РефератыХимияИсИсследования химии в 20-21 веках

Исследования химии в 20-21 веках

Содержание

Введение. 2


1. Управление химическими процессами.. 4


2. ОБРАЗОВАНИЕ ЗЕМНЫХ И ВНЕЗЕМНЫХ ВЕЩЕСТВ.. 7


3. новые ХИМИЧЕСКИе ЭЛЕМЕНТы.. 10


3.1 Получение новых химических элементов. 10


3.2 Радиоактивные изотопы и их применение. 12


4. ПЕРСПЕКТИВНЫЕ ХИМИЧЕСКИЕ ПРОЦЕССЫ.. 15


4.1 Плазмохимические процессы.. 15


4.2 Самораспространяющийся высокотемпературный синтез. 16


4.3 Химические реакции при высоких давлениях. 17


4.4 Синтез алмазов. 18


5. СОВРЕМЕННЫЕ СИНТЕТИЧЕСКИЕ МАТЕРИАЛЫ.. 21


6. ПЕРСПЕКТИВНЫЕ МАТЕРИАЛЫ.. 26


6.1 Сверхпрочные материалы.. 26


6.2 Материалы, содержащие редкие металлы.. 27


6.3 Термостойкие материалы.. 29


6.3.1 Нитинол. 30


6.3.2 Жидкие кристаллы.. 31


6.3.3 Оптические материалы.. 32


6.4 Материалы диссоциации металлоорганических соединений. 33


6.5 Тонкопленочные материалы для накопителей информации. 35


7. ВАЖНЕЙШИЕ ОТКРЫТИЯ В ХИМИИ XXI ВЕКА.. 37


Заключение. 40


Библиография.. 43


Введение
На рубеже тысячелетий в каждой из главных областей естествознания – биологии, физике, химии - произошли и происходят одинаково важные, капитальные, но притом различные метаморфозы.
Бурно развиваются новые представления (супрамолекулярная химия, нанотехнологии, фемтохимия). Фантастическими следует назвать достижения биохимии. Все шире внедряются представления о химическом веществе как о микрогетерогенной среде, и это играет огромную роль в химии материалов. Огромное значение имеют успехи квантовой химии, однако и классическая механика широко используется при описании и интерпретации химических процессов. И по-прежнему незыблемой основой очень многих разделов химии остаются структурные формулы и стереохимические представления, сложившиеся в конце 19-го века.
Основная метаморфоза, которую претерпела химия в 20-м столетии, заключается в том, что из "экспериментальной науки о веществах и их превращениях" она превратилась в систему представлений, методов, знаний и теоретических концепций, направленных на изучение атомно-молекулярных систем (АМС). При этом основным средством описания, интерпретации, прогноза и использования АМС стала структура. Не будет большим преувеличением назвать всю современную химию структурной.[1]
В результате химия встала перед капитальной проблемой: возникла необходимость на новом уровне согласовать классическую физикохимию (термодинамику и кинетику) с быстро прогрессирующими структурными представлениями, со стремительно увеличивающейся в объеме структурной информацией.
Структура - это сложное многоуровневое понятие, существующее в форме ряда различных приближений, и нужно пользоваться им так, чтобы в каждом конкретном случае была ясна сущность и степень достоверности подразумевающейся модели.

Внедрение структурных представлений преобразило многие аспекты деятельности химиков и используемые ими фундаментальные понятия. Радикально видоизменилось, например, содержание таких центральных понятий классической химии, как "химическое вещество" и "химическое соединение". Изменились смысл и форма двух первооснов, на которых зиждется химия, - эксперимента и теории (речь идет о тех экспериментах и теоретических концепциях, которые доминируют в современной химии). В частности это связано с быстрым развитием компьютерного моделирования, что привело к появлению нового типа научной гипотезы.


1.
УПРАВЛЕНИЕ ХИМИЧЕСКИМИ ПРОЦЕССАМИ

Современная наука о химических процессах включает фундаментальные знания многих отраслей естествознания и, прежде всего, физики, химии, биологии и др. Стремление ученых - создать лаборатории живого организма для воспроизведения химических процессов в биологических системах свидетельствует о необходимости применения взаимосвязанных знаний разных естественно - научных отраслей.


Лауреат Нобелевской премии по химии 1956г., выдающийся химик Н.Н. Семенов (1896-1986), создавший общую теорию цепных реакций и основавший химическую физику, считал себя физиком. Он полагал, что химический процесс нельзя рассматривать без восхождения от таких простых объектов, как электрон, нуклон, атом и молекула, к живой биологической системе, ибо любая клетка любого организма представляет собой, по существу, сложный химический реактор. В этой связи химический процесс - это мост между физическим и биохимическим объектами.


Одно из важнейших направлений учения о свойствах вещества - создание методов управления химическими процессами. Успехи в развитии современной химии во многом определяются эффективностью управления химическими превращениями, повышению которой способствует внедрение новых экспериментальных методов с применением современных технических средств контроля и анализа сложных молекулярных структур. Химическое превращение начинается со смешивания реагентов и заканчивается образованием конечных продуктов. В большинстве случаев оно включает ряд промежуточных стадий, и для полного понимания механизма реакции нужны сведения о свойствах промежуточных веществ, образующихся на каждой стадии, протекающей, как правило, очень быстро. Если 20-30 лет назад технические средства эксперимента позволяли проследить за промежуточными молекулами со временем жизни около одной миллионной доли секунды, то современные лазерные источники излучения существенно расширили временной диапазон исследований от 10-6
до 10-15
с.


При взаимодействии двух химических соединений образование продуктов реакции определяется статистической вероятностью, зависящей от исходного энергетического состояния, возбуждения и взаимной ориентации молекул при столкновениях. Современная вакуумная техника открывает новые возможности для взаимодействия реагирующих соединений при столкновении молекул. В глубоком вакууме, где длина свободного пробега молекул велика, столкновение молекул может происходить в сравнительно небольшом объеме, составляющем зону перекрытия двух молекулярных пучков реагирующих соединений, в которой возрастает вероятность участия каждой молекулы не более чем в одном столкновении, приводящем к реакции. Это означает, что появилась реальная возможность для изучения тонких процессов и управления химическими превращениями.


Определение характеристик атомных и молекулярных частиц (их структуры и состава) в аналитической химии называют качественным анализом, а измерение их относительного содержания - количественным анализом. Новые методы качественного и количественного анализа основываются на последних достижениях различных отраслей естествознания и в первую очередь физики. Методы аналитической химии широко применяются в разных отраслях химии, в медицине, сельском хозяйстве, геологии, экологии и т.п.


Для количественного анализа исследуемые сложные, смеси и соединения делятся на компоненты. Для этого применяется универсальный метод - хроматография. Этот метод впервые предложил российский ученый М.С. Цвет (1872-1919). Его сущность заключается в том, что различные вещества в жидкой или газообразной фазе обладают разной прочностью связи с поверхностью, с которой они находятся в контакте. С помощью хроматографии можно разделить и зафиксировать чрезвычайно малое количество вещества в смеси - около 10-12
г. Кроме того, хроматография позволяет разделить многокомпонентные газообразные смеси, содержащие вещества разного изотопного состава.


Для анализа и идентификации структуры сложных молекул, объединяющих большое количество атомов с различными взаимными связями, широко применяются основанные на физических принципах экспериментальные методы ядерного магнитного резонанса, оптической спектроскопии, масс-спектроскопии, рентгеноструктурного анализа, нейтронографии и т.п.


В управлении химическими процессами важную роль играют предварительные расчеты, позволяющие определить свойства синтезируемых молекул. Еще в первой половине XXвека с развитием квантовой теории появилась возможность рассчитывать взаимодействие электронов и атомных ядер при химических реакциях. Однако на практике такие расчеты долго оставались недостижимыми: уж слишком сложны уравнения квантовой механики для комплексных объектов - молекул и даже атомов с множеством движущихся электронов. Решение подобной задачи стало возможным при учете электронной плотности, а не движения отдельных электронов в молекуле или атоме. Такой подход позволяет рассчитывать свойство и структуру даже весьма сложных молекул, например белковых. За решение данной задачи квантовой химии австрийский физик Вальтер Кон и английский математик и физик Джон Попл (оба ученых работают в США) удостоены в 1998г. Нобелевской премии по химии.


