РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ
ЭКОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ
Реферат
Биогаз: получение, состав, использование
Студентка гр. ОСБ-402 Баканова Н.Г.
Преподаватель Харламова М.Д.
Москва 2007
Содержание
Введение
Получение биогаза метатенков и сельскохозяйственных биогазовых установок
Биогаз, получаемый на полигонах ТБО
Системы хранения биогаза
Состав биогаза
Подготовка биогаза к использованию
Основные направления и мировые лидеры использования биогаза
Заключение
Список использованной литературы
Введение
В мировой практике газоснабжения накоплен достаточный опыт использования возобновляемых источников энергии, в том числе энергии биомассы. Наиболее перспективным газообразным топливом является биогаз, интерес к использованию которого в последние годы не только не убывает, но и продолжает возрастать. Под биогазами подразумеваются метансодержащие газы, которые образуются при анаэробном разложении органической биомассы. В зависимости от источника получения биогазы подразделяются на три основных вида:
- газ метантенков, получаемый на городских очистных канализационных сооружениях (БГ КОС);
- биогаз, получаемый в биогазовых установках (БГУ) при сбраживании отходов сельскохозяйственных производств (БГ СХП);
- газ свалок, получаемый на полигонах отходов, содержащих органические компоненты (БГ ТБО).
В своей работе я рассмотрела технологии получения этих газов, их состав, методы подготовки биогаза к использованию, а именно методы очистки от балластных веществ. Биогаз обладает широким спектром использования, который я коротко рассмотрела в этой работе.
Получение биогаза метатенков и сельскохозяйственных биогазовых установок
По техническому исполнению биогазовые установки подразделяются на три системы: аккумулятивную, периодическую, непрерывную.
В аккумулятивных системах предусматривается сбраживание в реакторах, которые служат одновременно и местом хранения сброженного навоза (субстрата) до его выгрузки. Исходный субстрат постоянно подается в резервуар до его заполнения. Выгрузка сброженного субстрата производится один-два раза в год в период внесения удобрений в почву. При этом часть сброженного осадка специально оставляется в реакторе и служит затравочным материалом для последующего цикла сбраживания. Объем хранилища, совмещенного с биореактором, рассчитывается на полный объем удаляемого с комплекса навоза в межпосевной период. Такие системы требуют больших объемов хранилищ и применяются очень редко.
Периодическая система производства биогаза предполагает разовую загрузку исходного субстрата в реактор, подачу туда же затравочного материала и выгрузку сброженного продукта. Такая система характеризуется довольно большой трудоемкостью, очень неравномерным выходом газа и требует наличия не менее двух реакторов, резервуара для накопления исходного навоза и хранения сброженного субстрата.
При непрерывной схеме исходный субстрат непрерывно или через определенные промежутки времени (1-10 раз в сутки) загружается в камеру сбраживания, откуда одновременно удаляется такое же количество сброженного осадка. Для интенсификации процесса сбраживания в биореактор могут вноситься различные добавки, увеличивающие не только скорость реакции, но и выход и качество газа. Современные биогазовые установки рассчитываются, как правило, на непрерывный процесс и изготавливаются из стали, бетона, пластмасс, кирпича. Для теплоизоляции применяются стекловолокно, стекловата, ячеистый пластик.
По суточной производительности существующие биогазовые системы и установки можно разделить на 3 типа:
малые - до 50 м3
/сут;
средние – до 500 м3
/сут;
крупные – до 30 тыс. м3
/сут.
Метатенковые и сельскохозяйственные биогазовые установки не имеют принципиальных отличий, за исключением используемого субстрата. Технологическая схема биогазовой сельскохозяйственной установки представлена на рис. 1.
Согласно этой схеме навоз из животноводческого помещения (1) поступает в на копительную емкость (2), далее фекальным насосом (3) его загружают в метантенк — емкость для анаэробного сбраживания (4). Биогаз, образующийся в процессе брожения, поступает в газгольдер (5) и далее к потребителю Для нагрева навоза до температуры брожения и поддержания теплового режима в метантенке применяют теплообменник (6), через который протекает горячая вода, нагреваемая в котле (7) Сброженный навоз выгружают в навозохранилище (8).
