РефератыЭкологияМеМетоды измерения параметров состояния окружающей среды и экологических показателей транспортных объектов

Методы измерения параметров состояния окружающей среды и экологических показателей транспортных объектов

План


Введение


1. Методы оценки загрязнения газовых потоков


2. Методы оценки параметрических загрязнений


3. Методы оценки загрязнения водной среды, почв, грунтов и растительности


Список литературы


Введение


Количественная оценка промышленно-транспортных воздейст­вий на окружающую среду необходима для:


—определения значимости отдельных факторов и выявления со­ответствующих закономерностей;


—разработки эффективных механизмов управления природо­охранной деятельностью и рациональным использованием природ­ных ресурсов в промышленности и на транспорте.


Она осуществляется в результате мониторинга промышлен­но-транспортных объектов и окружающей среды,т.е. слежения за промышленно-транспортными объектами как источниками загряз­нений и изменением состояния окружающей природной среды, а также предупреждения о создающихся критических ситуациях, вред­ных или опасных для здоровья людей и других живых организмов.


Особенности мониторинга объектов промышленности и транс­порта, диктующие требования к измерительным приборам, обо­рудованию, программным средствам и расчетным методикам, связаны с:


—множественностью подвижных источников загрязнения пере­менной интенсивности выбросов во времени и в пространстве;


—распределенностью источников загрязнений на значительной площади территории;


—наличием большого числа параметров, которые необходимо измерять регулярно или непрерывно с высокой степенью достовер­ности.


В связи с этим возникают особые требования к конструкции приборов, использованию специальных методов измерений и оцен­ки экологически значимых показателей транспортных средств, ма­териалов, технико-эксплуатационного состояния инженерных сооружений, параметров состояния окружающей среды. Речь идет о создании комплексной системы мониторинга на основе аэрокос­мического зондирования и наземного оперативного сопровожде­ния с использованием стационарных и передвижных постов наблюдений.


Обязательным условием успешной работы такой системы явля­ется широкое использование специальных программных средств и математических методов обработки, анализа массивов текущей ин­формации о промышленно-транспортных объектах и изменении со­стояния окружающей среды, восстановления информации о харак­теристиках транспортных потоков, уровнях загрязнения воздуха, воды, почвы, растительности на значительной площади территории (до 1000 км2
), используя в качестве исходных данных результаты из­мерений этих параметров в отдельных (репрезентативных) точках пространства. Эти методы и средства необходимы для визуализации и представления результатов мониторинга в форме, удобной для принятия эффективных управляющих решений.


1. Методы оценки загрязнения газовых потоков


Для определения концентраций вредных примесей в атмосфер­ном воздухе вблизи автомагистралей и в отработавших газах двига­телей используются разные методы оценки, когда анализируются индивидуальные пробы газа, взятые дискретно и при непрерывных измерениях.


Основные требования к отбору проб газа и его анализу следую­щие:


—все части системы отбора должны быть инертны по отноше­нию к исследуемому компоненту;


—температура системы отбора проб должна поддерживаться на уровне, исключающем конденсацию паров или взаимодействие ком­понентов исследуемой газовой смеси друг с другом;


—объем пробы должен быть точно измеренным и достаточным для обеспечения требуемой точности измерений.


Автоматические приборы непрерывного действия используются для оперативного контроля уровня загрязнения атмосферного воз­духа вблизи интенсивных источников выбросов (объектов энергети­ки, автомагистралей, химических производств и др.). Для определе­ния токсичности автомобилей (двигателей) используют приборы анализа индивидуальных пробна определенном режиме работы дви­гателя или при испытаниях по ездовым циклам, а также приборы не­прерывного действия.


В газоаналитической аппаратуре реализуются следующие мето­ды измерений:


1. Непосредственное измерение показателя, характеризующего вредное вещество, без изменения химического состава пробы газа.


Используются приборы, построенные на принципах избирательной абсорбции света в инфракрасной, ультрафиолетовой и видимой час­тях спектра, парамагнетизма, изменения плотности, теплопроводно­сти, показателя преломления света.


