РефератыХимияХиХимическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов

Химическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов

Химическая реакция в смеси идеальных газов

Состояние изотермической системы с неизменным объёмом целесообразно описывать посредством свободной энергии (функции Гельмгольца). В этих условиях она является характеристической функцией и изохорно-изотермическим потенциалом системы.


Посредством частного дифференцирования из неё далее можно извлечь прочие необходимые термодинамические характеристики, а именно:


(1)


Построить явный вид функции свободной энергии для некоторых относительно простых систем можно методом статистической термодинамики.


В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния термодинамического равновесия её свободная энергия достигает минимума и уже в равновесии далее сохраняет постоянное значение. Из равновесия систему можно вывести за счёт внешних сил, повышая её свободную энергию. Такой процесс уже не может быть свободным - он будет вынужденным.


Микроскопические движения частиц и в равновесии не прекращаются, и в системе, состоящей из огромного числа частиц и подсистем любой природы, возможно множество различных частных вариантов и комбинаций отдельных частей и внутри них, но все они не выводят систему из равновесия.


Термодинамическое равновесие в макросистеме совсем не означает, что и в её микроскопических фрагментах исчезают все виды движения. Напротив, равновесие обеспечивается динамикой именно этих микроскопических движений. Они-то осуществляют непрерывное выравнивание - сглаживание наблюдаемых макроскопических признаков и свойств, не допуская их выбросов и чрезмерных флуктуаций.


Основной целью статистического метода является установление количественной связи между характеристиками механических движений отдельных частиц, составляющих равновесный статистический коллектив, и усреднёнными свойствами этого коллектива, которые доступны для термодинамических измерений макроскопическими методами.


Цель состоит в том, чтобы на основании механических характеристик движений отдельных микроэлементов равновесного коллектива вывести количественные законы для термодинамических параметров системы.


Согласно методу Гиббса термодинамическая система это коллектив - совокупность очень большого числа элементов - однотипных подсистем.


Каждая подсистема в свою очередь может также состоять из очень большого числа иных ещё более мелких подсистем и в свою очередь может играть роль вполне самостоятельной системы.


Все естественные флуктуации внутри равновесной системы равновесия не нарушают, они совместимы с устойчивым макроскопическим состоянием огромного коллектива частиц. Они просто перераспределяют признаки отдельных элементов коллектива. Возникают разные микросостояния, и все они суть версии одного и того же наблюдаемого макросостояния.


Каждая отдельная комбинация состояний элементов коллектива порождает лишь одно из огромного множества возможных микросостояний макросистемы. Все они в физическом смысле равноценны, все приводят к одному и тому же набору измеримых физических параметров системы и отличаются лишь какими-то деталями распределения состояний между элементами …


Все микросостояния совместимы с макроскопическим - термодинамическим равновесием, и числовой разброс отдельных составляющих свободной энергии (её энергии и энтропии) является вполне обычным обстоятельством. Надо понимать, что разброс возникает за счёт непрерывного обмена энергией между частицами – элементами коллектива. У одних элементов она уменьшается, но при этом у других увеличивается.


Если система находится в термостате, то ещё непрерывно осуществляется обмен энергией и с окружающей средой. Происходит естественное энергетическое перемешивание коллектива, за счёт непрерывного обмена между микрочастицами коллектива. Равновесие постоянно поддерживается через тепловой контакт с внешним термостатом. Так в статистике чаще всего именуют окружающую среду.


Создавая универсальную схему статистической механики, Гиббс использовал удивительно простой приём.


Любая реальная макроскопическая система это коллектив из огромного множества элементов – подсистем. Подсистемы могут иметь и макроскопические размеры, и могут быть микроскопическими, вплоть до атомов и молекул. Всё зависит от рассматриваемой задачи и уровня исследования.


В разные моменты времени в разных точках реальной системы, в разных пространственных регионах макроскопического коллектива мгновенные характеристики его малых элементов могут быть различны. «Неоднородности» в коллективе постоянно мигрируют.


Атомы и молекулы могут находиться в разных квантовых состояниях. Коллектив огромный, и в нём представлены различные комбинации состояний физически одинаковых частиц. На атомно-молекулярном уровне всегда происходит обмен состояниями, имеет место их непрерывное перемешивание. Благодаря этому свойства различных фрагментов макроскопической системы выравниваются, и физически наблюдаемое макроскопическое состояние термодинамической системы внешне выглядит неизменным...


Броуновское движение – главный молекулярный механизм, обеспечивающий перемешивание локальных свойств микроскопических подсистем - элементов макроскопического коллектива. Броуновское движение и ряд сопутствующих ему релаксационных процессов выравнивают в пространстве и усредняют во времени суммарные динамические характеристики макроскопического равновесного коллектива, превращая их в измеримые термодинамические параметры с равновесными значениями.


Так возникает огромное множество мгновенных различающихся суммарных состояний всего коллектива, и все они совместимы с одним и тем же внешне неизменным термодинамическим равновесием системы.


Всё множество, сколь необозримым оно бы не казалось, всевозможных комбинаций микромеханических состояний всех однотипных элементов системы, совместимых с её термодинамическими характеристиками в её определённом наблюдаемом термодинамическом (макроскопическом) состоянии, Гиббс определил как АНСАМБЛЬ.