Рис.1. Обобщенная схема производства биогаза (сельскохозяйственная биогазовая [4]
Биореактор имеет тепловую изоляцию, которая должна стабильно поддерживать температурный режим сбраживания и поддаваться быстрой замене при выходе из строя. Обогрев биореактора осуществляется посредством размещения по периметру стенок теплообменников в виде спирали из труб, по которым циркулирует горячая вода с начальной температурой 60-70 °С. Такая низкая температура теплоносителя принята во избежание гибели метанообразующих микроорганизмов и налипания частичек субстрата на теплообменную поверхность, что может привести к ухудшению теплообмена.В биореакторе также имеются устройства для постоянного перемешивания навоза. Поступление навоза в метантенк регулируется так, чтобы процесс сбраживания протекал равномерно.
Во время сбраживания в навозе развивается микрофлора, которая последовательно разрушает органические вещества до кислот, а последние под действием синтрофных и метанообразующих бактерий превращаются в газообразные продукты — метан и углекислоту.
В метантенках обеспечиваются все необходимые параметры процесса—температура(33-37º С) , концентрация органических веществ, кислотность (6,8-7,4) и др. Рост клеток метанового биоценоза также определяется соотношением C:N, и оптимальное его значение составляет 30:1. Некоторые вещества, содержащиеся в исходном субстрате, могут ингибировать метановое сбраживание (табл. 1). Например, куриный помет часто ингибирует метановое сбраживание избытком NH3.
Таблица 1
Ингибиторы метанового сбраживания [2]
Вещество | Концентрация в субстрате, мг/л |
Cu | 10 |
Ca | 8000 |
Na | 8000 |
K | 8000 |
Mg | 3000 |
NH3 | 1500 |
Сульфиды | 200 |
Нитриты | 50 |
Биогаз, получаемый на полигонах ТБО
Процесс неуправляемого газообразования на полигонах бытовых и других отходов, содержащих большую долю органических компонентов, можно рассматривать как процесс получения метансодержащего газа в аккумулятивной системе, длительность процесса до полного разложения органической части здесь гораздо больше, чем в метатенках.
В отечественной практике системы утилизации биогаза на полигонах ТБО пока не получили широкого распространения, поэтому при дальнейшем рассмотрении конструктивных особенностей систем сбора и транспорта биогаза будет учитываться зарубежный опыт. Принципиальная схема одной из таких систем на полигоне ТБО представлена на рис. 2. Система состоит из двух основных частей: газосборной сети, находящейся под разрежением, и распределительной сети потребителей биогаза, находящейся под избыточным низким или (реже) средним давлением.
Рис. 2. Устройство системы дегазации полигонах ТБО [3]
Ниже приводятся определения важнейших элементов системы сбора газа на полигоне, представленные на рис. 2, и требования к отдельным элементам системы.
Газовые коллекторы - это трубопроводы, проложенные в толще отходов, в которых создается разрежение. Как правило, они выполняются либо вертикально в виде газовых скважин, либо горизонтально в виде перфорированных трубопроводов, однако на практике применяются и другие формы (резервуары, гравийные или щебеночные камеры и др.).
Под сборными газопроводами понимаются газопроводы, находящиеся под разрежением и ведущие к части сборных коллекторов. Для компенсации просадок они имеют гибкое присоединение к газовому коллектору, в узле присоединения располагаются контрольно-измерительные приборы (для измерения давления) и штуцеры для отбора проб газа.
В газосборном пункте объединяются сборные газопроводы. Газосборный пункт может быть выполнен в виде трубы, резервуара и т. п. и размещается в низшей точке с целью обеспечения сбора и отвода выпадающего конденсата. В газосборном пункте размещаются контрольно-измерительные приборы и устройства автоматики.
Система отведения конденсата - это устройство на газопроводе для сбора и отвода конденсата в низшей точке системы трубопроводов. В зоне разрежения конденсат отводится через сифоны, в области избыточного давления - посредством регулируемых конденсатоотводчиков. Конденсат можно также отводить как в зоне разрежения, так и в зоне избыточного давления с помощью охлаждающего устройства.
