Н.Н. Моисеев
Мы продолжаем разговор об основных тенденциях в развитии современного научного знания. Публикуемый отрывок из книги Н.Н. Моисеева обращает внимание на характерные свойства систем. Неоднократно в работах 1980–1990-х гг. Н.Н. Моисеев высказывает предположение, что дарвиновские принципы эволюции есть частное проявление более общих закономерностей развития, свойственных всем процессам в Универсуме, в том числе и процессам самоорганизации. Движение к «универсальному эволюционизму» — характерная черта многих работ ученого (см., например, «Алгоритмы развития» — М., Наука, 1987).
Этот поиск общих законов развития дает импульс для перехода к следующему этажу бесконечной лестницы познания.
Я уже использовал и дальше часто буду использовать термин «система», причем в его самом простом смысле. В силу особого значения для целей этой работы, повторю еще раз некоторые положения.
Условимся называть системой любую совокупность взаимодействующих элементов. Это определение совершенно тривиально, но, как мы это увидим ниже, имеет совершенно нетривиальные следствия. Прежде всего заметим, что любой объект нашего изучения представляет собой систему. Этот факт имеет глубокое значение для научного познания. И он был понят очень давно, вероятно, еще в античные времена. И был объектом изучения классического рационализма.
Однако это направление научной мысли связывало представления о свойствах системы со свойствами ее элементов. Более того, молчаливо предполагалось, что свойства системы можно вывести (изучить) на основе изучения свойств элементов, ее составляющих. Такой подход к изучению свойств системы получил название редукционизма. Он сыграл огромную положительную роль в развитии естествознания.
Но всё оказалось гораздо сложнее. Прежде всего обнаружилось, что изучение далеко не всех свойств системы может быть сведено к изучению свойств ее отдельных элементов. Простейший пример: аномальная зависимость плотности воды от температуры не выводима из свойств ее элементов — кислорода и водорода. Другими словами, система обладает особыми системными свойствами. Их изучение представляется важнейшим направлением современной науки. Его можно было бы назвать и так: изучение свойств кооперативных взаимодействий.
Но имеют место и гораздо более глубокие связи между свойствами системы и свойствами ее элементов. Некоторые системы как бы определяют свойства своих элементов, элиминируют, исключают некоторые из них, если эти элементы оказываются неспособными выполнять некоторые функции, необходимые для существования (наверное, точнее — стабильности) системы. Порой мне представляется, что многие системы напоминают инженера, управляющего сложной машиной. Если какая-либо деталь не удовлетворяет его требованиям, он не исправляет ее, а просто выбрасывает и подбирает новую, лучше соответствующую требованиям к системе. Это обстоятельство особенно хорошо просматривается на уровне систем общественной природы.
Другими словами, взаимосвязь свойств системы и ее элементов гораздо более глубокая, чем это принято думать: не только свойства системы зависят от свойств элементов, но и обратно — свойства элементов, составляющих систему, могут зависеть от свойств системы. И по мере восхождения по ступеням сложности эта взаимозависимость проявляется все более и более отчетливо. Особенно тогда, когда речь заходит об изучении систем общественной природы. Но это вовсе не означает запрета на изучение элемента системы как некоторую выделенную данность…
И последнее. Можно говорить о «целях» системы, какой бы природы она ни была. В неживых системах это стабильность и развитие, т. е. непрерывное усложнение организационной структуры и многообразия элементов. В системах, принадлежащих миру живого, цель элемента — стабильность, которую принято называть гомеостазом. В системах общественной природы возникает целый спектр целей. Поскольку элементы системы в свою очередь являются системами, можно говорить и о целях элементов (подсистем). И они, эти цели подсистем, далеко не всегда совпадают с целями самой системы. Поэтому воз
В этом смысле влияние системы на ее элементы качественно отличается от роли конструктора, поскольку элементы сами развиваются в силу механизмов самоорганизации, о которых я буду говорить ниже. Система не конструирует элементы, а лишь отбраковывает негодные, т. е. служит фактором отбора.
…Но вернемся к описанию простейшей интерпретации Универсума и особенностям развития, которое она отражает.
Сегодня всё чаще и чаще, даже в областях, далеких от физики, используют термин «самоорганизация». Что он означает?
Единого, всеми принятого определения термина «самоорганизация» не существует. Разные авторы используют разные определения, бытует и термин «синергетика», который я стараюсь не использовать. …Условимся называть самоорганизацией системы такой процесс изменения ее состояния (или характеристик), который происходит без целенаправленного (может, лучше — целенаправляемого) начала, каковы бы ни были источники целеполагания. Можно говорить и о стихии самоорганизации — здесь мы ошибки не сделаем. Причины, побуждающие процесс самоорганизации, могут быть как внешними, так и внутренними. Если же речь идет об Универсуме как единой системе, то процесс ее изменения идет только за счет внутренних взаимодействий, т. е. за счет факторов, принадлежащих Универсуму. Никаких внешних взаимодействий мы не наблюдаем, значит, согласно принципу Бора, мы не имеем права говорить, что они существуют. И центральной проблемой теории систем является проблема описания этого процесса.
Механизмы самоорганизации Универсума, т. е. материального мира и многих подсистем, его составляющих, далеко не познаны. Последнее означает, что для многих из них еще не создано интерпретаций, имеющих смысл эмпирических обобщений, и мы вынуждены опираться на те или иные гипотезы. Я думаю, что познание механизмов самоорганизации и составляет суть фундаментальных наук.
Однако сегодня мы уже понимаем, сколь разнообразны и многочислены эти механизмы. И возникает естественный вопрос: не существуют ли некоторые общие принципы или интерпретации, позволяющие увидеть их общность (сделать шаг к простоте, который нам позволит приблизиться к пониманию сложности)?
Несмотря на ограниченность наших знаний, все же просматривается некоторая общая логика этого процесса. Ее можно будет увидеть, если мы сумеем найти общий язык, годный для описания схемы процесса самоорганизации для всех трех этажей мироздания — неживой, или косной, материи, живого вещества и общества. Пока же, в этой главе, мы будем говорить лишь о первом этаже, имея в виду в дальнейшем показать универсальность этой логики.
В качестве основы языка описания схемы механизмов самоорганизации мне кажется наиболее удобным (если угодно, даже естественным) использовать язык дарвиновской триады — «изменчивость», «наследственность» и «отбор». Смысл этих терминов, разумеется, должен быть существенным образом расширен по сравнению с тем, который в них вкладывал знаменитый автор теории происхождения видов. Кроме того, как мы увидим ниже, одного этого языка заведомо недостаточно. По мере восхождения по ступеням сложности его придется непрерывно расширять. Но точки зрения, выработанные в процессе анализа систем (этот термин я предпочитаю широко распространенному термину «системный анализ»), дают определенные основания для рационального расширения языка, удовлетворяющего принципу Оккама — минимальному привлечению новых понятий.
Во всяком случае, язык, основанный на использовании дарвиновской триады, позволяет увидеть то, что лежит в основе общей логики развития материального мира, логики, которая просматривается в основе развития всех трех этажей Универсума — неживой, или косной, материи, живого вещества и «мира человека». При всем качественном различии этих форм существования материи их развитие связывает общая логика! И переоценить значение этого факта невозможно.