Московский Институт Электронной Техники
(Технический Университет)
Курсовая работа
по теме:
«Полиамиды»
Выполнил:
студент гр. ЭТМ-23
Шаров Н.А.
Москва
2000
Содержание:
Полимеры.. 3
Классификация полимеров. 3
Свойства и важнейшие характеристики полимеров. 4
Растворимость сульфосодержащих полиамидов. 6
Характеристики некоторых полиамидов. 7
ПОЛИАМИД ПА6-ЛТ-СВУ4. 7
ПОЛИАМИД ПА6-ЛПО-Т18. 8
ПОЛИАМИД ПА66-1А.. 9
ПОЛИАМИД ПА66-2. 9
ПОЛИАМИД ПА66-1-Л-СВ30. 10
ПОЛИАМИД ПА66-ЛТО-СВ30. 10
ПОЛИАМИД ПА610-Л.. 11
ПОЛИАМИД ПА610-Л-СВ30. 12
ПОЛИАМИД ПА610-Л-Т20. 12
Примеры получения полиамидов. 13
Список используемой литературы:15
Полиамиды
- высокомолекулярные соединения, относящиеся к гетероцепным полимерам, в основной цепи которых содержатся амидные связи, посредством которых соединены между собой мономерные остатки. Примером полиамидов является найлон. Поэтому рассмотрим полиамиды на примерах полимерах и найлона.
Полимеры
Полимеры - химические соединения с высокой мол. массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
Классификация полимеров
По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами. В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.
Свойства и важнейшие характеристики полимеров
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки , способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.
Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.
Растворимость сульфосодержащих полиамидов
Большинство ароматических полиамидов растворяется в ограниченном числе растворителей, что заметно сужает области их применения и усложняет технологию переработки. Введение в полиамидную цепь сульфогрупп сказывается на растворимости полимеров [4]. При определенном содержании сульфогрупп ароматические полиамиды приобретают способность растворяться в воде. Для рассматриваемых нами полиамидов этот переход соответствует диапазону обменной емкости 2,6–3,2 г-экв/г. В амидных растворителях при значениях обменной емкости 2,6 г-экв/г и ниже они образуют стабильные растворы с концентрацией 5–15% масс. Следует отметить, что все представленные полиамиды вне зависимости от строения и количества сульфогрупп растворимы в 96%-ной серной кислоте.
Найлон (анид, полиамид-6,6)
получают поликонденсацией двух мономеров:
· адипиновой кислоты HOOC-(CH2
)4
-COOH и
· гексаметилендиамина H2
N-(CH2
)6
-NH2
.
Цифры в названии "полиамид-6,6" означают число атомов углерода между амидными группами -NH-CO- в структурном звене. Для обеспечения строгой эквивалентности адипиновой кислоты и диамина сначала приготовляют их соль (соль АГ) путем смешения реагирующих веществ в растворе метанола:
H2
N(CH2
)6
NH2
+HOOC(CH2
)4
COOH ® [H2
N(CH2
)6
-NH3
]+
[OOC-(CH2
)4
COOH]-
Затем нагревают водный раствор или суспензию (60-80%) очищенной соли в автоклаве. По окончании реакции расплавленный полиамид выдавливается из автоклава в виде непрерывной ленты, которая потом рубится на "крошку". Весь процесс поликонденсации и дальнейшие операции с расплавленным полимером проводят в атмосфере азота, тщательно освобожденного от кислорода во избежание окисления и потемнения полимера.
Области применения найлона, как и других полиамидов, - получение синтетического волокна и некоторых конструкционных деталей.