Ансамбль напоминает ленту бесконечного фильма, кадры котрого, время от времени повторяясь, с бесконечными вариациями изображают одну и ту же сцену с некоторыми изменениями. Элементы ансамбля подобны отдельным кадрам этого бесконечного фильма.


Весь ансамбль изображает макросостояние (фильм), а его элементы суть микросостояния (кадры этого

фильма).


Рассмотрим пробег химической реакции между несколькими частицами:


(2)


Следуя правилам IUPAC, стехиометрические коэффициенты представим в виде массива


niÎ (-a, - b,… +k, +m, …); (3)


Стандартное сродство (стандартное приращение энергии Гиббса) определяется через стандартные химические потенциалы реагентов и продуктов и изотермой Вант-Гоффа связано с безразмерной термодинамической константой равновесия Kp:


; (4)


Это и есть основание для расчёта константы химического равновесия.


Применяя правило ИЮПАК для стехиометрических коэффициентов, формулу (21.3) легко записать в общем виде


; (5)


Введём стандартные химические потенциалы веществ i.


. (6)


Стандартное сродство реакции принимает вид


; (7)


Сокращая на RT=NkT, получаем


; (8)


Константа химического равновесия в смеси идеальных газов.


Совершим цепочку несложных преобразований. Вначале внесём стехиометрические коэффициенты в сумме под знак логарифма в виде показателей степеней у статистических сумм


; (9)


Затем воспользуемся тем, что сумма логарифмов равна логарифму произведения


; (10)


Наконец, избавляясь от логарифмов, получаем искомое статистическое выражение для константы равновесия


; (11)


Она имеет вид произведения статистических сумм.


Константа химического равновесия в смеси идеальных газов.


; (12)


Стандартные суммы состояний имеют вид:


- трансляционная: ; (13)


- молекулярная: ; (14)


Константа равновесия может рассчитываться как непосредственно в виде произведения статистических сумм,


; (15)


которые предварительно следует рассчитать, а также по результирующей формуле


; (21.14)


При вычислении электронных сумм состояния помним, что занят один-единственный электронный уровень, и он характеризуется кратностью вырождения ge, i. Эта кратность равна числу микросостояний основного терма у атомов и у молекул. У молекул чаще всего достаточно спиновой мультиплетности, но возможно и орбитальное вырождение. Это уже зависит от конкретной частицы.


Поэтому электронная сумма состояний у молекулы определяется формулой


; (16)


Энергия химической связи считается равной энергии её диссоциации и отсчитывается от основного колебательного уровня, а не от минимума потенциальной кривой.


Этот вопрос рассмотрен в учебнике Даниэльса и Олберти на стр.539 в разделе 17.13. Там же приводятся основные формулы. Раздел написан хорошо и достаточно просто. Этот учебник вполне пригоден для подготовки студентов.


1. Сводка статистических сумм для простейших стационарных движений.


ПРИЛОЖЕНИЕ 1. Математическая справка о факториалах больших числах.


Факториал числа, соизмеримого с числом Авогадро, непосредственно вычислить невозможно, и поэтому давно разработаны приближённые способы численно точного вычисления, основанные на применении гамма – функции Эйлера первого рода.


При очень большом числе, факториал которого вычисляется, точной становится формула Стирлинга (можете проверить прямыми вычислениями). Разность между точным и приближённым логарифмами становится относительно малой величиной:



Таблица. Точные и приближённые значения логарифмов факториалов больших чисел.




































































N N! точно

ln(N!)


точно


Стирлинг


точно


Стирлинг


прибл.


8 40320 10.604 10.594 8.635
9 362880 12.802 12.7925 10.775
10 3628800 15.1044 15.096 13.026
11 39916800 17.5023 17.4948 15.377
12 479001600 19.987 19.979 17.818
13 6227020800 22.55216 22.545 20.344
14 8.71782912*1010 25. 19122 25.185 22.947
20 2.432902008*1018 42.3356 42.33145 39.915
25 1.55112100*1025 58.00 57.998 55.470
50 3.041409*1064 148.478 148.476 145.601

ПРИЛОЖЕНИЕ 2.


Дополнительные сведения о вращательных статистических суммах.


Для справки приведём ротационные статистические суммы молекулы с учётом её внутренних вращений


Суммы по состояниям для внутреннего вращения (Ерёмин, стр.181-182):


Для свободного внутреннего вращения в этане (при высокой температуре):



Для каждой из двух свободно вращающихся групп в сложной молекуле:



Число молекулярной вращательной симметрии требует специального анализа. Там же у Ерёмина приводятся приёмы расчёта.


Учитывая все ротационные преобразования симметрии, например, для этана получаем число 18 (3 степени свободы для вращения вокруг оси 3-го порядка вдоль связи C-C, ещё 2 - для оси 2-го порядка и также для внутреннего вращения – вновь ось 3-го порядка).


Вся ротационная сумма состояний в общем случае приобретает вид:


(Ерёмин, стр.233, формула VI.155)


.


Множитель p1/2 появляется при вычислении ротационной статистической суммы методом классической статистики, тогда как вывод общей формулы на основе квантовой статистики невозможен.


Вращательные стат. суммы сложных молекул и ротационное число симметрии.


(см. Приложение – несколько страниц из книги Дж. Майер, М. Гёпперт-Майер).

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Химическая реакция в смеси идеальных газов. Константа химического равновесия в смеси идеальных газов

Слов:1435
Символов:13142
Размер:25.67 Кб.