют несколькими каплями 1 н. HCl. В колбу приливают 5 мл 1 н. HCl, и объем жидкости дистиллированной водой доводят до отметки, соответствующей 50 мл. Содержимое колбы нагревают до 50-60 °С, добавляют 1-3 капли 10%-ного раствора сульфосалициловой кислоты и титруют 0,01 М раствором комплексона III до перехода лиловой окраски сульфосалицилата железа в бледно-желтую комплексоната железа. Скорость реакции невелика, поэтому последние порции титранта добавляют медленно. Если в этой же порции анализируемого раствора будет определяться алюминий, нельзя добавлять избытка титранта.


2.5 Определение кальция и магния при совместном присутствии


Константы устойчивости этилендиаминтетраацетатов кальция и магния различаются на 2 порядка. Поэтому эти ионы нельзя оттитровать раздельно, используя только различие в константах устойчивости комплексонатов. При pHопт
~ 10 в качестве металлоиндикаторов используют эриохромовый черный Т. При этих условиях определяют сумму кальция и магния. В другой аликвотной части создают pH > 12, вводя NaOH, при этом магний осаждается в виде гидроксида, его не отфильтровывают, и в растворе определяют комплексонометрический кальций в присутствии мурексида, флуорексона или кальциона, являющихся металлоиндикаторами на кальций. Магний определяют по разности.


Выполнение определения.


1. Определение суммы кальция и магния.


Отбирают пипеткой 10 мл анализируемого раствора (водной вытяжки почвы) из мерной колбы вместимостью 100 мл в коническую колбу для титрования вместимостью 100 мл, прибавляют 2-3 мл буферного раствора с pH 10, 15 мл воды, перемешивают и прибавляют на кончике шпателя 20-30 мг смеси эриохромового черного Т и хлорида натрия. Перемешивают до полного растворения индикаторной смеси и титруют раствором ЭДТА до изменения окраски раствора из винно-красной в голубую.


2. Определение кальция.


Отбирают пипеткой 10 мл анализируемого раствора (водной вытяжки почвы) в коническую колбу для титрования вместимостью 100 мл, прибавляют 2-3 мл раствора NaOH или KOH, разбавляют водой примерно до 25 мл, вводят 20-30 мг индикаторной смеси мурексида, флуорексона, или кальциона с хлоридом натрия и титруют раствором ЭДТА до изменения окраски раствора от одной капли раствора ЭДТА.


Изменение окраски в конечной точке титрования зависит от выбранного металлоиндикатора. При использовании мурексида окраска изменяется из розовой в фиолетовую; при использовании флуорексона – из желтой с зеленой флуоресценцией в бесцветную или розовую с резким уменьшением интенсивности флуоресценции; при использовании кальциона – из бледно-желтой в оранжевую. В последнем случае щелочную среду создают только 2 М раствором KOH.


3. Определение магния. Объем титранта, израсходованный на титрование магния, вычисляют по разности объемов ЭДТА, пошедшей на титрование при pH 10 и при pH 12.


2.6 Методика определения обменной кислотности


Навеску почвы, пропущенной через сито с отверстиями диаметром 1-2 мм, массой 40 г помещают в колбу вместимостью 250 мл. В колбу приливают 100 мл 1М раствора KCl и взбалтывают в течение 1 ч. Часовое взбалтывание суспензии может быть заменено трехминутным взбалтыванием с последующим суточным настаиванием. Содержимое колбы фильтруют в сухую коническую колбу или другую емкость. Первые 10 мл фильтрата выбрасывают.


После того, как суспензия будет профильтрована полностью, 50 мл фильтрата помещают в коническую колбу вместимостью 250 мл, добавляют 2-3 капли фенолфталеина и титруют 0,02-0,1М раствором NaOH до появления розовой окраски, не исчезающей в течение 1 мин.