2.
ОБРАЗОВАНИЕ ЗЕМНЫХ И ВНЕЗЕМНЫХ ВЕЩЕСТВ

Геохимические процессы в недрах Земли и на ее поверхности, представляют собой превращения сложных соединений и смесей, состоящих из кристаллических и аморфных фаз. Многие из них протекают при очень высоких давлениях и температурах. Современные технические средства эксперимента позволяют воспроизвести в лаборатории условия, близкие к условиям внутри Земли и даже земного ядра. Природные процессы: кристаллизация, частичное растворение, изменение структуры минералов (метаморфизм), выветривание и т.п. - приводят к образованию рудных отложений или к их разрушению и рассеянию.


Большой интерес представляют метеориты: они дают необходимую информацию об эволюции небесных тел, находящихся на разных стадиях развития. При этом важную роль играет анализ изотопного состава многих металлов и газообразных веществ, найденных в метеоритах.


Химия внесла и вносит существенный вклад в исследование космического пространства. Без ракетного топлива и современных материалов, способных выдержать огромное давление, высокую температуру и интенсивное космическое излучение, без электрохимических источников энергии, без разнообразных химических средств для обеспечения питания космонавтов мы сегодня смотрели бы на Луну из нашего прекрасного далека. Космос с давних пор стал объектом химических исследований. На стыке химии и астрофизики зародилась новая отрасль естествознания - космохимия, изучающая состав космических тел, законы распространенности элементов во Вселенной и т.д.


Первые данные о химическом составе небесных тел получены с помощью спектрального анализа. В химических лабораториях, кроме того, исследовался состав метеоритного вещества. Состав метеоритов оказался единообразным, как если бы они происходили из одного и того же рудника. До сих пор ни в одном метеорите не найден химический элемент, который не встречался бы на Земле. С помощью самых точных методов анализа в метеоритах обнаружены почти все известные на нашей планете химические элементы. Характерная особенность большинства метеоритов заключается в том, что они содержат много чистого железа и очень мало наиболее распространенного на Земле кварца. Вещества, которые указывали бы на существование жизни в космосе, пока не найдены, хотя углерод обнаружен в виде крошечных алмазов, графита и аморфного угля. Относительно недавно появилось сообщение об обнаружении бактериоподобной структуры в метеорите с Марса, что является предметом дальнейшей дискуссии о существовании жизни на этой планете в далеком прошлом.[2]


Наиболее часто встречающиеся каменные метеориты, как и большинство земных пород, состоят в основном из силиката магния. Железные метеориты содержат до 90% железа. Содержание никеля в них составляет 6-20%. Кроме того, метеориты содержат кобальт, медь, хром, фосфор, серу, платину, палладий, серебро, иридий, золото и другие элементы. Встречаются включения газов: водорода, оксида и диоксида углерода.


Прямая геологическая разведка небесных тел началась 21 июля 1969 г., когда человек впервые ступил на поверхность Луны и взял пробы лунного грунта. Через год с небольшим прилунилась первая автоматическая станция «Луна-16», возвратившаяся на Землю с образцами лунной породы. Немного позднее, в ноябре 1970 г., на Луну доставлена советская автоматическая станция «Луноход-1», которая, начав свое движение по Луне с северо-западного Моря дождей, обследовала за 321 сутки около 50 га лунной поверхности. Обследования проводились и днем, и ночью при температурах от -140 до 130 °С. Результаты анализа показали, что за исключением несколько повышенного содержания тугоплавких соединений титана, циркония, хрома и железа, лунные породы по своему составу очень похожи на земные. Некоторые различия выявились в свойствах. Так, лунное железо ржавеет медленнее, чем земное. В верхнем слое лунного грунта обнаружен удивительный минерал, получивший название реголит. Он имеет сравнительно низкую теплопроводность.


Продолжается исследование планет Солнечной системы. С помощью космического зонда, отправленного к Венере, в результате гамма - спектрального анализа установлено, что грунт Венеры по химическому составу соответствует граниту.


Вещество, находящееся в межзвездном пространстве, состоит из газа и пыли. Наиболее распространенными газами в космическом пространстве являются водород (70 масс. %) и гелий (28 масс. %). В газовых межзвездных облаках обнаружено более 20 химических компонентов. Наряду с простыми химическими соединениями (СО, Н2
, HCN, H20,1ЧНз) в 200 космических газовых скоплениях найдены и более сложные соединения - метанол, изоциановая кислота, формамид, формальдегид, метилацетилен и ацетальдегид. Относительно недавно обнаружены молекулы этилового спирта, муравьиной кислоты и других соединений.


Исследования космохимии носят преимущественно познавательный характер, но нельзя исключать, что в будущем они обретут практическую значимость. Были получены некоторые важные для практики результаты. Для химико-фармацевтической промышленности представляет практический интерес более интенсивное развитие бактериальных культур в невесомости, чем на Земле. Металлурги могут получить в невесомости сплавы с уникальными свойствами. Весьма перспективно выращивание в космосе бездефектных монокристаллов, особенно оксидов металлов.


3. новые ХИМИЧЕСКИе ЭЛЕМЕНТы
3.1 Получение новых химических элементов

Вещественная среда обитания людей содержит многочисленные соединения и их составляющие - химические элементы. Еще до 30-х годов XX века Периодическая система Менделеева состояла из 88 элементов. С учетом свободных клеток с номерами 43 (технеций), 61 (прометий), 85 (астат) и 87 (франций) в ней было всего 92 места. Последним элементом с атомным номером 92 был уран.


Предполагается, что на первой стадии развития Земли существовали и трансурановые элементы с порядковыми номерами до 106. Однако из-за небольшой продолжительности жизни по сравнению с возрастом Земли они полностью распались. Самым долгоживущим элементом из них оказался плутоний-244 с периодом полураспада 82,2 млн. лет, и его существование в настоящее время доказано: он обнаружен в 1971г. в калифорнийском минерале бастнезите.


В 1940г. получен первый трансурановый элемент - нептуний, а за три года до этого получен первый искусственный элемент - технеций. Затем в лабораторных условиях зарегистрированы трансурановые элементы с атомными номерами до 109. В Объединенном институте ядерных исследований в Дубне открыты элементы с номерами 104(1964), 105(1970), 106(1974) и 107(1976).


Международный союз чистой и прикладной химии в сентябре 1997г. узаконил названия искусственных сверхтяжелых элементов: резерфордий (104), дубний (105), сиборгий (106), борий (107), хассий (108) и мейтнерий (109). Эти названия даны главным образом в честь ученых, внесших значительный вклад в ядерную физику. Один из них - дубний - назван в честь города Дубна, где были открыты многие новые химические элементы. В феврале 1999г. появилось сообщение: ученые из Объединенного института ядерных исследований в Дубне открыли выходящий за пределы Периодической системы Менделеева новый химический элемент с периодом полураспада намного большим, чем у открытых в последнее время сверхтяжелых элементов.


Трансурановые элементы с атомными номерами до 100 можно получить в ядерном реакторе путем «надстройки» ядер изотопа урана-238 при сталкивании их с нейтронами. Все элементы с номерами выше 100 и массовыми числами более 257 получают только в ускорителях и в незначительных количествах. Для получения сверхтяжелых трансуранидов ядра урана бомбардируются ионами ксенона, гадолиния, самария, урана и др., которые обладают достаточно высокой энергией. Особенно эффективна бомбардировка ионами самого урана, в результате которой образуются тяжелые промежуточные ядра.


В стабильных атомных ядрах заряженные и нейтральные частицы находятся в равновесном состоянии. С нарушением равновесия ядерная система становится неустойчивой. Современная теория позволяет рассчитать условия стабильности сверхтяжелых ионов и элементов, а также предсказать наиболее вероятные их физические и химические свойства. Из подобных расчетов следует, что элементы с атомными номерами, близкими к 114 и 164, должны обладать неожиданно высокой стабильностью. Такие элементы образуют своеобразные острова стабильности, где возможно существование изотопов с периодом полураспада до 10 лет.


Предполагается, что свойства элементов с атомными номерами 112-118 аналогичны свойствам элементов в ряду ртуть - радон. Верхняя граница возможной стабильности, насколько ее позволяет определить современный уровень естественно - научных знаний, приближается к атомному номеру 174. Для синтеза подобного рода элементов нужны новые технические средства эксперимента.