2. Вредное вещество, подлежащее измерению, переводится путем химических реакций в состояние, обладающее свойствами, доступ­ными автоматическому измерению. Используются приборы фото­метрического, гальванометрического, потенциометрического, тер­мохимического принципов действия.


В конструкциях наиболее распространенных анализаторов раз­личных газов используются разнообразные методы (табл.1).


Таблица1. Методы анализа загрязнения воздуха








Метод анализа Вещество

Абсорбционный метод спектрального анализа (инфракрасная и ультрафиолетовая области спек­тра)


Пламенно-ионизационный


Хемилюминесцентный


Флуоресцентный, пламенно-фотометрический


Радиометрический, гравиметрический


Электрохимический


СО, О3


Углеводороды, органические вещества


NO, NO2
, О3


SO2
, H2
S


Пыль


СО, SO2
,H2
S



Абсорбционный метод спектрального анализа газовоснован на свойстве веществ избирательно поглощать часть проходящего через них электромагнитного излучения. Специфичность спектра погло­щения позволяет качественно определять состав газовых смесей, а его интенсивность связана с количеством поглощающего энергию вещества. Каждому газу присуща своя область длин волн поглоще­ния. Это обусловливает возможность избирательного анализа газов.


Сущность метода заключается в следующем: если поочередно (путем обтюрации) пропускать поток монохроматического инфра­красного (ИК) излучения, образованный после прохождения им ин­терференционного фильтра, через кювету с используемой газовой смесью и без нее, то на приемнике ИК-излучения будет регистриро­ваться переменный сигнал, который несет информацию о количест­ве ИК-энергии, поглощенной анализируемым газом с частотой об­тюрации и, следовательно, о концентрации анализируемого газа. Анализаторами этого типа производится в частности оценка кон­центрации СО в атмосферном воздухе.


Недисперсионные оптико-акустические (инфракрасные) газоана­лизаторы широко применяются при контроле содержания СО, про­пана СзH8
, гексана С6
H14
в отработавших газах бензиновых двигате­лей при работе на холостом ходу и под нагрузкой. Разработаны и комбинированные приборы для одновременного определения содержания суммарных углеводородов, СО в отработавших газах и частоты вращения коленчатого вала в двигателях автомобилей и мотоциклов.


В энергетике используются газоанализаторы, в которых для оценки концентраций газовых примесей вместо инфракрасных излу­чателей используются ультрафиолетовые.


Здесь концентрации примесей также определяются по спектру поглощения. При прохождении светового луча через газовую среду часть его энергии поглощается или рассеивается. Молекула опреде­ленного вещества (SO2
, NO, NO3
, NH3
) поглощает энергию в своем специфическом диапазоне длин волн. Измерение концентраций в ав­томатическом режиме рассматриваемых веществ происходит одно­временно без сложной процедуры сканирования спектра.


Электрохимический метод газового анализаоснован на исполь­зовании химических сенсорных датчиков, состоящих из двух чувст­вительных элементов и определенного химического покрытия, которое непосредственно контактирует с анализируемой средой и на котором происходит адсорбция анализируемого вещества. В за­висимости от того, какие физические свойства, зависящие от коли­чества адсорбированного вещества, измеряются, датчики делятся на потенциометрические, кулонометрические, полярографические и др.


Электрохимические газоанализаторы отличаются сравнитель­ной простотой, низкой чувствительностью к механическим воздей­ствиям, малыми габаритами и массой, незначительным энергопо­треблением.


Пламенно-ионизационные газоанализаторыиспользуются для из­мерения суммарной концентрации углеводородов различных клас­сов, контроль которых избирательными методами анализа весьма сложен. Они обеспечивают надежное измерение в диапазоне концен­траций 10—10 000 млн-1
, отличаются высокой чувствительностью (до 0,001 млн1
) и малой инерционностью. Позволяют раздельно оп­ределять содержание метана и реакционноспособных углеводоро­дов, образующих в атмосфере фотохимический смог.