Характеристики некоторых полиамидов
ПОЛИАМИД ПА6-ЛТ-СВУ4
Стеклонаполненная термостабилизированная, ударопрочная полиамидная композиция, стойкая к действию масел и бензина. ПА6-ЛТ-СВУ4 рекомендуется для изготовления корпусных деталей электро- и пневмоинструментов, строительно-отделочных и других машин, работающих в условиях ударных нагрузок и вибраций.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Ударная вязкость по Шарпи, КДж/м2
, не менее |
60 |
Изгибающее напряжение при разрушении, МПа, не менее | 190 |
Температура изгиба под нагрузкой при напряжении 1,8 МПа, 'С, не менее | 180 |
Электрическая прочность,. КВ/мм, не менее | |
- в исходном с
остоянии |
22 |
- после выдерживания в воде 24 часа | 22 |
Удельное объемное сопротивление, ОМ см, не менее | |
- в исходном состоянии | 1*10 4
|
- после выдерживания в воде 24 часа | 1*10 4
|
ПОЛИАМИД ПА6-ЛПО-Т18
Тальконаполненный окрашенный пластифицированный композиционный материал ПА6-ЛПО-Т18 отличается повышенной стабильностью размеров, стойкостью к деформации, износостойкостью. Рекомендуется для изготовления деталей конструкционного, антифрикционного и электротехнического назначения, требующих повышенной размерной точности. При переработке обеспечивает низкий износ литьевых машин и оснастки.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Ударная вязкость по Шарпи, КДж/м2
, не менее |
30 |
Температура изгиба под нагрузкой 'С | |
- при напряжении 1,8 МПа, | 80 |
- при напряжении 0, 45 МПа, | 179-200 |
Прочность при разрыве, МПа, не менее | 77 |
Электрическая прочность, КВ/мм, не менее | 25,0 |
Изгибающее напряжение при заданной величине прогиба, МПа, не менее | 90 |
ПОЛИАМИД ПА66-1А
Конструкционный полиамид ПА66-1А - термостабилизированный продукт поликонденсации гексаметилендиамида и адипиновой кислоты. Отличается высокими прочностными свойствами, теплостойкостью, деформационной стабильностью. Устойчив к действию щелочей, масел, бензина. Используется для изготовления деталей, работающих при повышенных механических нагрузках (шестерни, вкладыши подшипников, корпуса и т. д. )
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Температура плавления, 'С | 254-260 |
Ударная вязкость по Шарпи, КДж/м2
|
|
- на образцах без надреза | не разрушается |
- на образцах с надрезом, не менее | 7,5 |
Изгибающее напряжение при заданной величине прогиба, МПа, не менее | 78 |
Электрическая прочность, КВ/мм | 20-25 |
ПОЛИАМИД ПА66-2
Конструкционный полиамид ПА66-2 - термостабилизированный продукт поликонденсации гексаметилендиамида и адипиновой кислоты. Отличается высокими прочностными свойствами, теплостойкостью, деформационной стабильностью. Устойчив к действию щелочей, масел, бензина. Используется для изготовления деталей, работающих при повышенных механических и тепловых нагрузок в электротехнической промышленности.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Температура плавления, С | 254-260 |
Ударная вязкость по Шарпи, КДж/м2
|
|
- на образцах без надреза | Не разрушается |
- на образцах с надрезом, не менее | 7,2 |
Изгибающее напряжение при заданной величине прогиба, МПа, не менее | 81 |
Электрическая прочность,. КВ/мм, не менее | 20 |
ПОЛИАМИД ПА66-1-Л-СВ30
ПА66-1-Л-СВЗО - стеклонаполненная композиция на основе полимидной смолы. Рекомендуется для изготовления изделий конструкционного, электроизоляционного назначения, применяемых в машиностроении, электронике, автомобилестроении, приборостроении, работающих в условиях повышенных температур.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Изгибающее напряжение при разрушении, МПа, не менее | 200 |
Ударная вязкость по Шарпи, КДж/м2
, не менее |
40 |
Температура изгиба под нагрузкой при напряжении 1,8 МПа, 'С, не менее | 200 |
Электрическая прочность,. КВ/мм, не менее | 20 |
Удельное объемное электрическое сопротивление, ОМ см, не менее | 2*10 4
|
ПОЛИАМИД ПА66-ЛТО-СВ30
Полиамид ПА66-ЛТО-СВ30 - термостабилизированная стеклонаполненная композиция, отличающаяся стойкостью к действию антифризов, минеральных масел, бензина. Имеет высокие физико- механические показатели. Рекомендуется для изготовления деталей в автомобилестроении.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Ударная вязкость по Шарпи, КДж/м2