3.2 Радиоактивные изотопы и их применение

Изотопы - разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов, и поэтому занимают одно и то же место в Периодической системе элементов Менделеева. Различают устойчивые (стабильные) и радиоактивные изотопы. Термин «изотопы» впервые предложил в 1910г. Фредерик Содди (1877-1956), известный английский радиохимик, лауреат Нобелевской премии 1921г., экспериментально доказавший образование радия из урана.


Радиоактивные изотопы широко применяются не только в атомной энергетике, но и в разнообразных приборах и аппаратуре для определения плотности, однородности вещества, его гигроскопичности и т.п. С помощью радиоактивных индикаторов можно проследить за перемещением химических соединений в физических, технологических, биологических и химических процессах, для чего в исследуемый объект вводят радиоактивные индикаторы (меченые атомы) определенных элементов и затем наблюдают за их движением. Этот способ позволяет исследовать механизмы реакций при превращениях веществ в сложных условиях, например при высокой температуре, в доменной печи или в агрессивной среде химического реактора, а также изучать процессы обмена веществ в живых организмах. Изотоп кислорода-18 помогает выяснить механизм дыхания живых организмов.


Радиоактивный метод анализа вещества дает возможность определить содержание в нем различных металлов от кальция до цинка, в чрезвычайно малых концентрациях - до 1-10
г. (при этом требуется всего лишь 10-12
г. вещества). Радиоактивные препараты широко используются в медицинской практике для лечения многих заболеваний, в том числе и злокачественных опухолей. Изотопы плутония-238, кюрия-224 применяются для производства батарей небольшой мощности для стабилизаторов ритма сердца. Для их непрерывной работы в течение 10 лет достаточно всего 150-200 мг плутония (обычные батареи служат до четырех лет).


В результате радиационно-химических реакций из кислорода образуется озон, из газообразных парафинов - водород и сложные соединения низкомолекулярных олефинов. Облучение полиэтилена, поливинилхлорида и других полимеров приводит к повышению их термостойкости и прочности. Можно привести множество примеров практического применения изотопов и радиоактивного излучения. Несмотря на это, отношение людей к радиации, особенно в последние десятилетия, резко изменилось. За примерно столетнюю историю радиоактивные источники прошли долгий путь от эликсира жизни до символа зла.[3]


После открытия рентгеновских лучей многие верили, что с помощью радиации можно вылечить все болезни и решить все проблемы. В то время люди не хотели видеть опасности радиоактивного облучения. Когда в 1895 г. Вильгельм Рентген (1845-1923) обнаружил новый вид облучения, волна восторга охватила весь цивилизованный мир. Открытие не только поколебало основы классической физики. Оно обещало неограниченные возможности - в медицине его тут же стали применять для диагностики, чуть позже - для лечения самых различных заболеваний. Рентгенодиагностика и рентгенотерапия спасли жизнь многим людям. Врачи, правда, через некоторое время стали ограничивать допустимое число рентгеновских снимков для одного пациента, но никто всерьез не обращал внимания на ожоги, возникающие после рентгена. Французский физик А. Беккерель, например, имел привычку носить в кармане брюк радиевый прибор. Через некоторое время он заметил воспаление на ноге. Чтобы убедиться, что прибор послужил причиной болезни, он переложил его в другой карман. Но даже появившаяся на другой ноге язва не смогла отрезвить ученого, находящегося, как и остальные, в эйфории от нового открытия. Радиоактивное излучение в то время рассматривали как универсальное целительное средство, эликсир жизни. Радий оказался эффективен при лечении доброкачественных опухолей, и «популярность» его резко возросла. В свободной продаже появились радиевые подушки, радиоактивная зубная паста и косметика.


Однако вскоре появились первые тревожные сигналы. В 1911г. было обнаружено, что берлинские врачи, имеющие дело с радиацией, часто заболевают лейкемией. Позднее немецкий физик Макс фон Лауэ (1879-1960) экспериментально доказал, что радиоактивное излучение неблагоприятно влияет на живые организмы, а в 1925-1927 гг. стало известно, что под воздействием излучения возникают изменения наследственного вещества - мутации.


Полное отрезвление наступило после атомной бомбардировки Хиросимы и Нагасаки. Почти все оставшиеся в живых после ядерного взрыва получили большую дозу облучения и умерли от рака, а их дети унаследовали некоторые генетические нарушения, вызванные радиацией. Впервые об этом стали открыто говорить в 1950г., когда число больных лейкемией среди пострадавших от атомных взрывов стало катастрофически расти. После Чернобыльской аварии недоверие к радиации переросло в настоящую ядерную истерию.


Таким образом, если в начале XX в. люди упорно не хотели видеть вреда от облучения, то в конце его - стали бояться радиации даже тогда, когда она не представляет реальной опасности. Причина обоих явлений одна - человеческое невежество. Можно только надеяться, что в будущем человек научится придерживаться золотой середины и обращать знания о природных явлениях себе во благо.


4. ПЕРСПЕКТИВНЫЕ ХИМИЧЕСКИЕ ПРОЦЕССЫ
4.1 Плазмохимические процессы

Плазмохимические процессы протекают в слабоионизированной, или низкотемпературной, плазме при температуре от 1000 до 10000°С. Ионизированные и неионизированные частицы плазмы, находящиеся в возбужденном состоянии, в результате столкновений легко вступают в химическую реакцию. Производительность метанового плазмохимического реактора - плазмотрона сравнительно небольших размеров (длиной 65 см и диаметром 15 см) - составляет 75 т ацетилена в сутки. По производительности он не уступает огромному заводу. В нем при температуре 3000-3500 °С за 0,0001с около 80% метана превращается в ацетилен. Коэффициент полезного потребления энергии - 90-95 %, а энергозатраты - менее 3 кВт/ч на 1 кг ацетилена. В то же время в традиционном паровом реакторе пиролиза метана энергозатраты вдвое больше.


В последнее время разработан эффективный способ связывания атмосферного азота посредством плазмохимического синтеза оксида азота, который гораздо экономичнее традиционного аммиачного способа. Создана плазмохимическая технология производства мелкодисперсных порошков - основного сырья для порошковой металлургии. Разработаны плазмохимические методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден, при сравнительно небольших энергозатратах - 1-2 кВт/ч на 1 кг готовой продукции.


В 70-х годах XX в. созданы плазмохимические сталеплавильные печи, производящие высококачественный металл. Ионно-плазменная обработка рабочей поверхности инструментов позволяет повысить их износостойкость в несколько раз. В результате подобной обработки можно сформировать, например, пористый рельеф на ровной поверхности.


Ионно-плазменное напыление в вакууме широко применяется для формирования элементов современных интегральных схем.


Методом плазменного напыления можно нанести пористое покрытие со сложной микроструктурой, способствующее срастанию эндо - протеза с костной тканью. С помощью пористых покрытий можно увеличить эффективность катализатора, повысить коэффициент теплоотдачи и т.д.


Плазмохимия позволяет синтезировать металлобетон, в котором в качестве связующих материалов используют сталь, чугун и алюминий. Металлобетон образуется при сплавлении частиц горной породы с металлом и по прочности превосходит обычный бетон: на сжатие - в 10 раз и на растяжение - в 100 раз. В нашей стране разработан плазмохимический способ превращения угля в жидкое топливо без применения высоких давлений и выброса золы и серы. Кроме основного химического продукта - синтез газа, извлекаемого из органических соединений каменного или бурого угля, этот способ позволяет получить из неорганических включений угля ценные соединения: технический кремний, карбосилиций, ферросилиций, адсорбенты для очистки воды и т.п., - которые при других способах переработки угля выбрасываются в виде зольных отходов.


4.2 Самораспространяющийся высокотемпературный синтез

Для производства многих тугоплавких и керамических материалов применяется технология порошковой металлургии, включающая операции прессования при высоком давлении и спекания полученной заготовки при относительно высокой температуре 1200-2000 °С. Однако эта технология довольно энергоемкая: создание высоких температур и давления требует больших энергозатрат. Гораздо проще и экономичнее предложенная сравнительно недавно технология самораспространяющегося высокотемпературного синтеза, основанная на реакции горения одного металла в другом или металла в азоте, углероде, кремнии и т.п., т.е. теплового процесса горения в твердых телах.