Метод основан на ионизации углеводородов в водородном пламени. В чистом водородном пламени содержание ионов не­значительно. При введении углеводородов в пламя количество об­разующихся ионов значительно возрастает и под действием прило­женного электрического поля между коллектором и горелкой возникает ионизационный ток, пропорциональный содержанию уг­леводородов. Некоторые из газоанализаторов данного типа имеют встроенный генератор водорода, что позволяет отказаться от внеш­них источников этого газа — газогенераторов или баллонов с водо­родом.


Хемилюминесцентный методгазового анализа применяется для измерения концентраций NOx
, О3
и основан на реакции этих компо­нентов, подающихся одновременно в реакционную камеру, которая имеет вид:


NO+O3
→ NO2
(NO2
')+O2


Возбужденная молекула NO2
' (образуется 5—10% от общего ко­личества молекул NO2) отдает избыток энергии в виде излучения (в диапазоне волн длиной 600—2400 нм, с максимумом при 1200 нм)


NO2
'
→ hv
+NO2


Интенсивность излучения, измеряемого фотоумножителем, про­порциональна концентрации оксидов азота. Озон получают в гене­раторах в результате воздействия тлеющего разряда или ультрафио­летового излучения на кислородсодержащую смесь (воздух).


Для определения концентрации Оз в атмосфере используют ре­акцию озона с органическим красителем на поверхности активиро­ванного вещества, при которой также наблюдается хемилюминесценция.


Кроме того, используют в качестве газа-реагента этилен высо­кой степени очистки. Под действием ультрафиолетового излучения озон вступает в реакцию с этиленом, которая сопровождается лю­минесцентным излучением в области длин волн 330—650 нм. Газоанализаторы этого типа отличаются высокой чувствительностью и селективностью, а при наличии встроенного озонатора, высоким уровнем

автоматизации и длительным сроком автономной работы без обслуживания.


Метод ультрафиолетовой флуоресценциииспользуется в прибо­рах для контроля SO2
и H2
S. Явление флуоресценции заключается в способности определенных веществ излучать свет под воздействием излучения источника возбуждения.


Для молекул SO2
это облучение пробы газа светом в области длин волн 200—500 нм (максимум при 350 нм), когда эти молекулы переходят из возбужденного состояния в нормальное, разряжаясь частично через флуоресценцию.


Интенсивность излучения, пропорциональная содержанию SO2
, регистрируется фотоумножителем. Включение в состав прибора конвертора, обеспечивающего каталитическое окисление сероводо­рода до диоксида серы, позволяет создать аппаратуру для одновре­менного контроля в газовой смеси этих веществ.


Преимущество указанного метода по сравнению с методом пла­менной фотометрии в отсутствии вспомогательных газов.


Гравиметрический (весовой) метод— традиционный метод опре­деления концентрации твердых частиц в газовых смесях, связанный с отбором пробы, пропусканием ее через фильтр, взвешиванием фильтра или определением его степени черноты по эталону. Этот метод реализован в дымомерах, которые используются для опреде­ления дымности отработавших газов дизелей.


Необходимость непрерывного контроля содержания твердых частиц в отработавших газах двигателей или атмосферном воздухе привела к широкому распространению оптических, радиоизотоп­ных методов анализа. Оптический метод анализа (рис. 6.2) основан на измерении ослабления излучения твердыми частицами при про­хождении луча света через измерительный канал определенной длины.


Метод используется для качественной оценки содержания частиц на выходе из двигателей, горелочных устройств, очи­стных сооружений (в единицах оптиче­ской плотности газового потока при просвечивании его заданной толщины с замером на фотоэлементе степени погло­щения света).


Например, автомобильный дымомер типа «Хартридж» имеет шкалу, разделенную на 100 единиц. За единицу принята степень ослабления интенсивности светового потока на 1%. Но количественное определение содержания частиц этим методом неэффективно, так как на измерение существенное влияние оказывают цветность и дис­персность частиц. Поэтому погрешность оценки концентраций может достигать десятки процентов.