Всасывающим трубопроводом называют прямой участок трубопровода перед нагнетательным устройством, здесь также предусматриваются контрольно-измерительные приборы и устройства автоматики.
Нагнетательные устройства (вентилятор, воздуходувка и т. п.) служат для создания разрежения, необходимого для транспорта газа из тела захоронения или для создания избыточного давления при транспортировании газа к месту использования (к факельной установке, к системе утилизации и т. п.).
Компрессорная установка служит для повышения избыточного давления газа.
В машинном отделении размещаются нагнетательные устройства. Традиционными конструкциями являются контейнеры, металлические кожухи или небольшие строения (гаражи, блочные конструкции и т. д.). На крупных установках газонагнетательные устройства располагаются в машинном зале, иногда они могут размещаться на открытых площадках под навесом.
Под трубопроводами для транспорта газа понимается система трубопроводов для отвода газа с полигона под избыточным давлением.
Факельная газовая установка - это устройство, необходимое для полного сжигания газа при отсутствии газопотребления, включая устройства автоматики безопасности и регулирования.
В машинном зале или газосборном пункте размещаются установки для очистки или утилизации газа, а также пульт управления и другие устройства.
Для обеспечения достаточного сбора газа на полигонах выдвигаются следующие требования: создание эффективного разрежения в толще захоронения; минимизация подсосов воздуха; обеспечение долговременной работоспособности системы при механических и статических нагрузках; обеспечение возможности сбора газа при длительной эксплуатации полигона или свалки; увязка производительности системы дегазации с интенсивностью образования газа; возможность расширения системы. Поэтому для сбора биогаза используются трубопроводные системы большой емкости со свободным доступом к ним и по возможности кратчайшей длины. Расположение коллекторов для сбора газа может быть горизонтальным, вертикальным или комбинированным, трубопроводы должны сохранять устойчивость и прочность на протяжении всего срока эксплуатации полигона. На вновь создаваемых полигонах или новых участках полигонов можно с наращиванием высоты отходов откачивать газ снизу или монтировать систему сбора газа с горизонтальными или слегка наклонными газопроводами, которая по мере заполнения полигона дополняется газовыми скважинами. На существующих участках полигонов, как правило, практикуется бурение скважин.
В газовых скважинах вертикальных систем вследствие нагрузки сверху и давления сбоку возникают существенные механические напряжения, которые усиливаются при возникающих просадках за счет «отрицательного поверхностного трения». Для компенсации просадок скважины при глубине от 10 м необходимо выполнять телескопическими. Требования к материалу скважин обусловлены наличием в теле полигона фильтрата, в котором растворены, наряду с другими веществами, сероводород и органические кислоты. Наличие фильтрата создает коррозионную опасность и вызывает дополнительные напряжения за счет коррозионного растрескивания. По названным причинам при сооружении скважин используются коррозионно-стойкие синтетические материалы, рассчитанные на давление до 1 МПа.
Во избежание расходов на бурение при эксплуатации полигона газовые скважины можно сооружать в процессе заполнения полигона. Технологию проведения работ можно коротко описать так: обсадная труба из стали или синтетических материалов поэтапно возводится одновременно с засыпкой отходов таким образом, чтобы на глубине не менее 2 м (при общей длине около 5 м) она оставалась бы в толще отходов, затем вносится следующий слой отходов примерно на 2 м и уплотняется. Уплотнитель (компактор или бульдозер) может при укладке отходов подъезжать вплотную к обсадной трубе. Затем обсадная труба снова поднимается на 3 м, труба колодца наращивается, а кольцевой зазор засыпается щебнем. За исключением собственно процесса вытягивания обсадной трубы газовая скважина может все время быть соединена с газосборной сетью. Устройство и пример конструкции такой обсадной трубы представлены на рис. 3.