Самораспространяющийся высокотемпературный синтез не требует трудоемких процессов и громоздких печей и отличается высокой технологичностью. Он легко поддается автоматизации. Промышленной установкой, производящей многотоннажную продукцию, может управлять всего лишь один оператор.


4.3 Химические реакции при высоких давлениях

Химические превращения веществ при давлениях выше 100 атм. относятся к химии высоких давлений, а при давлениях выше 1000 атм. - химии сверхвысоких давлений. Идея активизации химических реакций при повышении давления возникла сравнительно давно: еще в 1917 г. аммиак производился при давлении 300 атм. и температуре 600 °С.


В последнее время во многих промышленных установках давление достигает не менее 5000 атм. Проводятся испытания при давлении выше 600000 атм., которое создается ударной волной при обычном взрыве. Ядерные взрывы сопровождаются более высоким давлением.


Высокое давление ведет к существенному изменению физических и химических свойств вещества. Например, сталь при давлении 12000 атм. становится ковкой и гибкой, а при 20000 атм. металл эластичен, как каучук. При давлении 400000 атм. диэлектрическая сера приобретает электропроводящие свойства. При высоких температурах и давлениях обычная вода химически активна, и растворимость солей в ней повышается в 3-4 раза. При сверхвысоком давлении многие вещества переходят в металлическое состояние. Таким необычным свойством обладает даже газообразный водород - его металлическое состояние наблюдалось в 1973 г. при давлении 2,8 млн. атм. С применением твердого водорода в качестве ракетного топлива полезный груз космического корабля увеличивается с 10 до 60%.


4.4 Синтез алмазов

Одно из важнейших достижений химии сверхвысоких давлений - синтез алмазов. Первые искусственные алмазы синтезированы в 1954 г. (после длительной, пятидесятилетней поисковой работы) почти одновременно в США и Швеции. Синтез осуществлялся при давлении 50 000 атм. и температуре 2000 °С. Такие алмазы стоили в 30 раз дороже природных, но уже к началу 60-х годов XX в. их стоимость существенно снизилась. В последние десятилетия ежегодно производятся тонны синтетических алмазов, по своим свойствам незначительно отличающихся от природных. Различия между синтетическими и природными алмазами можно определить только с помощью точных физических приборов. Доля искусственных алмазов на мировом рынке превышает 75% от объема всей алмазной продукции.


В недалеком прошлом по производству и потреблению алмазов первое место в мире занимал бывший СССР. Более 8000 предприятий в нашей стране пользовались алмазным инструментом, причем производилось более 2500 видов таких инструментов - от крошечных волочильных устройств до громадных режущих дисков для разрезания крупных каменных блоков.


Промышленный синтез алмазов основан на превращении графита в реакторе высокого давления при наличии различных катализаторов: металлического никеля, сложной смеси железа, никеля и хрома, и др. Кристаллизация алмазов происходит при давлении 50000 - 60000 атм. и температуре 1400- 1600 °С.


Обычно в реакторах высокого давления образуются алмазные кристаллы размером не более 1 мм. Такие мелкие камни вполне пригодны для промышленных целей, но из них трудно изготовить украшения. Сравнительно недавно разработана новая технология, позволяющая выращивать кристаллы алмаза размером до 6 мм. Однако синтез алмазов, которые можно было бы превратить в крупные бриллианты, так сложен и дорог, что синтезированные бриллианты не могут конкурировать с природными: кристалл искусственного алмаза массой 50 - 60 г (250 - 300 карат) стоит столько же, сколько 1 т золота.


Искусственные алмазы используются преимущественно для промышленных целей. Структура молекулы и буровое оборудование с алмазными кристаллами оказались незаменимыми во многих отраслях промышленности. Алмазная технология позволяет повысить производительность труда на 30 - 50, а в некоторых случаях и на 100%. Искусственные алмазы находят применение при изготовлении часов, прецизионных приборов. Ими режут и обрабатывают твердые металлы, керамику, стекло и т.д. С их помощью изготовляют тончайшую проволоку.


Синтезирована особая разновидность черных алмазов, называемая карбонадо, которая тверже алмазов, встречающихся в природе. Синтез карбонадо основан на методе порошковой металлургии (прессование алмазного порошка производится при давлении 30 - 80 тыс. атм., а его спекание - при 1000 °С). Карбонадо позволяет обрабатывать сами алмазы, из него изготавливают сверхтвердые буровые коронки.


По своей структуре алмаз отличается от графита более плотной упаковкой атомов углерода в кристалле. В 1985 г. были синтезированы фуллерены - новая разновидность многоатомных молекул углерода, состоящая из большого числа (от 32 до 90) атомов углерода и имеющая сферическую форму. Дальнейшие работы привели к созданию не только сферических молекул, но и эллипсоидальных (барелленов), трубчатых (тубеленов) и других конфигураций. Из таких молекул можно создавать материалы невиданной прочности, элементы компьютеров XXI в., молекулярные сита и т.п.


Несмотря на рост производства искусственных алмазов и их широкое применение, обычные твердые материалы в виде различных карбидов металлов не утратили своей практической значимости. Хотя карбиды металлов менее тверды, чем алмазы, зато они более термостойки. Сравнительно недавно из нитрида бора синтезирован материал, который тверже алмаза. При давлении 100 000 атм. и температуре 2000 °С нитрид бора превращается в боразон - материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.


К настоящему времени налажено промышленное производство не только искусственных алмазов, но и других драгоценных камней: корунда (красного рубина и синего сапфира), изумруда и др.


5. СОВРЕМЕННЫЕ синтетические МАТЕРИАЛЫ

Из материалов изготавливаются различные изделия: устройства, машины и самолеты, мосты и здания, космические аппараты и микроэлектронные схемы, ускорители заряженных частиц и атомные реакторы, одежда, обувь и др. Для каждого изделия нужны свои материалы с вполне определенными свойствами, к которым предъявляются высокие требования.


Пластмассы - это материалы на основе природных или синтетических полимеров, способные принимать заданную форму при нагревании под давлением и устойчиво сохранять ее после охлаждения. Помимо полимера пластмассы содержат наполнители, стабилизаторы, пигменты и другие компоненты. Пластмассы различаются по эксплуатационным свойствам (например, антифрикционные, атмосфере-, термо- или огнестойкие), виду наполнителя (стеклопластики, графитопласты и др.), а также по типу полимера (аминопласты, белковые пластики и т.п.). В зависимости от характера превращений, происходящих в полимере при формовании изделий, пластмассы подразделяются на термопласты (важнейшие из них создаются на основе полиэтилена, поливинилхлорида, полистирола) и реактопласты (наиболее крупнотоннажный вид из них - фенопласты). Основные методы переработки термопластов - литье под давлением, вакуумформование, пневмоформование и др. Реактопласты формуются прессованием и литьем под давлением.


В 1980 г. американские ученые впервые обнаружили природную полиэфирную пластмассу в гнездах пчел, живущих в земле.


Массовое производство пластмасс началось во второй половине XX в. В 1900 г. мировое производство пластмасс составило около 20 тыс. т, а в 1970 г. - уже 38 млн. т. В настоящее время объем производства пластмасс сравним с объемом выпуска стали - сотни миллионов тонн в год.


Наиболее перспективны материалы с высокой термостойкостью: полифениленсульфид, ароматические полиамиды, фторполимеры и др. Они выдерживают относительно высокую температуру - 200-450 °С и используются в авиационной и ракетной технике.


Полимерные материалы широко применяются в строительной индустрии для изготовления рам, облицовочных плит, кровли и т.д. За более чем столетнюю историю развития автомобилестроения пластмассы постепенно вытесняют металл. Предполагается, что в ближайшем десятилетии на изготовление одного легкового автомобиля потребуется сотни килограммов пластмасс: полиэтилена, поливинилхлорида, полипропилена и др., тогда как в 1965 г. на один легковой автомобиль приходилось лишь 15 кг полимерных материалов. Уже производят легковые автомобили с полностью пластмассовым кузовом и со многими др

угими деталями, даже с теми, которые несут высокую механическую нагрузку.