Обменную кислотность (Ноб
) рассчитывают по уравнению:



Где V и V1
– объем NaOH, пошедший на титрование соответственно аликвоты вытяжки и контрольной пробы; н – молярная концентрация NaOH, ммоль/мл; Vал
и V0
– объем аликвоты вытяжки и общий объем добавленного к почве 1

М KCl, мл; m - навеска почвы, г.


Реагенты:


1М раствор KClрастворяют в 300-400 мл дистиллированной воды, раствор фильтруют и объем доводят до 1 л. Значение рН раствора соответствует 5,6-6,0 (рН дистиллированной воды, находящейся в равновесии с СО2
атмосферного воздуха, имеет рН около 5,6).


2.7 Методика определения гидролитической кислотности


В сухую колбу вместимостью 250 мл помещают навеску почвы, пропущенной через сито с отверстиями диаметром 1 мм, массой 40,0 г. В колбу приливают 100 мл 1М раствора СН3
СООNa и взбалтывают в течение часа. Часовое взбалтывание может быть заменено 3 минутным с последующим 18-20 часовым настаиванием с периодическим (4-5 раз) взбалтыванием суспензии. Суспензию взбалтывают круговыми движениями и фильтруют через сухой складчатый фильтр. Первые порции (около 10 мл) фильтрата выбрасывают. Если затем при фильтровании получают мутный раствор, его перефильтровывают. Аликвоту фильтрата 50 мл помещают в коническую колбу вместимостью 250 мл, добавляют 2-3 капли фенолфталеина и титруют 0,02-0,1 н раствором NaOH до слабо-розовой окраски, не исчезающей в течение 1 мин. Гидролитическую кислотность рассчитывают по уравнению:


Нг
моль(+)/100 г почвы = [VнV0
100]/[Vал
m],


Где V и н – объем и концентрация раствора NaOH, ммоль/мл; Vал
- объем аликвоты вытяжки, мл; V0
– объем добавленного к навеске почвы раствора ацетата натрия, мл; m - навеска почвы, г. Если полученный результат умножают на 1,75 для компенсации неполного извлечения из почв кислотных компонентов при однократной обработке почвы экстрагирующим раствором, в комментарии к результатам анализа делают соответствующую оговорку.


Реагенты:


1М раствор СН3
СООNa с рН 8,3. Навеску ацетата натрия 82,0 г СН3
СООNa или 136,0 г СН3
СООNax3Н2
О растворяют в дистиллированной воде ,(если необходимо, фильтруют), доводят объем до 1 л и измеряют рН. Величину рН доводят до 8,3 растворами СН3
СООNa или NaOH с массовой долей 10%. Контроль рН раствора может быть осуществлен с помощью фенолфталеина. Раствор ацетата натрия при добавлении фенолфталеина должен иметь слабо-розовую окраску.


2.8 Методика определения концентрации фосфатов в 0,03 н.
K
2

SO
4

-вытяжках (по Карпинскому – Замятиной)


Навеску почвы массой 20,0 г помещают в сухую колбу или другую емкость вместимостью 250 мл. К почве с помощью мерного цилиндра приливают 100 мл. 0,03 н. раствора K2
SO4
. Содержимое колбы взбалтывают 5 мин и фильтруют через складчатый фильтр в сухую коническую колбу. Чтобы получить прозрачные фильтраты, на фильтр переносят как можно больше почвы. Первые порции фильтрата могут опалесцировать, их перефильтровывают. Вытяжка должна быть прозрачной.В полученной 0,03 н. K2
SO4
-вытяжке определяют концентрацию фосфатов. Для этого в мерную колбу вместимостью 50 мл. помещают 20-40 мл. вытяжки. В колбу добавляют 8 мл. реагента Б. Объем жидкости в колбе доводят дистиллированной водой до метки, тщательно перемешивают и через 10 мин. Измеряют оптическую плотность раствора при длине волны 630-882 нм.


