Министерство по образованию и науке РФ
Бийский технологический институт
(Филиал государственного образовательного учреждения высшего и профессионального образования)
"Алтайский государственный технический университет имени И.И. Ползунова" (БТИ Алт ГТУ)
Кафедра ТГВ ПАХТ
Контрольная работа
по курсу "Общая химическая технология"
Выполнила:
студентка группы ХТПК – 71
Диго Т.А.
Проверил:
доцент, к. т. н. Багров Г.В.
2010
Задача 1
Составить материальный баланс нитратора, производительностью 3 т/ч нитробензола. Выход нитробензола 98% от теоретического. Состав нитрующей смеси [%(мас)]: HNO3
– 20, H2
SO4
– 60, H2
O – 20. Расход нитруюшей смеси 4 кг на 1 кг бензола: С6
Н6
+НNI3
=C6
H5
-NO2
+H2
O
1 Изобразим процесс на схеме
Рисунок 1- Схема входящих и выходящих материальных потоков
2 Определим молекулярные массы веществ
µ(С6
Н6
) = 78 кг/кмоль; µ(C6
H5
-NO2
) = 125 кг/кмоль; µ(HNO3
) = 63 кг/кмоль; µ(H2
O) = 18 кг/кмоль.
3 Составим приходную часть материального баланса
3.1 Определим количество бензола необходимого для получения 3000 кг/ч C6
H5
-NO2
76 – 123
х – 3000
х = GС6
Н6
теор = (3000*78)/123 = 1902 кг/ч
GС6
Н6
действ = С6
Н6
/ 0,98
GС6
Н6
действ = 1902/ 0,98= 1941 кг/ч
3.2 Определим количество нитрующей смеси
Gнитр смеси = 4 * GС6
Н6
действ
Gнитр смеси = 4 * 1941= 7764 кг/ч
3.3 Определим количество азотной кислоты
GHNO3
вх = 0,2 * Gнитр смеси
GHNO3
вх = 0,2 * 7764 = 1553 кг/ч
3.4 Определим количество воды на входе
GH2
Oвх = 0,2 * Gнитр смеси
GH2
Oвх = 0,2 * 7764 = 1553 кг/ч
3.5 Определим количество серной кислоты
GH2
SO4
вх = 0,6 * Gнитр смеси
GH2
SO4
вх = 0,6 * 7764 = 4659 кг/ч
4 Составим расходную часть материального баланса
4.1 Определим количество бензола
GС6
Н6
вых = GС6
Н6
теор – GС6
Н6
действ
GС6
Н6
вых = 1941 – 1902 = 39 кг/ч
4.2 Определим количество азотной кислоты
GHNO3
вых = GHNO3
вх – GHNO3
хр
63 – 123
х – 3000
х = GHNO3
хр = 63 * 3000/123 = 1537 кг/ч
GHNO3
вых = 1553 – 1537 = 16 кг/ч
4.3 Определим количество воды
GН2
Овых = GН2
Овх + GН2
О хр
18 – 123
х – 3000
х = GН2
О хр = 18*3000/123 = 439 кг/ч
4.4 Определим количество серной кислоты
Серная кислота выступает в качестве водоотнимающего средства. Следовательно,
GН2
SO4
вых = GН2
SO4
вх
GН2
SO4
вых = 4659 кг/ч
5 Составим итоговую таблицу
Таблица 1 – Итоговый баланс нитратора
Потоки | Приход, кг/ч | Расход, кг/ч |
С6
Н6 |
1941 | 39 |
HNO3
|
1553 | 16 |
H2
O |
1553 | 1992 |
H2
SO4 |
4659 | 4659 |
C6
H5 -NO2 |
- | 3000 |
Итого | 9706 | 9706 |
Задача 2
Рассчитать материальный баланс нейтрализатора для получения аммиачной селитры, производительностью 20 т/ч. В производстве применяется 47% азотная кислота HNO3
и 100% газообразный аммиак NH3
. Потеря HNO3
и NH3
в производстве составляет 1% от теоретически необходимого количества, для обеспечения заданной производительности. Из нейтрализатора аммиачная селитра составляет 60% раствора NH4
NO3
в воде. Определить количество влаги, испарившейся в результате экзотермической реакции нейтрализатора.
1 Изобразим процесс на схеме
Рисунок 2- Схема входящих и выходящих материальных потоков
2 Определим молекулярные массы веществ
µ(NH4
NO3
) = 80 кг/кмоль; µ(NH3
) = 17 кг/кмоль; µ(HNO3
) = 63 кг/кмоль; µ(H2
O) = 18 кг/кмоль.