Эластомеры - еще одна разновидность полимерных материалов. К ним относится прежде всего каучук, из которого производится широко распространенная резина, обладающая отличительным свойством - эластичностью. Такое свойство объединяет многие эластичные материалы в одну группу эластомеров. Долгое время был известен только один вид эластичного материала - природный каучук. Он до сих пор добывается из каучукового дерева - бразильской гевеи - таким же способом, как и смола в хвойных лесах, - путем подсечки.


Химия завладела каучуком еще в первой половине XIX в. - в 1841 г. американский изобретатель Гудьир предложил способ вулканизации. Хрупкий при низкой температуре и липкий при нагревании сырой каучук при вулканизации переходит в эластичное состояние. При этом его макромолекулярные цепи образуют сетчатую структуру, соединяясь мостиками из атомов серы. В 1932 г. под руководством нашего соотечественника, выдающегося химика академика С.В. Лебедева (1874 - 1934) разработан первый в мире промышленный способ получения синтетического каучука.


Статистика мирового производства каучука начинается с 1850 г., когда его было добыто около 1500 т. В 1900 г. бразильские леса давали уже 53 900 т каучука. В том же году появился каучук из деревьев, выращенных на плантациях. В последние годы большая часть натурального каучука добывается на крупных плантациях Индокитая. В 1970 г. потребление каучука в мире составило 7,8 млн. т, доля натурального каучука в котором составила около 38%.


Натуральный каучук имеет сравнительно невысокие термостойкость и маслостойкость, подвержен старению. Современные технологии позволяют получить синтетический каучук с лучшими свойствами. К настоящему времени разработано более 10 видов синтетических каучуков и не менее 500 их различных модификаций. Превосходным качеством отличается силиконовый каучук. Он менее эластичен, чем натуральный, но его свойства в интервале температур от 55 до 180 °С мало зависят от температуры, к тому же он физиологически безвреден. Гомогенные и ячеистые полиуретановые эластомеры обладают высокой износостойкостью, химической стойкостью и не подвергаются быстрому старению. Сфера применения эластомеров весьма разнообразна - от машиностроения до обувной промышленности, но все же значительная их доля идет на изготовление шин, потребность в которых с ростом потока автомобилей постоянно возрастает.


Производя синтетические каучуки, химическая промышленность восполняет дефицит природного сырья - каучука. Точно так же производство синтетической кожи сохраняет сырье животного происхождения. По своим свойствам и качеству многие разновидности современной синтетической кожи мало отличаются от натуральной кожи высшего качества.


Синтетические ткани появились во второй половине XX в., хотя внедрение химических технологий в текстильную промышленность началось сравнительно давно - около 200 лет назад, когда с помощью соды и хлорной извести удалось существенно улучшить качество стирки и отбеливания. Например, с применением хлорной извести продолжительность отбеливания хлопковой ткани сократилась с трех месяцев (при луговой отбелке) до шести часов. Во второй половине XIX в. широко внедрялись синтетические органические красители тканей. С начала XX в. химические технологии стали ориентироваться на создание новых волокнистых материалов. Первое чисто синтетическое волокно - нейлон - создано более 60 лет назад, а затем появились акрил, полиамид, полиэфирные волокна. Однако потребители сравнительно быстро оценили как достоинства, так и недостатки синтетических тканей. Немало времени прошло, прежде чем удалось понять и преодолеть различия между природными и синтетическими волокнами. Теперь химия легко воспроизводит лучшие свойства льна, хлопка, шерсти, а естественные материалы давно уже стали предметом многократной химической обработки, придающей, например, хлопку упругость или делающей льняную ткань не столь мнущейся.[4]


Новшества сегодняшнего дня затронули и геометрию волокон. Изготовители текстильного сырья стремятся сделать нить возможно тоньше. Тончайшие синтетические нити ткани хорошо видны под микроскопом.


Излюбленный материал сегодняшних модельеров - эластик - удобен не только в спортивной одежде, но и в повседневных костюмах. Существует ткань, в основе которой размещены мельчайшие стеклянные шарики, отражающие свет. Одежда из нее - хорошая защита для тех, кто ночью находится на улице, например для регулировщиков автотранспортного движения.


Одна из разновидностей синтетического материала - кевлар. Он в пять раз прочнее на разрыв, чем сталь, и используется для пошива пуленепробиваемых курток. Весьма оригинальна технология изготовления ткани для одежды космонавта, которая способна уберечь его за пределами атмосферы от леденящего холода космоса и палящей жары Солнца. Секрет такой одежды - в миллионах микроскопических капсул, встроенных в ткань.


Капсулы содержат парафины. При нагревании они плавятся, отбирая тепло, а при охлаждении затвердевают, выделяя тепло.


Производство многообразных синтетических материалов с удивительными свойствами свидетельствует о чрезвычайно высоком уровне современных химических технологий.


6. ПЕРСПЕКТИВНЫЕ МАТЕРИАЛЫ
6.1 Сверхпрочные материалы

Ассортимент материалов различного назначения постоянно расширяется. В последние десятилетия создана естественно-научная база для разработки принципиально новых материалов с уникальными свойствами. В разработке сверхпрочных материалов достигнуты определенные успехи. Например, сталь, содержащая 18% никеля, 8% кобальта и 3 - 5% молибдена, отличается высокой прочностью - отношение прочности к плотности для нее в несколько раз больше, чем для некоторых алюминиевых и титановых сплавов. Преимущественная область ее применения - авиационная и ракетная техника. Коррозионностойкий сплав (62 - 74% кобальта, 20 - 30% хрома, 6 - 8% алюминия) не разрушается в атмосфере кислорода при температуре вплоть до 1050 °С, а при более высокой температуре даже агрессивная сернокислая среда не оказывает на него заметного воздействия.


Большое внимание уделяется разработке композиционных материалов (композитов) - материалов, состоящих из компонентов с различными свойствами. В таких материалах содержится основа с распределенными усиливающими элементами: волокнами и частицами из стекла, металла, дерева, пластмассы и др. Большое число возможных комбинаций компонентов позволяет получить разнообразные композиционные материалы. Способ изготовления композитов известен давно. Еще в 600 г. до н.э. в Вавилоне была построена башня высотой 90 м из глиняных блоков в которых глина была смешана с козьей шерстью. Подобный способ лежит в основе изготовления современных древесных плит, железобетона и других материалов. При оптимальном комбинировании веществ с разными свойствами существенно повышаются прочность и качество композитов.


Целенаправленное исследование свойств композитов началось в 60-е годы XX в., когда новые волокнистые неорганические материалы из бора, карбида кремния, графита, оксида алюминия и т.п. стали сочетать с органическими или металлическими. Композиционные материалы с волокнистой структурой обладают удивительной прочностью. С помощью каната толщиной 3 см из борсодержащих волокон можно буксировать полностью нагруженный четырехмоторный реактивный самолет. Графитовые волокна при 1500 °С прочнее стальных волокон при комнатной температуре. Волокнистые материалы из бора, графита и монокристаллического сапфира (А12
03
) используются преимущественно в космической технике.


При комбинировании поли- и монокристаллических нитей с полимерными матрицами (полиэфирами, фенольными и эпоксидными смолами) получаются материалы, которые по прочности не уступают стали, но легче ее в 4 - 5 раз. Благодаря введению металлических матриц из никеля, кобальта, железа, алюминия, хрома и их сплавов повышаются прочность, эластичность и вязкость композитов. Например, алюминий, усиленный боридным волокном, при температуре 500 °С имеет такую же прочность, как сталь при комнатной температуре. Композиционный материал из монокристаллических нитей с разнообразными матрицами имеет предел прочности на разрыв более 700 Н/мм2
.


Материал будущего должен быть не только сверхпрочным, но и стойким при длительном воздействии агрессивной среды.


6.2 Материалы, содержащие редкие металлы

Названия «редкие металлы», «редкие элементы», «редкоземельные элементы» не совсем удачны - их содержание в земной коре в среднем сопоставимо или даже выше, чем содержание большинства широко используемых металлов. Таких редких металлов, как скандий, церий, лантан, литий, иттрий, ниобий, галлий, в земной коре содержится примерно столько же, сколько хрома, цинка, никеля, меди и свинца, а стронция, циркония, рубидия - гораздо больше. Редкие металлы находятся на вершине пирамиды распространенности химических элементов в поверхностном слое земной коры. Долгое время не находившие широкого применения они сегодня оказались на острие передовых технологий производства современных перспективных материалов. С их применением связаны новые области промышленности, науки и техники: гелиоэнергетика, инфракрасная оптика, оптоэлектроника, лазеры, компьютеры и т. п.