Перед окрашиванием анализируемого раствора необходимо приготовить шкалу стандартных растворов для получения градуировочной кривой. С этой целью в мерные колбы вместимостью 50 мл. приливают по 2 мл. 0,6 н. K2
SO4
, что обеспечит концентрацию сульфата калия в находящемся в колбе растворе приблизительно такую же, какую получают при анализе 40 мл K2
SO4
-вытяжки. Затем в каждую из колб с помощью бюретки приливают стандартный раствор с содержанием фосфора 0,005 мг P в 1 мл. В колбы добавляют 0,5; 1,0; 3,0; 5,0; 7,0 и 10,0 мл стандартного раствора. В колбы приливают дистиллированную воду приблизительно до объема 35 – 40 мл, реагент Б. Содержимое колб тщательно перемешивают, через 10 мин измеряют оптическую плотность и строят градуировочную кривую в координатах: оптическая плотность – количество фосфора в мерной колбе. По градуировочной кривой находят концентрацию фосфора в анализируемых растворах. Результаты анализа выражают в мг/л:


P, мг/л = Cp
1000/Vал
,


где Vал
– объем аликвоты вытяжки, мл; Сp
– число миллиграммов фосфора в мерной колбе, мг/объем мерной колбы.


3 Экспериментальная часть


В экспериментальной части проводился анализ почвы. Почва была отобрана в Усманском районе, Липецкой области. Проба отбиралась с глубины около 20 см, масса пробы составила 0,5 кг.


3.1 Определение гигроскопической влаги


1. Таблица полученных результатов:






























Масса


бюкса, г


Масса бюкса


с почвой, г


Масса почвы


m, г


Масса бюкса


после сушки, г


Масса высушенной


почвы m1
, г


Гигроскопическая


влага, %


27,54575 29,21100 1,66255 30,12541 1,21441 36,90
33,18410 35,38934 2,205240 36,54123 1,65181 33,50
41,38525 44,54641 3,16116 45,65941 2,29531 35,40

ωср
, % = 35,30%


2. Статистическая обработка данных.


- стандартное отклонение


1.394


Sr
= S/xср
- относительное стандартное отклонение


Sr
= 1.394/35.3 = 0.039




ω∆ω = (35.303.46) %.


3.2 Определение C и органических соединений по Тюрину


Vхол
=40 мл


Vраб
=10 мл


а=0,5 г


С%=(30*0,2*0,003*100)/0,5=3,6%


2. Определение фенола


Таблица полученных результатов




















Сфенола
мкг/мл
Аоптическая плотность
5 0.07
23 0.148
42.7 0.254
70 0.338
х 0.160

Градуировочный график



Из графика видно, что






















Ах
Сх,
мкг/мл
1 0,160 38
2 0,180 40
3 0,190 43
ср 0,176 40

Статистическая обработка данных.


S==2,08


Sr
= 2,08/40 = 0,052



С∆С = (400,5)мкг/мл


Пересчитаем концентрацию: С=0,02г/20г почвы


3.3 Определение общей щелочности и щелочности, обусловленной карбонат-ионами


1. Таблица полученных результатов:































№ п/п

Масса


навески, г


Объем


вытяжки, мл


Объем титранта 0,01 М H2
SO4
, мл
общий аликвота По ф/ф По м/о
1 40 100 25 1,01 7,3
2 1,02 7,8
3 1,04 8,0
ср 1,03 7,9

2. Карбонатная щелочность.


;


0.404ммоль/100г, почвы


0,408ммоль/100 г почвы


0,416 ммоль/100г почвы


ммоль/100 г почвы


0,404*0,03*100=1,212%


0,408*0,03*100=1,44%


0,416*0,03*100=1,248%


=1,301


Статистическая обработка данных.


S==0,0031


Sr
= 0,0031/0,409 = 0,006



С∆С = (0,4090,024)ммоль/100г почвы.