Рис. 3. Схематичное представление обсадной трубы [3]
1 - трубопровод для отвода газа; 2 - соединительная муфта; 3 - засыпка из щебня; 4 - тело захоронения; 5 - обсадная труба; 6 - направляющий элемент, 7- газонепроницаемая крышка; 8 - штуцер для отбора газа
Слабым звеном в газовых скважинах является узел присоединения к сборным газопроводам. Вследствие просадок различной величины (просадки могут достигать до 25 % толщины захороненных отходов, т. е. при высоте засыпки 20 м возможна просадка 5 м) между газовой скважиной и присоединительным трубопроводом может возникнуть сильное напряжение от растяжения [3]. Поэтому переходник часто выполняется из эластичного материала. Применяемые ранее полиэтиленовые шланги обычно становятся хрупкими, особенно под действием солнечного света, появляются трещины, нарушается герметичность. Поэтому сейчас во многих случаях используются рукава из хромированной стали. При монтаже необходимо принимать во внимание, что в таком гибком соединительном элементе не должно образовываться конденсатных мешков, которые могут стать гидравлическими затворами.
Горизонтальные или наклонные системы состоят из дренажных перфорированных трубопроводов диаметром 100-150 мм с отверстиями диаметром 5 мм или щелями размером 5x20 мм., расположенных на разных уровнях захороненных отходов, и обкладываемых пригодным для дренажа материалом (щебнем, гравием, керамзитом, строительными отходами). На конечном участке они выполнены в виде сплошной трубы и на выходе из покровного слоя полигона или из толщи отходов присоединяются непосредственно к сборному трубопроводу. Горизонтальный дренаж прокладывается на достаточно небольшом по вертикали расстоянии (6-8 м). Расстояние по горизонтали между отдельными дренажными трубами составляет около 30 м. Условный диаметр дренажной трубы принимается равным 250 мм, трубы изготавливаются из температуростойких искусственных-материалов, так как на существующих полигонах значение температуры в толще отходов достигало 70 °С.
Несмотря на относительно большой диаметр, отдельные ветви системы через несколько лет имеют, как правило, весьма ограниченную производительность, так что после окончательного заполнения соответствующего участка полигона требуется дополнительная дегазация через вертикальные коллекторы.
Газосборные пункты сооружаются у границы полигона в виде блочных бетонных зданий, при эксплуатации которых необходимо соблюдать требования по взрывозащите. Альтернативным вариантом является размещение узлов сбора газа на открытой площадке.
Системы хранения биогаза
Обычно биогаз выходит из реакторов неравномерно и с малым давлением (не более 5 кПа). Этого давления с учетом гидравлических потерь газотранспортной сети недостаточно для нормальной работы газоиспользующего оборудования. К тому же пики производства и потребления биогаза не совпадают по времени. Наиболее простое решение ликвидации излишка биогаза -сжигание его в факельной установке, однако при этом безвозвратно теряется энергия. Более дорогим, но в конечном итоге экономически оправданным способом выравнивания неравномерности производства и потребления газа является использование газгольдеров различных типов. Условно все газгольдеры можно подразделить на «прямые» и «непрямые». В «прямых» газгольдерах постоянно находится некоторый объем газа, закачиваемого в периоды спада потребления и отбираемого при пиковой нагрузке. «Непрямые» газгольдеры предусматривают аккумулирование не самого газа, а энергии промежуточного теплоносителя (воды или воздуха), нагреваемого продуктами сгорания сжигаемого газа, т.е. происходит накопление тепловой энергии в виде нагретого теплоносителя.
Биогаз в зависимости от его количества и направления последующего использования можно хранить под разным давлением, соответственно и газохранилища называются газгольдерами низкого (не выше 5 кПа), среднего (от 5 кПа до 0,3 МПа) и высокого (от 0,3 до 1,8 МПа) давления. Газгольдеры низкого давления предназначены для хранения газа при малоколеблющемся давлении газа и значительно изменяющемся объеме, поэтому их иногда называют газохранилищами постоянного давления и переменного объема (обеспечивается подвижностью конструкций). Газгольдеры среднего и высокого давления, наоборот, устраиваются по при
Вместимость газгольдеров высокого давления может быть различной - от нескольких литров (баллоны) до десятков тысяч кубических метров (стационарные газохранилища).Хранение биогаза в баллонах применяется, как правило, в случае использования газа в качестве горючего для транспортных средств. Основные преимущества газгольдеров высокого и среднего давления - небольшие габариты при значительных объемах хранимого газа и отсутствие движущихся частей, а недостатком является необходимость в дополнительном оборудовании: компрессорной установке для создания среднего или высокого давления и регуляторе давления для снижения давления газа перед горелочными устройствами газоиспользующих агрегатов.