3 Составим приходную часть материального баланса
3.1 Определим количество аммиака, необходимого для получения аммиачной селитры
17 - 80
х – 20000
х = GNH3
хр = 17*20000/80 = 4250 кг/ч
GNH3
вх = GNH3
хр/0,99 = 4293 кг/ч
3.2 Определим количество азотной кислоты
63 – 80
х – 20000
х = GHNO3
хр = 63*20000/80 = 15750 кг/ч
GHNO3
вх = GHNO3
хр/0,99 = 15909 кг/ч
3.3 Определим количество воды
15909 – 0,47
х – 0,53
х = GH2
Oхр = 15909*0,53/0,47 = 17740 кг/ч
4 Составим расходную часть материального баланса
4.1 Определим количество азотной кислоты
GHNO3
вых = GHNO3
вх – GHNO3
хр
GHNO3
вых = 15909 – 15750 = 159 кг/ч
4.2 Определим количество аммиака
GNH3
вых = GNH3
вх -GNH3
хр
GNH3
вых = 4293 – 4250 = 43 кг/ч
4.3 Определим количество воды
20000 – 0,6; х – 0,4; х = GH2
Oвх = 20000*0,4/0,6 = 13333 кг/ч
GH2
Oвых = GH2
Oхр - GH2
Oвх
GH2
Oвых = 17740 – 13333 = 4407 кг/ч
5 Составим итоговую таблицу
Таблица 2 – Итоговый баланс нейтрализатора
Потоки | Приход, кг/ч | Расход, кг/ч |
NH3
|
4293 | 43 |
HNO3
|
15909 | 159 |
H2
O |
17740 | 13333 |
H2
Oпар |
- | 4407 |
NH4
NO3 |
- | 20000 |
Итого | 37942 | 37942 |
Задача 3
Составить материальный баланс контактного аппарата для каталитического окисления SO2
в SO3
производительностью 10 000 м3
/ч исходного газа следующего состава [%(об.)]: SO2
-8,5; О2
-12,5; N2
-79 . Степень окисления SO2
в SO3
составляет 98%
(SO2
+1/2О2
SO3
).
1 Изобразим процесс на схеме
Рисунок 3 - Схема входящих и выходящих потоков в контактном аппарате
2 Определим молекулярные массы веществ
µ(SO2
) = 64,06 г/моль; µ(О2
) = 32 г/моль; µ(SO3
) = 80,06 г/моль; µ(N2
) = 28 г/моль.
3 Составим приходную часть материального баланса
3.1 Определим количество SO2
на входе
м3
/ч (0,236 м3
/с)
кг/ч (0,675 кг/с)
3.2 Определим количество O2
на входе
;
м3
/ч (0,347 м3
/с);
;
кг/ч (0,496 кг/с);
3.3 Определим количество N2
на входе
;
м3
/ч (2,194 м3
/с);
;
кг/ч (2,743 кг/с)
4 Составим расходную часть материального баланса
4.1 Определим количество SO2
на выходе
;
м3
/ч (0,005 м3
/с);
;
кг/ч (0,014 кг/с)
4.2 Определим количество SO3
на выходе
;
м3
/ч (0,231 м3
/с);
;
кг/ч (0,827 кг/с)
4.3 Определим количество O2
на выходе
;;
м3
/ч (0,116 м3
/с),
м3
/ч (0,232 м3
/с);
; кг/ч (0,331 кг/с)
4.4 Определим количество N2
на выходе
Так, как азот присутствует в исходном газе в качестве балласта, то его количество в ходе химической реакции не меняется.
5 Сведём данные по расчётам в таблицу:
Таблица 3 - Итоговый баланс контактного аппарата
Потоки | Приход, кг/ч | Расход, кг/ч | Приход, м3
/ч |
Расход, м3
/ч |
SO3
|
- | 2977 | - | 833 |
SO2
|
2431 | 49 | 850 | 17 |
O2
|
1786 | 1191 | 1250 | 834 |
N2
|
9875 | 9875 | 7900 | 7900 |
Итого | 14092 | 14092 | 10000 | 9584 |
Так, как реакция протекает с уменьшением объёма, то объёмные расходы отличаются, а массовые совпадают.
Задача 4
Добавим к предыдущей задаче следующие условия:
Температура газовой смеси на входе в аппарат , а на выходе из него . Средняя теплоёмкость смеси (условно считать постоянной) равна 2,052 .