3.4 Общая щелочность


ОЩ1==1,662 ммоль/100г почвы


ОЩ2==1,764 ммоль/100г почвы


ОЩ3=1,808ммоль/100г почвы


ОЩср=1,745 ммоль/100г почвы


=1,662*0,061*100=10,14%


=1,764*0,061*100=10,76%;


=1,808*0,061*100=11,03%;


=1,745*0,061*100=10,65%.


Статистическая обработка данных.


S=0.06


Sr
= 0,06/1,808 = 0,033


Т==0,14


С∆С = (1,8080,14) ммоль/100г почвы.


3.5
Валовое содержание железа


1. Таблица полученных результатов:





















№п/п

Навеска


почвы, г


Объем аликвоты,


мл


Объем титранта,


мл


1 20 25 12,0
2 11,5
3 12,0
ср 11,8

=0,0040н


=0,0038н


=0,0042н


=0,004н


С учетом разбавления:


С1
= 0,0080 моль/л


С2
= 0,0076 моль/л


С3
= 0,0084 моль/л


Сср
= 0,0080 моль/л.


mFe
3+
= 0,0080·56·0,1 = 0,0448 г.


ω, %==0,224%


2. Статистическая обработка данных.


S==0,002


Sr
= 0,002/0,0080 = 0,25


Т==0,004


С∆С = (0,00800,004)моль/л.


3.6 Определение кальция и магния при совместном присутствии


1. Определение суммы кальция и магния


СТ
= 0,1 моль-экв/л


Vал
= 10 мл























№ опыта
, мл
С∑
моль экв/л
1 2,05 0,0205
2 2,10 0,0210
3 1,95 0,0195
ср 2,03 0,0203

Статистическая обработка результатов


S==0,00026


Sr
= 0,00026/0,0203 = 0,0128


Т==0,00061


Ср ср
±ΔC=(0,02030 ± 0,00061)ммоль экв/мл


m∑
= 0,056 + 0,0128 = 0,069


ω%=0,203%


2. Определение кальция


Vал
= 10 мл


Ст
= 0,1 моль экв/л






















№ опыта



, мл
СCa2+
моль экв/л
1 1,38 0,0138
2 1,36 0,0136
3 1,32 0,0132
ср 1,36 0,0136

Статистическая обработка результатов


S==0,0015


Sr
= 0,0015/0,0136 = 0,11


Т==0,0037


Ср ср
± ΔC = (0,0136 ± 0,0037)ммоль экв/мл


ω%=mCa
/ mн


mCa
= 0.0136·40·0.1 = 0,0544 г


ω%=0,19%


3.Определение магния


Vал
= 10 мл


Ст
= 0,1 моль экв/л






















№ опыта
, мл
СMg
2+
моль экв/л
1 0,71 0,0071
2 0,73 0,0073
3 0,74 0,0074
ср 0,72 0,0072

Статистическая обработка результатов


S==0.00024


Sr
=0,00024/0,0072 = 0,033


Т==0.00054


Ср ср
± ΔC = (0,0072 ± 0,00054)ммоль экв/мл


mMg
= 0,0072·24·0,1 = 0,01761 г


ω%=0,071%


3.7 Определение обменной кислотности


1. Таблица полученных данных




























№ п/п
Vал
mнав
V0

Ноб,
ммоль(+)/100г


почвы


1 2,7 50 40 100 1,47
2 2,73 1,43
3 2,67 1,32
2,69 1,40

2. Статистическая обработка результатов


S==0,03


Sr
=0,03/1,40 = 0,028


Т==0.02


Ср ср
±ΔC=(1,40±0,020)ммоль/100 г почвы


3.8 Определение концентрации фосфатов в 0,03 н.
K
2

SO
4

-вытяжках (по Карпинскому – Замятиной
)


1. Построение градуировочного графика.


График: оптическая плотность – объем аликвоты.



