Состав биогаза
Состав и количество биогаза не являются постоянными и зависят от вида перерабатываемого субстрата и от технологии производства биогаза. Усредненный состав биогазов в соответствии с приведенной классификацией представлен в табл. 2.
Таблица 2
Классификация и состав биогазов [3]
Компоненты биогаза | Содержание компонентов, % об. | ||
БГКОС | БГСХП | БГТБО | |
CH4
|
60-65 | 55-75 | 35-80 |
СО2
|
16-34 | 27-44 | 0-34 |
N2
|
0-3 | 0-3 | 0-82 |
О2
|
- | - | 0-31,6 |
Н2
|
- | 0,01-0,02 | 0-3,6 |
СО | - | 0,01-0,02 | 2,8 |
H2
S |
- | до 1,0 | 0-70 ррт |
Газ метантенков городских канализационных очистных сооружений характеризуется более стабильным составом. Содержание основного горючего компонента - метана - на разных очистных сооружениях изменяется от 60 до 65 % по объему. Более значительные колебания состава газа наблюдаются при переработке отходов сельскохозяйственного производства, при этом в газе присутствует некоторое довольно значительное количество сероводорода. Поэтому перед использованием требуется очистка газа от H2
S.
Процессы образования первых двух видов биогазов протекают в стационарных устройствах. Технологические параметры процесса (расход и влажность субстрата, температура брожения, длительность сбраживания) более или менее управляемы. Иная ситуация наблюдается на полигонах и свалках отходов, где биологическое разложение слоев мусора происходит с течением времени (пригодный к использованию биогаз образуется примерно через 10-15 лет), причем процесс газообразования неуправляем. Для сбора газа бурятся скважины или газовые колодцы. Конструкция и способ эксплуатации скважины, содержание влаги в толще отходов оказывают дополнительное влияние на состав газа. Содержание метана в газе может изменяться в широких пределах (35-80 %). Помимо метана и балластных азота и углекислого газа могут присутствовать сернистые соединения, меркаптаны, галогенсо-держащие соединения, ароматические углеводороды (всего более 100 компанентов).
Из 1 тонны сухого органического вещества в результате анаэробной переработки сельскохозяйственных отходов можно получить:
- из свиного навоза - 500 м³ биогаза (360 т у. т.);
- из навоза молочных коров - 350 м³ биогаза (250 т у. т.);
- из навоза откормочного КРС - 450 м³ биогаза (321 т у. т.);
- из птичьего помета - 660 м³ (428 т у. т.) [3] .
Подготовка биогаза к использованию
Условия получения биогазов и наличие в их составе вредных и балластных примесей диктуют необходимость предварительной обработки биогаза перед использованием в тепловых установках. Для обеспечения функциональной и эксплуатационной безопасности, а также безопасной работы персонала газ должен быть предварительно очищен от вредных компонентов. Основные этапы при подготовке газа к использованию:
o отделение влаги и взвешенных частиц;
o удаление сероводорода;
o удаление галогенсодержащих соединений;
o удаление углекислого газа;
o сжатие или сжижение (при использовании в качестве горючего для транспортных средств).
Биогаз выходит из биореактора (метантенка) при температуре процесса брожения в водонасыщенном состоянии. До момента использования газ значительно охлаждается, вследствие чего выпадает конденсат, и возникает опасность замерзания в холодный период года. По этой причине биогаз должен быть осушен. Обычно газ от биореакторов по газопроводу поступает в газосборный пункт (ГСП), где устанавливается влагоотделитель. Из влагоотделителя конденсат отводится в сливной бак, откуда по мере наполнения откачивается насосами. При снижении температуры биогаза после ГСП возможна конденсация паров, растворенных в биогазе. Для удаления конденсата по тракту предусматриваются сборники конденсата в нижних точках. Конденсатосборные устройства рассчитываются на максимально возможное количество жидкости.