Широкое распространение получил радиоизотопный метод, ли­шенный этого недостатка и основанный на ослаблении β-излучения частицами. Концентрация твердых частиц (пыли) вычисляется по результатам измерений на фильтре (лента из стекловолокна) до и после нанесения пробы. Лента транспортируется в детекторный блок, где расположен радиоизотопный источник, и производится замер.


Хроматографический методшироко распространен и основан на использовании свойства разделения сложных смесейна хроматографической колонке, заполненной сорбентом.


Проба газа вводится в поток соответствующего газа-носителя простейшей форсункой и вместе с ним пропускается через колонки с твердыми адсорбирующими поверхностями (адсорбционная газо­вая хроматография), или с нанесенными на твердые поверхности нелетучими жидкостями (газожидкостная хроматография). Отдель­ные компоненты смеси с различными скоростями перемещаются в колонке, выходят из нее раздельными фракциями и регистрируются.


Газ-носитель, транспортирующий молекулы исследуемой газо­вой смеси, протекает с постоянной скоростью. Колонки, по кото­рым проходит газ, калибруются для того, чтобы установить время прохождения того или иного компонента. Соответствующий детек­тор используется для обнаружения или определения количества то­го или иного компонента смеси. Количественная оценка осуществ­ляется по интенсивности сигнала детектора или с помощью электронных интеграторов. Этим методом могут регистрироваться химически однородные вещества (индивидуальные углеводороды) со слабо выраженной качественной реакцией (N2
O, СО), которые идентифицируются по специфичному времени удерживания.


Важнейшая часть газового хроматографа — детектор. В прибо­рах, предназначенных для измерений загрязнения атмосферного воздуха, получили распространение следующие виды этих датчиков:


—пламенно-ионизационный детектор, который реагирует прак­тически на все органические соединения, включая бензол, толуол, ксилол, фенол, формальдегид;


—электронно-захватный детектор — чувствителен к хлорсодержащим веществам;


—фотоионизационный детектор используется для контроля ор­ганических соединений и неорганических веществ (NH3
, H2
S, РНз);


—детектор по теплопроводности используется для контроля продуктов горения (СО, СО2
, H2
, SO2
).


В связи с внедрением современных средств электроники и ми­ниатюризацией аналитической части хроматографов созданы пор­тативные (переносные) приборы для осуществления газового анализа в полевых условиях (передвижные лаборатории на транс­портных средствах). Наибольший интерес представляют переносные газовые хроматографы, запрограммированные для иденти­фикации определенных компонентов газовой смеси. Результаты выражаются непосредственно в концентрации контролируемого вещества.


Лидарная система контроля загрязнения реализует лазерно-локационный метод - комбинационное рассеяние и дифференциальное поглощение загрязняющих веществ с использованием источника ла­зерного излучения и предназначена для дистанционного зондирова­ния качества атмосферы. Состоит из лидара кругового обзора, ко­торый устанавливается в промышленных зонах или вблизи автомагистралей на доминирующих строениях, и предназначен для непрерывного контроля выбросов аэрозолей, NOx
, SO2
на террито­рии радиусом 7—15 км и измерения азимута и расстояния до источ­ника загрязнения. Лидар второго типа на базе автомобиля — ком­бинационного рассеяния используется для многокомпонентного анализа концентрации примесей в воздухе.


2. Методы оценки параметрических загрязнений


Измерение уровня шума производят с помощью шумомеровкак с присоединением к ним октавных фильтров (анализаторов спектра), так и без них.


Шумомеры состоят из датчика (микрофона или акселерометра), воспринимающего звуковое давление, усилителя и выходного звена, представляющего собой стрелочный индикатор, градуированный непосредственно в децибелах.


Наибольшие требования предъявляются к датчикам. Они долж­ны иметь широкий рабочий диапазон частот, обладать высокой и стабильной чувствительностью, не искажать воспринимаемое звуко­вое поле, иметь небольшие габариты и массу. Датчики бывают электродинамические, керамические, конденсаторные, пьезоэлек­трические.