Потери теплоты в окружающую среду составляют 5% от прихода теплоты
(SO2
+1/2О2
SO3
+94207 кДж)
Определить количество теплоты, отводимой от аппарата.
1 Изобразим процесс на схеме:
Q1
– теплота, вносимая в контактный аппарат реакционной смесью; Q2
– теплота химической реакции; Q3
– теплота, выводимая из контактного аппарата реакционной смесью;Q4
-потери теплоты в окружающую среду; Q5
- количество теплоты, отводимое в аппарате
Рисунок 4 - Схема входящих и выходящих потоков в контактном аппарате
2 Определим Q1
;
кВт
3 Определим Q2
,
где n-число молей полученного SO3
973 кВт
4 Определим Q3
;
3168 кВт
5 Определим Q4
;
180 кВт
6 Определим Q5
:
;
кВт
7 Сведём данные по расчётам в таблицу
Таблица 4 – Приход теплоты в контактном аппарате
Потоки | кВт | % |
Q1
|
2622 | 73 |
Q2
|
973 | 27 |
Итого | 3595 | 100 |
Таблица 5 – Расход теплоты в контактном аппарате
Потоки | кВт | % |
Q3
|
3168 | 88 |
Q4
|
180 | 5 |
Q5
|
247 | 7 |
Итого | 3595 | 100 |
Задача 5
В реакторе протекает реакция: : А+В R . Определить степень превращения ХА
и ХВ
, при условии А и В взяты в стехиометрическом соотношении; если вещества В в 2 раза больше ( то есть 2 моля вещества на 1 моль вещества А); если вещества В в 3 раза больше.
1 Определим степень превращения, если реагенты взяты в стехиометрическом соотношении
Принимаем: моль, моль
По условию известно, что
Можно определить степень превращения вещества А:
;
Поскольку вещества А и В взяты в стехиометрическом соотношении, то ,
Можно определить степень превращения вещества В:
;
2 Определим если в 2 раза больше
По условию известно, что ,
Можно определить степень превращения вещества А:
Поскольку реагирует половина вещества А, то
Можно определить степень превращения вещества В:
3 Определим если в 3 раза больше
По условию известно, что ,
Можно определить степень превращения вещества А:
Поскольку реагирует половина вещества А, то
Можно определить степень превращения вещества В:
Задача 6
Определить состав смеси и степень превращения для реакции: А+2В 2R+S. Если ;;. Определить
1 Степень превращения реагента В можно определить следующим образом:
;
;
2 Концентрацию реагента А можно определить следующим образом:
3 Концентрацию реагента В можно определить следующим образом:
4 Из стехиометрических коэффициентов определим :
Задача 7
Определить Х SO
2
в реакции
+ O2
→ 2SO3
, если реакционная смесь имеет состав в начале процесса [% (об.)]: С SO
2
-7,5; С O
2
-10,3; С N
2
-82,2. Содержание SO2
в конце процесса равна 2,5% об.
Замечание:
1. реакция протекает с уменьшением объема, следовательно, необходимо учитывать - относительное изменение объема реакционной смеси.
2. формализуем задачу, т.е. переведем ее в привычные понятия:
аА+вВrR,
где а=2 в=1 r=2
СА.0
=7,5% об. СА.е
=2,5% об. СВ.0
=10,3% об.
3. реагенты взяты не в стехиометрическом соотношении, т.е. О2
в избытке.
4. в реакционной смеси присутствует балластный азот, т.е. для окисления используется О2
воздуха.
1 Определим относительные изменения объема
,
где - первоначальный объем смеси
- объем смеси в конце реакции.
Отношение определим по формуле [2,с.22]:
,
где β – доля стехиометрической смеси исходных реагентов в реакционной смеси.
В нашем случае
,
.
.
.
2 Определим равновесные степени превращения по формуле [2, с.22]:
;
.
Задача 8
В реакторе протекает реакция: А+2В 2R+S. Начальные количества ; . В реакционной смеси, выходящей из реактора . Известно, что в равновесной смеси содержится . Определить выход продукта .
1 Выход продукта можно определить из следующего соотношения:
2 Степень превращения реагента А можно определить следующим образом:
;
3 Равновесную степень превращения реагента А можно определить из выражения:
;
4 Определим выход продукта:
Задача 9
Определить необходимое время пребывания τ в РИС-П для достижения ХА
= 0,9.В реакторе проводится изотермическая необратимая реакция второго порядка, реактор заполнен частично веществом А, мольная масса 110кг/кмоль, плотность исходного раствора и продукта 1100кг/м3
и1320кг/м3
, константа химической реакции К =0,8м3
/моль ч.
