Кремний и его соединения. Кремний – ведущий современный полупроводниковый материал, который широко применяется в электронике, в электротехнике для изготовления интегральных схем, диодов, транзисторов, тиристоров, фотоэлементов и т. д. Технический кремний – легирующий компонент в производстве стали (например, трансформаторная сталь), а также в цветной металлургии (кремневые бронзы). Природные соединения кремния обычно представляют собой производные не метакремниевой, а группы так называемых п о л и к р е м н е в ы х к и с л о т. Состав этих кислот в общем виде mSiO2. nH2O, где n и m целые числа. K природным силикатам относятся полевые шпаты, слюда, глины, асбест и др. Состав этих минералов сложен. Для удобства их часто условно выражают как соединения оксидов, например: Ортоклаз (минерал из группы полевых шпатов)…………………… K2 Al2Si6O16 = K2O. Al2O3. 6SiO2 Слюда (мусковит)………………………………KH2Al3(SiO4)3 или K2O. 3Al2O3. 6SiO2. 2H2O Каолин (белая глина)…………………………..H4Al2Si2O9=Al2O3. 2SiO3. 2H2O Асбест ………………………………………….H4Mg3Si2O9=3MgO. 2SiO2. 2H2O Наибольшее распространение в природе имеют силикаты, содержащие алюминий и называемые а л ю м о с и л и к а т а м и. Как показывают форумы приведенных выше минералов, к числу алюмосиликатов принадлежит слюда, ортоклаз и др. Моноксид кремния – вещество темно-коричневого цвета. При высокой температуре в результате самоокисления-самовосстановления распадается на Si и SiO2 (реакция диспропорционирования). Вообще же SiO легко окисляется до SiO2. Используя эту реакцию, искусственно получают тончайшие кварцевые прозрачные покрытия – при обработке препаратов для электронной микроскопии, для поверхностных покрытий алюминиевых зеркал. Если студень кремневой кислоты частично обезводить, то образуется твердая белая, очень пористая масса, обладающая большой адсорбционной способностью. Этот продукт под названием с и л и к а г е л я имеет разнообразное применение в промышленности: для улавливания газов, водяных паров, для отчистки нефти, керосина. Наконец, крупнопористый силикагель – незаменимый носитель для многих катализаторов. При полном высушивании и прокаливании кремневой кислоты образуется кремневый ангидрид SiO2. Кремневые кислоты с большой степенью конденсации сравнительно устойчивы. Но и выделять их в индивидуальном состоянии химики еще не научились. В быту и промышленности используется смесь этих кислот в виде силикатного клея. Если говорить точнее, силикатный клей – это калиевые или натриевые соли поликремневых кислот. Но так как эти кислоты слабые, а соли слабых кислот сильно гидролизуются, то фактически в растворе силикатного клея имеется смесь конденсированных кремниевых кислот. Нитрид кремния используется в качестве компонента жаростойких и химически устойчивых композиционных материалов. Оп нашел также применение в микроэлектронике в качестве диэлектрика и высокотемпературного полупроводника. Карбид кремния – абразивный материал для шлифованных кругов, матрица для порошковой металлургии, компонент для огнеупоров. К тому же, карбид кремния является основой полупроводниковых диодов и фотодиодов. Природные силикаты и алюмосиликаты являются сырьем для силикатной промышленности, которая в основном объединяет производства керамическое, цементное и стекольное. Производство силикатов. Керамическое производство. Сырьём для керамического производства служат различного рода глины. Глина – тонкодисперсная горная порода, состоящая в основном из глинистых минералов. Обычно в глинах содержится примесь кластического аллотигенного материала зерен кварца, полевых шпатов и других материалов, и аутигенного материала – карбонатов, сульфатов, гидроксидов железа и др. П.А. Земятчинский определял глины как горные породы, способные образовывать с водой пластичное тесто, сохраняющее по высыхании приданную ему форму, после обжига приобретающее твердость камня. Глины характеризуются рядом свойств, которые учитываются при их промышленном использовании: пластичностью, воздушной и огневой усадкой, пористостью, огнеупорностью, спеканием, гидроскопичностью и набуханием, адсорбционными свойствами, связующей способностью, вспучиванием, зыбкостью и гидрофильностью. С учетом свойств и состава глин, обусловливающих их использование, можно выделить следующие группы: 1) каолины, 2) огнеупорные и тугоплавкие глины, 3) высокосорбирующие глины (отбеливающие), 4) легкоплавкие глины. Каолины, точнее, первичные каолины, применяются большинством отраслей промышленности благодаря особенностям своего состава и набору свойств. Как правило, промышленностью используются обогащенные каолины, реже каолин-сырец. Обогащение каолинов проводится путем отмучивания, флотации, магнитной и электромагнитной сепараций и другими методами. Каолиновый концентрат в ряде случаев подвергается облагораживанию (путем обработки реактивами) для придания ему большей белизны. Попутные продукты обогащения каолина – кварц и полевые шпаты. Главные потребители обогащенного каолина – бумажная и керамическая промышленности, а также резиновая, мыловаренная, огнеупорная, химическая. В меньшей степени он используется в парфюмерно-косметической и кабельной отраслях промышленности, а также при изготовлении клеенки, пластмасс, минеральных красок, карандашей, в производстве силумина (сплав Al 87%, Si 13%) и др. Каолин-сырец используется в цементной промышленности, при производстве полукислых огнеупоров. Каолин также идет на изготовление фарфоровых изделий. Диоксид кремния - основа для получения кремния, производства обыкновенного и кварцевого