Приведем примеры практического применения материалов, содержащих редкие металлы. Низколегированные стали, в состав которых входит всего 0,03 - 0,07 % ниобия и 0,01 - 0,1 % ванадия, позволяют на 30 - 40 % снизить массу металлических конструкций мостов и многоэтажных зданий, газо- и нефтепроводов, бурильного оборудования и т.п. При этом срок службы конструкций увеличивается в 2 - 3 раза. Сверхпроводящие материалы на основе ниобия используются в поездах на воздушной подушке, развивающих скорость 577 км/ч. В современном легковом автомобиле многие детали выполнены из стали с ниобием и ванадием, медно-берилловых сплавов и сплавов с цирконием и иттрием, что позволило уменьшить массу автомобиля примерно в 1,5 раза. Разрабатываются электромобили с литиевыми аккумуляторами, на водородном топливе с нитридом лантана и др. Производятся топливные элементы на основе оксидов циркония и иттрия, с КПД до 65%. С применением осветительных ламп с люминофорами, содержащими иттрий, европий, тербий, церий, расход электроэнергии на освещение снижается в 2 - 3 раза. Арсенид галлия используется в производстве фотоэлементов, интегральных схем и т.п. Применение редкоземельных материалов при крекинге нефти позволяет снизить потребление дорогостоящей платины и увеличить на 15% выход высокооктанового бензина. Иттрий способен резко увеличить электропроводность алюминиевого провода и прочность новых керамических конструкционных материалов. Совсем недавно обнаружилось необычное свойство редкоземельных металлов - при их внесении в почву на 5 - 10% повышается урожай сельскохозяйственных культур: риса, пшеницы, кукурузы, сахарного тростника, хлопка, фруктов и др. Потребление редких металлов быстро растет. Например, в Японии за период 1960-1985 гг. оно возросло в 10 - 25 раз.


Результаты исследований показывают, что ископаемое углеводородное сырье содержит промышленно ценные количества иттрия, лантанидов, ванадия и других редких металлов, стоимость которых соизмерима со стоимостью самого сырья. Например, в татарской нефти содержится до 700 г/т ванадия, который является ценным, но и весьма токсичным веществом. При извлечении его из нефти решаются одновременно две задачи: добывается нужный для многих целей металл и предотвращается загрязнение окружающей среды.


Некоторые специалисты убеждены: редкие металлы - будущее новой техники. На пороге тысячелетий современная цивилизация переходит из железного века в новый - век легких и надежных материалов, содержащих редкие металлы.


6.3 Термостойкие материалы

Повышение скорости химических процессов и эффективности работы многих аппаратов, двигателей и т.п. достигается при высокой температуре, поэтому создание термостойких материалов - одна из важнейших задач развития современных химических технологий и машиностроения.


К настоящему времени разработаны перспективные способы изготовления термостойких материалов: имплантация ионов, плазменный синтез, плавление и кристаллизация в отсутствие гравитации, напыление на поликристаллические и аморфные поверхности и др. Для изменения локальных химических и физических свойств материалов применяется лазерная технология. Сфокусированный луч мощного импульсного лазера способен кратковременно создавать чрезвычайно высокую локальную температуру - вплоть до 10000 К. В точке фокусировки лазерного луча изменяются физические и химические свойства поверхностного слоя.


С применением современных технологий получены, например, нитрид кремния Si3
N4
и силицид вольфрама WSi2 - термостойкие материалы для микроэлектроники. Нитрид кремния обладает превосходными электроизолирующими свойствами даже при небольшой толщине слоя - менее 0,2 мкм. Силицид вольфрама отличается весьма малым электрическим сопротивлением. Из этих материалов напыляются тонкопленочные элементы интегральных схем.


Представляет практический интерес способ синтеза новых керамических материалов для изготовления, например, цельнокерамического блока цилиндров двигателя внутреннего сгорания. Этот способ заключается в отливке кремнийсодержащего полимера в форму с последующим превращением его в термостойкий и прочный карбид или нитрид кремния. Современные графитоволокнистые материалы способны выдерживать температуру до 2000 °С.
Новые технологии позволяют синтезировать более термостойкие материалы.[5]


6.3.1 Нитинол

Нитинол представляет собой никель - титановый сплав (55% Ti, 45% Ni), обладающий необычным свойством - сохранять первоначальную форму. Поэтому иногда его называют запоминающим металлом. Такое свойство нитинола сохраняется даже после его холодного формования и термической обработки. Для него характерны сверх- и термоупругость, высокая коррозионная и эрозионная стойкость.


Вначале нитиноловые изделия служили преимущественно для военных целей - с их помощью в боевых самолетах соединяли различные трубопроводы, доступ к которым ограничен. Соединение производилось муфтой, свободно надевавшейся на концы соединяемых трубок. После пропускания электрического тока муфту нагревали примерно на 30 °С, после чего она, охлаждаясь, принимала первоначальную форму с меньшим диаметром, плотно прилегая к концам трубок. Уникальную конструкцию с помощью нитиноловых муфт удалось собрать в космосе при корректировке орбиты станции «Мир».


Нитиноловые фиксаторы, муфты, спирали находят применение в медицине. С помощью нитиноловых фиксаторов эффективнее соединяются сломанные кости. Благодаря памяти формы нитиноловая муфта лучше фиксируется в десне, предохраняя места сочленений от перегрузок. Нитинол, обладая способностью упруго деформироваться на 8-10%, плавно воспринимает нагрузку, подобно живому зубу, и в результате меньше травмирует десну. Нитиноловая спираль способна восстановить сечение пораженного той или иной болезнью сосуда в организме человека. При внедрении нитиноловых деталей происходит более эффективное заживление ран - ведь помимо замечательных механических свойств нитинол еще и биологически инертен.


Вне всякого сомнения, нитинол найдет более широкое применение: при ремонте газо-, нефте- и газопроводов, а также при решении других задач.


6.3.2 Жидкие кристаллы

Жидкие кристаллы - это жидкости, обладающие, как и кристаллы, анизотропией свойств (в частности, оптических), связанной с упорядоченной ориентацией молекул. Благодаря сильной зависимости свойств жидких кристаллов от внешних воздействий они находят разнообразное применение в технике (в температурных датчиках, индикаторных устройствах, модуляторах света и т. д.).


Жидкокристаллическое вещество состоит из органических молекул с преимущественно упорядоченной ориентацией в одном или двух направлениях. Оно обладает текучестью, как жидкость. Кристаллическая упорядоченность молекул жидких кристаллов подтверждается их оптическими свойствами. Различают три основных типа жидких кристаллов: нематические, смектические и холестерические. Наименьшую упорядоченность имеют нематические жидкие кристаллы. Молекулы их параллельны, но сдвинуты вдоль своих осей одна относительно другой на произвольные расстояния, т.е. длинные, узкие и в то же время весьма жесткие молекулы выстраиваются подобно сплавляемым по реке бревнам.
Более сложная форма молекул - в виде плоскостей, из которых образуется многослойная относительно упорядоченная структура, наблюдается в жидких смектических кристаллах.
По структуре жидкие холестерические кристаллы похожи на нематические, но отличаются от них закручиванием молекул в направлении, перпендикулярном их длинным осям. Шаг такой спиральной структуры сравнительно большой - несколько микрометров.


Под действием даже очень слабого электрического поля нарушается равновесие ориентированных молекул, при этом изменяются оптические свойства жидкокристаллического вещества: например, из прозрачного оно переходит в светонепроницаемое.