Задачу решаем двумя способами без учета плотности и с учетом плотности.
1 Определим τрис-п
без учета изменений плотности:
1.1 Изобразим схему расчета:
Рисунок 5 - Расчетная схема
2 Определим τрис-п
с учетом изменения плотности( объема):
2.1 Изобразим схему расчета
Рисунок 6 - Схема расчета
2.2 Определим степень изменения объема :
[мет. 2 с.30]
Принимаем , что объем и плтности взаимосвязаны следующим образом.
где это объем и плотность смеси в данный, объем и плотность в начальный момент времени.
По условию, если ХА =1, то
2.3 Определим СА.О
:
2.4 Определим концентрацию СА
:
Примечание: задачу решаем в общем виде.
2.5 Определим скорость химической реакции:
2.6 Определим τрис-п
:
Подставим значение скорости и получим:
Проинтегрируем и получим:
Подставим численные значения:
Задача 10
Рассчитать объём реактора идеального вытеснения (РИВ) при проведении в нём реакции: А R+SО.
Условия:
1 Объёмный расход исходного компонента ;
2 Начальная концентрация ;
3 Константа скорости химической реакции
4 Степень превращения .
Примечания:
1 Данная реакция второго порядка (это следует из уравнения реакции и размерности константы скорости химической реакции);
2 Размерность величин переведём в систему СИ , так как объёмный расход и константа скорости химической реакции приведены в разных размерностях.
Рассчитаем объём реактора идеального вытеснения:
;
.
Задача 11
Определить какое количество вещества А можно переработать в РИС-П за сутки при проведении реакции : , если
объём РИС-П ;
степень превращения ;
константа скорости реакции ;
начальная концентрация реагента А ;
коэффициент заполнения реактора ψ=0,8;
время загрузки и выгрузки за одну операцию 30 мин;
1 Изобразим алгоритм расчета на схеме:
Рисунок 7 – Алгоритм решения
2 Определим
3 Определим
4 Определим N
5 Определим количество вещества
6 Определим
7 Определим
Задача 12
В реакторе идеального смешения периодического действия (РИС-П) проводится изотермическая реакция: . Реактор заполнен чистым веществом А, мольная масса М которого 110 . Плотность вещества . Степень превращения вещества . Константа равновесия . Продолжительность вспомогательных операций . Объём реактора ; степень заполнения реактора исходным реагентом .
Определить продолжительность реакции , производительность реактора и количество вещества А, подвергнутого превращению в 1 реактора за 1, то есть интенсивность реактора I.
Рисунок 8 – Схема расчёта
1 Определим начальную концентрацию реагента А:
;
.
2 Определим продолжительность химической реакции:
;
.
3 Определим производительность реактора:
,
где ;
.
4 Определим интенсивность реактора:
;
.
Задача 13
Определить объём РИВ () для гомогенной реакции: 4А R+6S.
; ; ; .
Мольный расход .
Примечания:
1 Реакция протекает с изменением объёма, нужно учесть .
2 Считать, что реакция протекает по первому порядку
;
();
;
;
Отношение объемов определяется по формуле [1. стр. 22]
где β- доля стехиометрической смеси, исходных реагентов в исходной смеси.
εА
=0,25-1=-0,75;
Задача 14
Рассчитать максимальный секундный расход (мольный расход) вещества А при соблюдении следующих условий:
1 В изотермическом РИС-Н проводится обратимая экзотермическая реакция
А R+6200 кДж/кмоль.
2 При оптимальной температуре 49 степень превращения составляет 60 %.
3 Для создания изотермических условий используется погружной водяной холодильник с поверхностью теплообмена .
4 Коэффициент теплопередачи .
5 Температура на выходе из холодильника составляет .
1 Составим тепловой баланс для изотермического реактора:
или ,
Где
2 Выражаем из уравнения теплового баланса мольный расход:
;
(0,012).
Задача 15
Рассчитать длину труб теплообменника для осуществления процесса, описываемого ниже.
В реакторе полупериодического действия проводится реакция взаимодействия в жидкой фазе продукта А с концентрацией 25 масс.% с первоначально загруженным в количестве 500 л продуктом В с концентрацией 38 масс.%.
Скорость подачи реагента А составляет 6,23 . Температура на входе 25. Плотность раствора . Тепловой эффект реакции 5000 . Для проведения реакции следует поддерживать температуру , что достигается с помощью теплообменника, диаметр трубок которого d=250 . Расход хладоагента должен быть таким, чтобы его температура не превысила 25. Коэффициент теплопередачи . Теплоёмкость смеси реагентов .