стекла, а также необходимый компонент керамики и абразивных материалов. Фарфоровые изделия широко применяют в химической, электротехнической промышленности, в химических лабораториях (фарфоровые тигли, чашки, ступки, стаканы и т. д.). В химической промышленности фарфоровые изделия имеют большое значение вследствие их устойчивости против кислот, щелочей, и других химических реактивов, большой механической прочности, термической устойчивости и огнеупорности. В электротехнической промышленности фарфор применяют в качестве надежного изоляционного материала (фарфоровые изоляторы, «свечи» для автомобильных и авиационных моторов и т. д.). Наиболее распространена глина, окрашенная соединениями железа в желтый цвет. Из нее готовят строительные кирпичи, кислото- и огнеупорные изделия, дренажные трубы, кровельную черепицу, гончарные изделия и т.д. Цементное производство. В виде песка SiO2 – давно известный строительный материал. Сырьем в цементном производстве служит смесь глины с известняком. Применяют и природный мергель (глинистый известняк), если он по составу удовлетворяет требованиям цементного производства. Такие мергели имеются у нас, например, в районе Новороссийска При 1400-1500* масса спекается с образованием сложных силикатов. Выходящий из печи спекшийся материал называют к л и н к е р о м. Разломный клинкер упаковывают в бочки или мешки. Готовый продукт представляет собой тонкий серо-зеленый порошок. Основная масс цемента состоит из сложных химических соединений кальция, магния, кремния, алюминия и железа. Состав этих веществ, представленных в виде соединений оксидов, следующий: 3CaO. SiO2, 2CaO.SiO2, 3CaO.Al2O3, 2CaO.Fe2O3. Кроме того, в цементе всегда в переменных количествах содержатся различные примеси. Основной химический процесс при производстве цемента - спекание при 1200 - 1300 оС смеси глины с известняком, приводящий к образованию силикатов и алюминатов кальция: t Al2O3. 2SiO2 . 2H2O = Al2O3 . 2SiO2 + 2H2 O CaCO3 = CaO + CO2h CaO + SiO2 = CaSiO3 3CaO + Al2O3 = 3CaO.Al2O3 При смешивании с водой происходит постепенная гидратация: 3CaO . Al2O3 . 6H2 O = 3CaO . Al2O3 + 6H2 O Если при замешивании цементной массы ввести в нее щебень, гравий и тому подобные материалы, то получится б е т о н. Если же бетоном прикрывают какую-либо основу (каркас) из железных прутьев, проволоки, стержней и т.д., то подобные конструкции называют ж е л е з о б е т о н о м. Железо и бетон хорошо сцепляются между собой, образуя прочную массу, не разрушающуюся при обычных изменениях температуры (коэффициенты объемного расширения железа и бетона почти одинаковы). Железобетон отличается механической прочностью, большим сопротивлению сжатию и разрыву (сам цемент хорошо выдерживает сжатие, но очень слаб на растяжение). Композиция из цемента и асбеста (асбоцемент) – ценный материал для кровель. Асбоцементные крыши отличаются долголетием. Бетон хорошо задерживает радиоактивные излучения и применяется для защиты от них. Цемент относится к числу так называемых вяжущих материалов. Это материалы, способные из жидкого или тестообразного состояния переходить в твердое, камневидное при обычной температуре. Вяжущие вещества разделяют на органические (смолы, клеи и др.) и минеральные (цемент, известь и др.). Минеральные вяжущие вещества, в свою очередь, подразделяют на в о з д у ш н ы е г и д р а в л и т и ч е с к и е. К воздушным вяжущим материалам перечисляют те из них, которые твердеют на воздухе. Сюда относят известь, алебастр, гипс, магнезиальный цемент и др. Гидравлические вяжущие вещества могут твердеть и сохранять свою прочность, как и на воздухе, так и в воде. Сюда принадлежит цемент. Стекольное производство. Сырьем в стекольном производстве служат кремнезем SiO2 и силикаты щелочных и щелочноземельных металлов. Состав стекла в общем виде может быть представлен формулой: xЭ2О.уЭО.zSiO2, где Э2О – окисел щелочного металла (Na2O, K2O, Li2O и др.); ЭО - окисел щелочноземельного металла (СаО, MgO, BaO) и SiO2 –
Заключение. Нетрудно понять, что в будущем применение силикатов станет еще большим. Металлов в земной коре не так уж много. Углерод, который служит основой органических полимеров и пластмасс, составляет всего лишь 0,1% земной коры по массе. Производство древесины ограничено скоростью прироста леса. А использование силикатов практически не ограничено ничем. По силикатному сырью, можно сказать, мы ходим. Правда имеется существенный недостаток у силикатных изделий. Они обладают большой хрупкостью, но этот недостаток в принципе преодолим. Ведь изобрели же японцы небьющийся фарфор. А на сковородках из мелкокристаллического стекла – ситалла еще двадцать лет назад жарили картошку. Прочность таких сковородок близка к чугунным, и бьются они значительно меньше, чем обычное стекло. Впрочем, о силикатах можно говорить бесконечно. Сведений о них так много, что химия силикатов давно выделилась в большую самостоятельную отрасль химического знания.
ЛИТЕРАТУРА: 1. «Большая Советская Энциклопедия» Издательство «Советская Энциклопедия». Москва 1976 г. 2. «Общая химия» А.Г. Кульман Издательство «Колос». Москва 1968 г. 3. «Неорганическая химия» Пособие для абитуриентов и старшеклассников Издательство «Московский Лицей». Москва 1996 г. 4. «Кислоты – основания» Б.В. Мартыненко Издательство «Просвещение». Москва 1988г. 5. «Химия» Справочные материалы Издательство «Просвещение». Москва 1989 г. 6. «Поделочные камни и их обработка» Ю.В. Никитин Издательство «Наука». Ленинград 1979 г. 7. «Полезные ископаемы» Издательство «Недра». Москва 1982