Наиболее дешевым способом осушки является метод охлаждения, когда газ пропускают через влагоотделитель, служащий одновременно для осушки и отделения взвешенных частиц. Осушка методом охлаждения примерно до 10 °С достаточна для распространенных способов использования газа, например, для получения тепла при сжигании и для выработки электроэнергии. При необходимости более глубокой осушки (в случае использования газа в газовых двигателях) применяют адсорбционную осушку (в качестве сорбентов применяют оксид алюминия А12
Оз, хлорид кальция СаС12
, силикагель) или осушку жидкими поглотителями влаги (этилен- и триэтиленгликоль).
Отделение взвешенных частиц необходимо во всех случаях с целью предотвращения засорения арматуры и трубопроводов. Чаще всего достаточна грубая фильтрация в гравийном фильтре. Иногда применяют тонкие фильтры из стекловолокна, но это связано с повышением затрат.
Содержание сероводорода в биогазе может достигать 3 %. Сероводородсовместно с водяными парами и особенно в комбинации с углекислым газом оказывает корродирующее воздействие на металлические поверхности газооборудования, причем скорость коррозии может достигать 0,5-1 мм в год.При сжигании биогаза сероводород переходит в оксиды серы. Они, взаимодействуя с водяным паром, образуют серную и сернистую кислоты, которые также являются коррозийно-активными. Кроме того, H2
S, SO2
и SO3
-высокотоксичные газы.
Хлор- и фторсодержащие углеводороды приводят к коррозионной опасности вследствие образования соляной и плавиковой кислоты при конденсации продуктов сгорания в агрегате..
Очистка от сероводорода и галогенсодержащих углеводородов производится на действующих установках различными способами: адсорбция на активированном угле или абсорбция в промывочном растворе.
При адсорбции биогаз сначала проходит через специально обработанный активированный угололь, где H2
S окисляется до серы, которая сорбируется порами угля (0,3 кг серы на 1 кг активированного угля). Водяной пар, содержащийся биогазе, адсорбируется на активированном угле, вследствие чего уменьшается активность угля по отношению к галогенсодержащим углеводородам. Поэтому перед следующим этапом очистки биогаза проводят осушку. Далее газ пропускают через очередную насадку с активированным углем, на которой адсорбируются галогенсодержащие углеводороды.
Другой способ отделения тяжелых и галогенсодержащих углеводородов -абсорбционная очистка, основанная на разной растворимости компонентов газа в воде или водных растворах различных химических соединений. При этой технологии галогенсодержащие соединения абсорбируются промывочным раствором, состоящим из смеси органических растворителей (вымываются). Достигаемая при этом эффективность очистки от соединений хлора составляет более 95 %.
Наиболее простым и дешевым способом отделения СО2
является промывка водой. В абсорбере при избыточном давлении порядка 1 МПа углекислый газ поглощается водой.
Способ мембранного разделения СН4
и СО2
основан на различной проницаемости компонентов газа через мембрану. Ученые из Института нефтехимического синтеза (ИНХС) РАН предложили сочетать этот способ с абсорбционным методом разделения (рис. 4) Такие установки обеспечивают производительность 50 м3
/ ч.
Рис.4. Разделение СН4
и СО2
адсорбционным и мембранным методами [1]
В транспортных средствах в качестве горючего можно использовать сжатый или сжиженный газ. Один кубометр биогаза, сжатый до 2 МПа притемпературе 0°С, занимает объем 2,95 дм3
. В пятидесятилитровых баллонах высокого давления при таких условиях можно хранить 17 м3
газа, тогда как при таком же давлении и температуре 40 °С или 50 °С - только 15,5 м3
или 14,5 м3
соответственно [3]. Перед сжатием или сжижением газ практически полностью освобождается от углекислого газа, сероводорода и других примесей.