Прогресс в создании новых жидкокристаллических материалов во многом зависит от успешного синтеза молекул сферической, стержне- или дискообразной формы. Одно из перспективных направлений в химии жидких кристаллов - формирование таких структур при синтезе полимеров.[6]


6.3.3 Оптические материалы

Прогресс в развитии световолоконной индустрии во многом определился технологической возможностью изготовления высокопрочной кварцевой нити путем химической конденсации паровой фазы. Толщина полученной таким образом кварцевой нити со стеклянным покрытием составляет примерно 0,1 толщины человеческого волоса. Совершенствование технологии изготовления кварцевых нитей позволило менее чем за десятилетний срок примерно в 100 раз сократить потери светового потока. Из новых оптических материалов, например, таких, как фторидные стекла, можно получить еще более прозрачные волокна. Волоконная оптика открывает чрезвычайно большие возможности для передачи огромного объема информации на большие расстояния. Уже сегодня многие телефонные станции, телевидение с успехом пользуются волоконно-оптической связью.


Современная химическая технология сыграла важную роль и при создании материалов для оптических устройств переключения, усиления и хранения оптических сигналов. Оптические устройства оперируют в новых временных масштабах обработки световых сигналов. Например, оптический переключатель срабатывает за одну миллионную миллионной доли секунды. В современных оптических устройствах используются ниобат лития и арсенид галлия-алюминия. Органические стереоизомеры, жидкие кристаллы и полиацетилены обладают лучшими оптическими свойствами, чем ниобат лития, и являются весьма перспективными материалами для новых оптических устройств.


6.4 Материалы диссоциации металлоорганических соединений

При термической диссоциации ряда металлоорганических соединений получаются чистые металлы различной твердой формы, обладающие уникальными свойствами. К металлоорганическим соединениям относятся:


- карбонилы: Mo(CO)6
, Fe(CO)5
, Ni(CO)4
;


- ацетилацетонаты металлов: Pd(C5
H7
02)2, Pt(C5H7
02
)2,Ru(C5
H7
02
)3
;


- дикарбонилацетонат родия: Rh(C5
H702)2 (C0)2
и др.


Этим соединениям в газообразном состоянии присуща высокая летучесть. Они разлагаются при нагревании до 100 - 150 °С. В результате термической диссоциации можно получить чистую металлическую фазу в различных конденсированных формах: высокодисперсные порошки, металлические вискерсы, беспористые тонкопленочные материалы, ячеистые металлоны, металлические волокна и бумага.


Высокодисперсные порошки состоят из частиц малых размеров (до 1 - 3 мкм) и используются для производства металлокерамики - композиций металлов с оксидами, нитридами, боридами, синтезируемых методом порошковой металлургии. Металлические порошки, например железа и никеля, обладающие магнитными свойствами, применяются в радиоэлектронике и электротехнике.


Металлические вискерсы - нитевидные кристаллы диаметром 0,5-2,0 мкм и длиной 5-50 мкм. Для них характерна высокая прочность, примерно в 10 раз превышающая прочность самых высококачественных сталей, высокая устойчивость к окислению и необычные магнитные свойства. Подобные кристаллы формируются на активных центрах подложки, где в парамагнитных кластерах образуется своеобразная ступенчатая монокристаллическая структура.


Беспористые тонкопленочные материалы отличаются высокой плотностью упаковки атомов. По величине отражения света они приближаются к серебру. Беспористое тонкопленочное покрытие толщиной около 90 мкм надежно защищает металл от коррозии даже в самой агрессивной среде. Их коррозионная стойкость примерно в 5 раз выше, чем, например, гальванических покрытий.


Ячеистые металлы образуются при осаждении металла в результате проникновения паров металлорганических соединений в поры другого материала, где формируется ячеистая металлическая структура.


Металлизированные волокна и бумага обладают уникальными механическими, теплофизическими и электропроводными свойствами. В будущем они найдут широкое применение.


6.5 Тонкопленочные материалы для накопителей информации

Любая современная вычислительная машина, в том числе и персональный компьютер, содержит накопитель информации - запоминающее устройство, способное накапливать и хранить большой объем информации. Большинство накопителей информации базируется на магнитной записи в накопителях информации на подвижном магнитном носителе, где основное - это накопление информации, важным параметром является поверхностная информационная плотность записи, определяемая количеством информации, приходящейся на единицу площади поверхности рабочего слоя носителя информации.


Изготовление современных магнитных накопителей большой емкости основано на применении тонкопленочных материалов. Благодаря применению новых магнитных материалов и в результате совершенствования технологии изготовления всех тонкопленочных элементов магнитного накопителя за относительно короткий срок поверхностная плотность записи информации увеличилась в пять раз: в 1998 г. она составляла примерно 12 Гбит/дюйм2
, а в 2000 г. - около 100 Гбит/дюйм2
.


Запись с высокой поверхностной плотностью осуществляется на носитель, рабочий слой которого формируется из тонкопленочного кобальтсодержащего материала. Высокую плотность записи можно реализовать только с помощью преобразователей, тонкопленочный материал магнитопровода которых характеризуется большой магнитной индукцией насыщения и высокой магнитной проницаемостью.


Для воспроизведения записанной с высокой плотностью информации применяется высокочувствительный тонкопленочный элемент, электрическое сопротивление которого изменяется в магнитном поле. Такой элемент называется магниторезистивным. Он напыляется из высокопроницаемого магнитного материала, например пермаллоя. Относительное изменение электрического сопротивления пермаллоевого элемента в магнитном поле составляет около 2%. Эта величина экспериментальных исследований последнего десятилетия, может достигать (например, в многослойных тонкопленочных материалах, однослойных гранулированных пленках и других материалах) десятков процентов, поэтому их называют материалами со сверхгигантским магнетосопротивлением.


Таким образом, с применением тонкопленочных магнитных материалов при изготовлении накопителей информации большой емкости уже реализована довольно высокая плотность записи информации. При модернизации таких накопителей и внедрении новых материалов следует ожидать дальнейшего увеличения информационной плотности, что весьма важно для развития современных технических средств записи, накопления и хранения информации.


7. Важнейшие открытия в химии XXI века


2001 Уильям Ноулз, Риоджи Нойори и Барри Шарплесс «За исследования, используемые в фармацевтической промышленности - создание хиральных катализаторов окислительно-восстановительных реакций».


2002 Джон Фенн и Койчи Танака «За разработку методов индентификации и структурного анализа биологических макромолекул, и, в частности, за разработку методов масс-спектрометрического анализа биологических макромолекул».


Курт Вютрих «За разработку применения ЯМР - спектроскопии для определения трехмерной структуры биологических макромолекул в растворе».[7]


Шведская Королевская академия наук объявила лауреатов Нобелевской премии-2003 по химии. Ими оказались 54-летний Питер Эгр (Peter Agre) из Медицинской школы Университета Джона Хопкинса и 47-летний Родерик МакКиннон из Медицинского института Говарда Хьюза. 10 миллионов шведских крон они получат "за открытие каналов в клеточных мембранах".


Ученые долго пытались понять, каким образом вода и соли (ионы) попадают внутрь живой клетки и выводятся из нее. Понять эти процессы на молекулярном уровне было принципиально важно для медицины; это открыло бы путь к лечению болезней почек, сердца, мускулов, нервов.


О наличии специальных каналов в клеточных мембранах ученые догадывались еще с середины 19-го столетия, однако обнаружить их никак не удавалось. Первым это сделал Питер Эгр, когда в 1988-м году выделил мембранный белок, а годом спустя понял, что это и есть давно разыскиваемый водный канал. Это открытие дало первоначальный толчок громадному спектру биохимических, физиологических и генетических исследований. За свое открытие Питер Эгр получил несколько престижных премий, в 2000-м году был избран членом Национальной академии наук. По любопытному совпадению, одновременно с ним американским академиком стал и другой Нобелевский лауреат этого года - физик Алексей Абрикосов.


Водные каналы в мембранах, как выяснилось, предназначены только для воды и других молекул, в том числе и ионы солей, не пропускают. Следовало поэтому искать ионные каналы. И поиски эти не затянулись. Спустя 10 лет Родерик МакКиннон поразил научное сообщество уникальным экспериментом, в ходе которого смог определить пространственную структуру калиевого канала для ионов, который может открываться и закрываться различными клеточными сигналами. О важности этого открытия говорит хотя бы тот факт, что Шведская Королевская академия отметила его своей премией спустя всего пять лет - срок для Нобелевских премий необычайно короткий. Родерик Маккинон «За изучение структуры и механизма ионных каналов».[8]


2004 Аарон Цехановер, Аврам Гершко и Ирвин Роуз «За открытие убиквитин опосредованного разложения белка».