Vал
Оптическая плотность, Аср
0.5 0.11
1 0.27
3 0.49
5 0.67
7 0.79
10 0.93
х 0,53

С1
== 3,25 мг/100 г;


С2
= =3,27 мг/100 г;


С3
= =3,29 мг/100 г.


Сср
= 3,27 мг/100 г = 3,27·10-3
г/100 г


ω%=( Ср ср
/10)·100% = 0,0327%


2. Статистическая обработка результатов


S==0,016


Sr
=0,016/3,27 = 0,048


Т==0,039


Ср ср
±ΔC=(3,27±0,039)мг/100 г


3.
9 Определение гидролитической кислотности


1. Таблица полученных результатов




























№ опыта
Vал
mнав
V0

Нгидр
ммоль(+)/100г


почвы


1 1,17

50


40 100 0,61
2 1,22 0,56
3 1,19 0,51
1,19 0,51

2. Статистическая обработка результатов


S==0,018


Sr
=0,018/0,51 = 0,02


Т==0.059


Ср ср
±ΔC=(0,51±0,059)ммоль/100 г почвы.


3.10 Определение нитрат ионов в почве с использованием нитрат селективного электрода


Результаты определений занесены в таблицу:






















С, моль/л Е, В -lg C
0,1 306.0 1
0,01 357.7 2
0,001 413.8 3
0,0001 462.6 4

По результатам построен график 1.



Концентрации найденные по градуировочному графику приведены в таблице:



























№ определения Е, В -lg C С, моль/л
1 457,2 3,86 0,000138
2 457,5 3,88 0,000132
3 455,7 3,87 0,000135
ср 455,7 3,87 0,000135

Статистическая обработка результатов


S==0,00006


Sr
=0,00006/0,000135 = 0,04


Т==0.009


Ср ср
±ΔC=(0,000135±0,009)ммоль/100 г почвы.


Пересчитаем концентрацию:


с = сNO
3
*14*105
/1-(w/100)


С=0,000135*15/1-(35,3/100)=0,034мг/кг


Заключение


В ходе данной работы был проанализирован образец почвы, отобранный в Усманском районе Липецкой области. Полученные результаты представлены в таблице:





































Определяемый


показатель


Содержание


в образце почвы


Определяемый


показатель


Содержание


в образце почвы


Гигроскопическая


влага


35,3% Содержание кальция и магния 0,203%

Содержание


фенола


0,02г/20г почвы Содержание кальция 0,19%

Карбонатная


щелочность


0,409ммоль/100г почвы Содержание магния 0,071%

Общая


щелочность


1,808ммоль/100г почвы

Гидролитическая


кислотность


1,40/100г почвы

Содержание


железа


0,224% Обменная кислотность 0,51 ммоль/100г почвы

Содержание


фосфатов


0,0327% Содержание углерода 3,6%

Библиографический список


1 Химический анализ почв/ Воробьева Л.А. – М.: изд. МГУ, 1998. – 272с.: ил.


2 Эколого-аналитический мониторинг стойких органических загрязнителей/ Майстренко В.Н., Клюев Н.А. – М.: Мир: БИНОМ. Лаборатория знаний, 2004. -323с.: ил.


3 Основы аналитической химии. Практическое руководство: уч. Пособие для ВУЗов/ Фадеева В.И., Шеховцова Т.Н., Иванов В.М. и др.; под ред. Золотова Ю.А. – М.: Высшая школа, 2001. – 463с: ил.


4 Агрохимические исследования почв/Под ред. А.В.Соколова. М.: Наука, 1975. 98 с.


5 Учебно-полевая практика и лабораторные работы,методическое пособие/Дербенцева А.М.,Пилипушка В.Н.-Владивосток,2005.-24с.


6 Практикум по агрохимии/Под ред. МинееваВ.Г. М.:Изд-во МГУ,2001.-689 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Анализ почвы

Слов:4253
Символов:41105
Размер:80.28 Кб.