Основные направления и мировые лидеры использования биогаза
Достаточно высокое содержание метана в биогазе, а следовательно, и высокая теплота сгорания, предоставляют широкие возможности применения биогаза. При разработке систем по производству ииспользованию биогаза выбираются оптимальные варианты комплектации установок из множества возможных с учетом многочисленных местных и внешних условий. С точки зрения утилизации энергии биогаза можно выделить следующие основные направления его использования:
o для покрытия собственных энергетических нужд БГУ (в наиболее холодный период года практически весь потенциал биогаза используется для энергообеспечения установки);
o в качестве топлива для получения горячей воды или пара на покрытие технологических нужд очистных сооружений или сельскохозяйственных производств;
o для сушки сброженного осадка;
o в качестве топлива для получения теплого воздуха или горячих газов на сушку сельхозпродукции или обогрев сельскохозяйственных зданий;
o в теплицах для отопления и подкормки растений углекислым газом;
o для замены мазута при термической переработки отходов (25 т мазута в сутки заменяется 45000 м3
биогаза);
o в качестве горючего для двигателей транспортных средств;
o для получения электроэнергии;
o для подпитки сетей природного газа.
На метане могут работать как карбюраторные, так и дизельные двигатели, но поскольку метан является высокооктановым топливом, более эффективно его использование в дизельных двигателях. Абсолютный объем биогазов, необходимый для выработки энергии, эквивалентной полученной при сжигании 1 л бензина, составляет 1,33-1,87 м3
при сжигании 1 л дизельного топлива - 1,50-2,07 м3
[3].
После получения биогаза на сельскохозяйственных установках обработанный навоз используют в качестве удобрений. Метановое сбраживание навоза обеспечивает его дезодорацию, дегельминтизацию, уничтожение способности семян сорных растений к всхожести, перевод удобрительных веществ в легкоусвояемую растениями минеральную форму. При этом питательные (для растений) вещества — азот, фосфор и калий — практически не теряются.
На основании результатов, полученых на экспериментальных установках, руководство Центра энергосбережения (ЦЭТ) приняло решение о строительстве полномасштабной биогазовой установки для обработки помета на ПТФ «Юдинская». Стоимость строительства составит 6,2 млн руб , окупаемость — 2,7 года [4] .
Биогаз все чаще используют в качестве замены традиционных источников энергии. В Китае с середины 70-х годов XX века действует национальная программа по получению биогаза из отходов животноводства. К 2004 году в этой стране работало 10 млн. фермерских биореакторов, кроме того, 64 тысячи биогазовых станций, обеспечивающих работу 190 электростанций и более 60% автобусного парка [1]. Китай — безусловный мировой лидер биогазовой промышленности.
В США биогаз занимает второе место по важности среди биотоплив (после этанола). Недавно там приняли закон об оборудовании всех полигонов твердых бытовых отходов системами по их конверсии в смесь метана и СО2
. В ЕС работают более 800 биогазовых установок, к 2010 году там планируется произвести из биогаза 15 млн. тонн нефтяного эквивалента топлива. В Швеции почти 800 автобусов ездят на биогазе и первый в мире поезд. Его пробег до заправки — 600 км, максимальная скорость — 130 км/ч [1].
Заключение
Биогаз получают либо на специально организованных установках (метатенки или сельскохозяйственные биогазные установки), либо на полигонах ТБО, где процесс образования газа практически неуправляем. Метатенковые и сельскохозяйственные биогазовые установки не имеют принципиальных отличий, за исключением используемого субстрата. Богаз образуется в биореакторах в результате сбраживания субстрата под действием микрофлоры при поддержании постоянной температуры. Объем загружаемого бубстрата, время его сбраживания, поддержание постоянства необходимых показателей в реакторе – все это регулируется человеком.