2005 Роберт Граббс, Ричард Шрок и Ив Шовен «За вклад в развитие метода метатезиса в органическом синтезе».


В 2006 Нобелевская премия по химии присуждена за передачу генетической информации - американцу Роджеру Корнбергу, профессору кафедры структурной биологии Стэнфордского университета. Корнберг удостоился премии "за исследования молекулярных основ транскрипции у эукариот" - первого этапа процесса синтеза белка у животных, растений и грибов.


Открытие Роджера Кронберга заключается в описании передачи данных от хранящей наследственную информацию молекулы ДНК молекуле-посреднику, так называемой информационной РНК.


Благодаря исследованиям Корнберга стало понятно, как, с химической точки зрения, происходит передача генетической информации из генов к соответствующим структурам клетки, ответственным за синтез белков.


Хотя полученные ученым результаты относятся к процессам, происходящим в живых организмах, в пресс-релизе Нобелевского комитета особо подчеркивается, что исследования Корнберга являются достижением в области химии.


Отец Роберта Корнберга - Артур Корнберг также является лауреатом Нобелевской премии в области физиологии и медицины.


Заключение

Таким образом, можно выделить основные черты современной химии, отличающие её от классической химии второй половины XIX века.


Прежде всего, создание надёжного теоретического фундамента привело к значительному росту возможностей прогнозирования свойств вещества. Современная химия немыслима без широкого использования физико-математического аппарата и разнообразных расчётных методов. Прогностические возможности химии распространяются не только на свойства вещества, основные количественные характеристики которых зачастую могут быть рассчитаны до опыта, но и на условия синтеза этого вещества.


Еще одной особенностью химии в ХХ веке стало появление большого числа новых аналитических методов, прежде всего физических и физико-химических. Широкое распространение получили рентгеновская, электронная и инфракрасная спектроскопия, магнетохимия и масс-спектрометрия, спектроскопия ЭПР (электронного парамагнитного резонанса) и ЯМР (ядерного магнитного резонанса), рентгеноструктурный анализ и т.п.; список используемых методов чрезвычайно обширен. Новые данные, полученные с помощью физико-химических методов, заставили пересмотреть целый ряд фундаментальных понятий и представлений химии. Сегодня ни одно химическое исследование не обходится без привлечения физических методов, которые позволяют определять состав исследуемых объектов, устанавливать мельчайшие детали строения молекул, отслеживать протекание сложнейших химических процессов.


Для современной химии также стало очень характерным всё более тесное взаимодействие с другими естественными науками. Физическая и биологическая химия стали важнейшими разделами химии наряду с классическими – неорганической, органической и аналитической. Пожалуй, именно биохимия со второй половины ХХ столетия занимает лидирующее положение в естествознании. [9]


Коллоидная и координационная химия, кристаллохимия и электрохимия, химия высокомолекулярных соединений и некоторые другие разделы приобретают черты самостоятельных наук.


Неизбежным следствием совершенствования химической теории явились новые успехи практической химии. Из выдающихся достижений химии XX века достаточно упомянуть хотя бы такие, как каталитический синтез аммиака, получение синтетических антибиотиков и полимерных материалов. Успехи химиков в деле получения вещества с желаемыми свойствами в числе прочих достижений прикладной науки к концу XX столетия привели к коренным преобразованиям в жизни человечества. Химики нашли лекарства от неизлечимых ранее болезней, получили вещества и материалы, использование которых существенно улучшило условия жизни людей. В значительной степени благодаря развитию прикладной химии средняя продолжительность жизни человека за двадцатое столетие выросла практически вдвое.


Впрочем, современная химия дала в руки людей также и эффективные средства сокращения продолжительности человеческой жизни. Достижения науки далеко не всегда используются людьми в благих целях, не всегда результаты практического использования научных открытий оказываются в точности такими, как ожидалось. Всякий успех в деле покорения природы неизбежно влечёт за собой, наряду с выгодами, ещё и появление новых проблем – экологических, этических.


Говоря об успехах практического приложения достижений науки, следует подчеркнуть, что история естествознания вообще и химии в частности постоянно подтверждает особую ценность фундаментальных исследований – "знания ради знания". Исторический опыт наглядно свидетельствует, что почти всякое значительное научное открытие в момент своего совершения лишено практической ценности. Однако именно на том, что изучено фундаментальной наукой десятилетия назад, основываются сегодняшние успехи науки прикладной.


Ещё одним важнейшим результатом достижений фундаментальной науки является создание и постоянное совершенствование научной картины мира. Поскольку наши представления о Вселенной создаются индуктивным путём, от частного к общему, научная картина мира непрерывно уточняется и в принципе не может быть окончательно завершённой.


Из всего вышесказанного можно сделать вывод, что наука химия постоянно совершенствуется, и это дает миру возможность открывать новейшие горизонты.


Библиография

1. Концепции современного естествознания : Учеб. для вузов / ; Под ред. В.Н.Лавриненко, В.П.Ратникова .- 2-е изд., перераб. и доп. - М : ЮНИТИ , 2001 .- С. 151-154.


2. Концепции современного естествознания : учеб. пособие для вузов / Под общ. ред. С.И. Самыгина.- Изд. 5-е, доп. и перераб. - Феникс, 2004.


3. Концепции современного естествознания : Учеб. пособие для вузов / А.А. Горелов.- М.: ВЛАДОС., 2000.


4. Концепции современного естествознания : учеб. пособие для вузов / Под ред. А.Ф. Хохлова.- изд. 2-е, испр. - Москва: Дрофа, 2004.


5. Концепции современного естествознания: Учеб. для вузов/ С.Х. Карпенков. - 6-е изд., перераб. и доп. - М.: Высш. шк., 2003.


6. Лось В.А. Основы современного естествознания (концепции, теории, проблемы) / Под ред. А.Д. Урсула: Учеб. пособие. - М.: ИНФРА-М., 2000.


7. Нуклеиновые кислоты, жидкие кристаллы и секреты наноконструирования. Ю. Евдокимов // Наука и жизнь .- 2005 .- N 4. - С. 18-24.


8. См.: И. Леенсон. Лауреаты Нобелевской премии по химии 2003 года // "Химия и жизнь - 21 век. -http://chemworld.narod.ru/old/public/nobel2003.html.


9. См.: Нобелевские премии по химии - 21 век.- http://www.socioforum.su/viewtopic.php?f=65&t=10214.


[1]
Концепции современного естествознания : Учебник для вузов / С.Х. Карпенков .- 6-е изд., перераб. и доп. - М: Высш. Школа.- 2003 .- С. 302-307.


[2]
Концепции современного естествознания : учеб. пособие для вузов / Под общ. ред. С.И. Самыгина.- Изд. 5-е, доп. и перераб. - Феникс., 2004 .- С. 190-195.


[3]
Концепции современного естествознания : Учеб. пособие для вузов / А.А. Горелов.- М.: ВЛАДОС., 2000 .- С. 285-288.


[4]
Концепции современного естествознания : учеб. пособие для вузов / Под ред. А.Ф. Хохлова.- изд. 2-е, испр. - Москва: Дрофа.- 2004 .- С. 94-96.


[5]
Концепции современного естествознания : Учеб. для вузов / ; Под ред. В.Н.Лавриненко, В.П.Ратникова .- 2-е изд., перераб. и доп. - М : ЮНИТИ , 2001 .- С. 151-154.


[6]
Нуклеиновые кислоты, жидкие кристаллы и секреты наноконструирования Ю. Евдокимов // Наука и жизнь .- 2005 .- N 4. - С. 18-24 .


[7]
См.: Нобелевские премии по химии - 21 век.- http://www.socioforum.su/viewtopic.php?f=65&t=10214.


[8]
См.: И. Леенсон. Лауреаты Нобелевской премии по химии 2003 года // "Химия и жизнь - 21 век".- http://chemworld.narod.ru/old/public/nobel2003.html.


[9]
Лось В.А. Основы современного естествознания (концепции, теории, проблемы) / Под ред. А.Д. Урсула: Учеб. пособие. - М.: ИНФРА-М., 2000. - С. 67- 69.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Исследования химии в 20-21 веках

Слов:8666
Символов:70902
Размер:138.48 Кб.