, не менее |
|
- в исходном состоянии | 40 |
- после выдержки в антифризе в течение 20 часов при температуре 150'С | 40 |
Прочность при растяжении после выдержки в этиленгликоле в течение 72 часов при температуре 135 'С, МПа, не менее | 50 |
Изгибающее напряжение при разрушении, МПа, не менее | 200 |
Температура изгиба под нагрузкой 1,8 МПа, С, не менее | 200 |
Модуль упругости при растяжении, МПа | 8000-11000 |
ПОЛИАМИД ПА610-Л
Полиамид ПА610-Л - литьевой термопласт, получаемый поликонденсацией гексаметилендиамида и себациновой кислоты. Обладает высокими физико-механическими и электроизоляционными свойствами, повышенной размерной стабильностью, низким влагопоглощением. Материал масло-, бензиностоек. Применяется для изготовления деталей конструкционного, антифрикционного назначения, прецизионных деталей точной механики (мелкомодульные шестерни, золотники, манжеты и т.д.). Разрешен для изготовления изделий, контактирующих с пищевыми продуктами, и игрушек.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Ударная вязкость по Шарпи, КДж/м2
|
|
- на образцах без надреза | не разрушается |
- на образцах с надрезом, не менее | 4,9 |
Изгибающее напряжение при заданной величине прогиба, МПа, не менее | 44,1 |
Водопоглощение за 24 часа, %, не более | 0,5 |
Электрическая прочность, КВ/мм, не менее | 20 |
ПОЛИАМИД ПА610-Л-СВ30
ПА610-Л-СВЗО - стеклонаполненная композиция на основе полимидной смолы ПА610. Отличается повышенной прочностью, теплостойкостью, износостойкостью, малым коэффициентом теплового расширения. Изделия могут работать при температуре до 150'С и кратковременно до 180'С. Рекомендуется для конструкционных деталей, работающих в условиях повышенных нагрузок и температуры.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Ударная вязкость по Шарпи, КДж/м2
, не менее |
29,4 |
Модуль упругости при изгибе, МПа | 7000-9000 |
Температура изгиба под нагрузкой при напряжении | |
- 1,8 МПа, 'С | 190-200 |
-0, 45 МПа, 'С | 200-205 |
Электрическая прочность, КВ/мм, не менее | 25 |
ПОЛИАМИД ПА610-Л-Т20
Тальконаполненный окрашенный пластифицированный композиционный материал ПА610-ЛПО-Т20 отличается повышенной стабильностью размеров, стойкостью к деформации, износостойкостью. Рекомендуется для изготовления деталей конструкционного, антифрикционного и электроизоляционного назначения, требующих повышенной размерной точности. При переработке обеспечивает низкий износ литьевых машин и оснастки.
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
Ударная вязкость по Шарпи, КДж/м2
, не менее |
30 |
Модуль упругости при изгибе, МПа | 2000-3000 |
Водопоглащение за 24 часа, %, не более | 1 |
Электрическая прочность,. КВ/мм | 20-30 |
Усадка, % | 0,8-1,7 |
Примеры получения полиамидов
|
Аналоги полипептидов можно получить синтетически из w-аминокислот, причем практическое применение находят соединения этого типа, начиная с «полипептида» w-аминокапроновой кислоты. Эти полипептиды (полиамиды) получаются нагреванием циклических лактомов, образующих посредством бекмановской перегруппировки оксидов циклических кетонов.
Из расплава этого полимера капроновой смолы вытягиванием формуют волокно капрон. В принципе этот метод применим для получения гомологов капрона.
Полиамиды можно получать и поликонденсацией самих аминокислот (с отщеплением воды):
|
|
|
Полиамиды указанного типа идут для изготовления синтетического волокна, искусственного меха, кожи и пластмассовых изделий, обладающих большой прочностью и упругостью (типа слоновой кости). Наибольшее распространение получил капрон, в следствии доступности сырья и наличие давно разработанного пути синтеза. Энтант и рильсан обладают преимуществом большой прочности и легкости.
Список используемой литературы:
1.
Несмеянов А.Н., Несмеянов Н.А.
Начала органической химии. – М.: Химия, 1974.
2.
Оганесян Э.Т.
Важнейшие понятия и термины в химии. – М. «Высшая школа», 1993.
3.
http
://
www
.
chem
.
msu
.
su
/
4.
http
://
www
.
chimmed
.
ru
/
5.
http
://
plc
.
cwru
.
edu
/