Рисунок 9 - Схема расчёта
1 Составим тепловой баланс реактора
=0.
(); ;
; ; ;
.
2 Определим начальную концентрацию компонента А
;
.
3 Определим поверхность теплообмена:
;
(),
Выбираем одноходовой кожухотрубчатый теплообменник (n=37, d=259 ).
Выразим длину трубок теплообменника из следующего соотношения:
,
Откуда
;
.
Задача 16
Определить температуру нагревания реагента А на входе в РИС-Н адиабатически при осуществлении необратимой экзотермической реакции А R.
Тепловой эффект химической реакции .
Степень превращения .
Температура проведения реакции .
Теплоёмкость .
1 Составим тепловой баланс реактора:
,
Где
.
2 Выразим из последнего выражения :
;
.
Задача 17
Определить количество теплоты, которое необходимо отводить в РИС-Н при проведении в нём обратимой экзотермической реакции А+BR+18000, с тем, чтобы обеспечить максимальную степень превращения реагента А().
Температура реакционной смеси на входе в реактор .
Теплоёмкость .
Известна также экспериментальная зависимость, представленная в таблице 6.
Таблица 6 – Экспериментальная зависимость степени превращения от температуры Т
5 | 15 | 25 | 35 | 40 | 42 | 45 | 55 | 65 | |
0,18 | 0,31 | 0,46 | 0,56 | 0,58 | 0,60 | 0,59 | 0,49 | 0,38 |
1 Из экспериментальной зависимости, представленной в таблице 6, видно, что максимальная степень превращения реагента А достигается только при температуре реакционной смеси, равной 42 . Для этой температуры и будем производить все дальнейшие расчёты.
2 Принимаем, что реактор работает в политропическом режиме
3 Составим уравнение теплового баланса для реактора, работающего в политропическом режиме:
;
.
.
преобразуем последнее выражение к следующему виду:
,
Откуда
;
Следовательно, режим работы реактора должен быть адиабатическим.
Задача 18
Определить объёмные расходы реагентов и в РИС-Н при проведении реакции А+В=R+S. Объём РИС-Н
л; ;
; ;;.
1 Составим алгоритм расчёта:
Рисунок 10 – Схема расчёта
2 Определим начальные концентрации компонентов А и В в смеси:
Принимаем
;
;
;
;
3 Определим концентрации реагентов А и В в реакционной смеси:
,
Откуда
;
;
,
Откуда
;
;
;
;
;
.
4 Определим скорость химической реакции:
;
.
5 Определим время пребывания реакционной смеси в аппарате:
;
(1 200 000 с).
6 Определим объёмные расходы реагентов А и В:
;
;
;
.
Задача 19
Скорость превращения в реакции А 2R описывается кинетическим уравнением первого порядка .
Вычислить среднее время пребывания реагирующей смеси, необходимое для достижения в К-РИС из четырёх реакторов (N=4).
Какое время пребывания реакционной смеси потребовалось бы для достижения такой же степени превращения в РИС-Н?
1 Определим среднее время пребывания реагирующей смеси в К-РИС:
,
где - время пребывания реагирующей смеси в одном реакторе.
;
(),
().
2 Определим среднее время пребывания реагирующей смеси в РИС-Н:
, так как в данном случае N=1,
;
().
Задача 20
Определить объём реактора идеального смешения непрерывного действия (РИС-Н), каскада реакторов идеального смешения (К-РИС), реактора идеального вытеснения (РИВ), при проведении реакции второго порядка: 2А R+S.
Условия:
1 Начальная концентрация ;
2 Константа скорости химической реакции ;
3 Степень превращения ;
4 Первоначальный расход смеси
Примечание: объём реакционной смеси на протяжении всей реакции остаётся постоянным.
1 Определим время пребывания реакционной смеси в реакторе идеального смешения и его объём:
;
;
;
.
2 Определим время пребывания реакционной смеси в реакторе идеального вытеснения и его объём:
;
;
;
.
3 Для каскада реакторов идеального смешения принимают, что все секции имеют одинаковый объём, причём
.
.
Построим зависимость скорости химической реакции от концентрации:
;
Так как
,;
Например,
Построение продолжается до тех пор, пока не будет обеспечена заданная степень превращения, то есть при выполнении следующего условия:
;
.
Дробного числа секций быть не может, принимаем число секций равным 4, причём четыре секции дают степень превращения больше, чем требуется по условию.
;
;
.