На полигонах ТБО образующийся биогаз собирается с помощью систем горизонтальных или вертикальных труб (часто их используют совместно). Эти тубы диаметром 10-15 см по всей длине имеют щели и отверстия, через которые проникает газ. Горизонтальные трубы закладываются, как правило, на ранних этапах создания полигона ТБО, а вертикальные могут закладываться заранее (что намного дешевле) либо буриться после. Трубы обязательно обсыпаются дренажным материалом (щебенка). Биогаз через систему вертикальных и горизонтальных труб, расположенных в толще ТБО, поступает в газопровод, а затем в газосборный пункт, которых может быть несколько. После главного газосборного пункта газ идет на системы очистки, затем на компрессорные устройства, для создания давления, необходимого для дальнейшего транспорта газа по трубопроводам к месту его потребления.
Обычно биогаз выходит из реакторов неравномерно, а максимумы потребления и накопления биогаза не совпадают. Поэтому проблему избытка образования газа решают двумя способами: сжигают избыток в факельных установках и накапливают в специальных утройствах-газгольдерах. В первом случае энергия теряется безвозвратно. Второй способ является более дорогим, но экономически более оправданным. Кроме того, газ из реакторов выходит под низким давлением, которого оказывается недостаточно для работы газопотребляющих устройств. Газгольдеры позволяют создать необходимое давление.
Условно газгольдеры можно разделить на «прямые», которые содержат в себе газ, и «непрямые», которые сохраняют энергию в виде промежуточного носителя (вода),нагретого от сжигания газа. Газгольдеры либо изменяют свой объем (при помощи подвижных частей) и сохраняют давление, либо изменяют давление при постоянстве объема.
Состав получаемого биогаза зависит от используемого субстрата и способа переработки. Наиболее стабильный состав имеет биогаз, получаемый на метатенках и сельскохозяйственных биогазовых установках. Состав биогаза, получаемого на полигонах ТБО, колеблется больше, так как процесс газообразования здесь неуправляем.
В связи с тем, что получаемый биогаз содержит кроме метана еще и балластные вещества, то пред дальнейшим использованием он подвергается предварительной очистке. Конденсируемая при охлаждении влага может стать причиной замерзания газопровода. Осушку производят следующими методами: охлаждение с последующим пропускание газа через влагоотделитель, адсорбционная осушка (силикагель) и осушка жидким поглотителем (этиленгликоль). Взвешенные частицы могут приводить к забиванию трубопровода и элементов газового оборудования, поэтому от них избавляются путем пропускания газа через фильтры (гравийные, сделанные из стекловолокна). Сероводород и галогенсодержащие углеводороды (и продукты их сгорания) представляют коррозийную опасность. Методы очитки биогаза от них – адсорбция на активированном угле и абсорбция в промывочном растворе. С целью доведения биогаза до качества природного газа производят отделение СО2
(промывка водой при избыточнм давлении, мембранное разделение, абсорбционное разделение).
Биогаз можно использовать:
o для покрытия собственных энергетических нужд БГУ;
o для покрытия энергетических нужд очистных сооружений и сельскохозяйственных производств;
o в качестве горючего для двигателей транспортных средств;
o для получения электроэнергии;
o для подпитки сетей природного газа.
При получении биогаза на сельскохозяйственных биогазовых установках практическое применение находит не только сам газ, но и навоз, используемый в качестве исходного сырья. После метанового сбраживания он улучшает свои свойства и применяется как удобрение.
В нашей стране биогаз используется не так широко как за рубежом. Наибоее широкое применеи он получил в Китае, США и странах ЕС.
Список использованной литературы
1. Благутина В.В. Биоресурсы // Химия и жизнь – 2007. - №1. – С. 36-39
2. Малофеев В.М. Биотехнология и охрана окружающей среды: Учебное пособие. – М.: Издательство Арктос, 1998. – 188 с.
3. Мариненко Е.Е.Основы получения и использования биотоплива для решения вопросов энергосбережения и охраны окружающей среды в жилищно-коммунальном и сельском хозяйстве: Учебное пособие. – Волгоград: ВолгГАСА, 2003. - 100 с.
4. Стребков Д.С., Ковалев А.А. Биогазовые установки для обработки отходов животноводства. // Техника и оборудование для села – 2006. - №11. – С.28-30