Шумомеры измеряют суммарные уровни интенсивности звука в четырех частотных характеристиках: А, В, С и линейной в диапазо­не частот 2—40 000 Гц. Анализатор спектра шума — усилитель, ко­торый в зависимости от настройки позволяет выделять определен­ную полосу частот. Он устанавливает не абсолютные уровни интенсивности шума в этих полосах частот, а их соотношение, что позволяет определить полосу с максимальной энергией (интенсив­ностью шума).


Анализаторы спектра шума бывают фильтровые и гетерогенные.
Фильтровые состоят из набора электрических фильтров, каждый из которых пропускает определенную полосу частот. В гетерогенных анализаторах получение определенной полосы пропускания обеспе­чивается с помощью узкополосных кварцевых фильтров. Регистра­ция уровней шума может осуществляться также с помощью само­писца, магнитографа, магнитофона.


3. Методы оценки загрязнения водной среды, почв, грунтов и растительности


Для оценки уровня загрязнения водной средыиспользуются тра­диционные приборы физико-химического анализа, а также хроматографы. Контролируется мутность, цвет, запах, жесткость, удель­ная электрическая проводимость, коэффициент светопропускания, редокс-потенциал, активность водородных ионов (рН), уровень на­сыщения кислородом, активность и концентрация ионов различных веществ, поступающих в воду в виде загрязнений, и другие парамет­ры (температура, давление, скорость потока).


Химический анализ воды осуществляется с помощью лаборатор­ных комплектов анализа воды. В эти комплекты входят химические растворы, фарфоровая и стеклянная посуда, вспомогательное обо­рудование, необходимое для сбора и обработки проб, выполнения химического анализа. Физико-химические свойства воды определя­ются с использованием фотоколориметров, атомно-абсорбционных, инфракрасных, калориметрических спектрометров, ионометров, комплексных анализаторов качества воды.


Для контроля состояния поверхности земель, качественного и количественного состава почв и грунтов,
оценки уровня и состава загрязнений используются приборы и оборудование, приведенные выше (анализ водной вытяжки грунта), а также ряд специальных приборов, предназначенных для определения плотности, свойств почв, грунтов (твердомер, глубинный гамма-плотномер, сдвиговый прибор, измеритель объемной влажности), параметров снегового покрова. Широко используется переносной лабораторный ком­плект определения гидрофизических и физико-механических свойств грунтов.


Седиментация атмосферных транспортных аэрозолей, в частно­сти тяжелых металлов, приводит к загрязнению растительности.
Наземные части растений аккумулируют атмосферные загрязнения, и их химический состав может быть индикатором для выделения территорий с высоким уровнем воздействия транспортных средств.


Измеряемые параметры:


—физиологическое состояние растений;


—элементный состав тканей растения.


Визуальная оценка загрязнения — проявление чрезмерного (вы­ше установленных норм) содержания различных веществ в зеленой массе строится на идентификации явно выраженных изменений вида растений:


—медь — темно-зеленые листья, толстые короткие корни;


—железо — темно-зеленая окраска листьев, замедленный рост надземных частей растения;


—цинк — хлороз и некроз концов листьев, междужилковый хлороз молодых листьев;


—свинец — темно-зеленые листья, бурые короткие корни, скру­чивание старых листьев;


—кадмий — бурые края листьев, красноватые жилки и черешки, скрученные листья и бурые недоразвитые корни.


Определение концентрации токсичных элементов в тканях расте­ний осуществляется по водной вытяжке в лабораторных условиях методами, рассмотренными выше.


Список литературы


1. Промышленно-транспортная экология: Учеб. для вузов / В.Н. Луканин, Ю.В. Трофименко; Под ред. В.Н. Луканина. – М.: Высш. Шк., 2003


2. Мазур И.И., Молдаванов О.И., Шишов В.Н. Инженерная экология. Общий курс. В 2-х т. / Под ред. И.И. Мазура. – М.: Высшая школа, 1996.


3. Богдановский Г.А. Химическая экология: Учеб. пособие. М.: Изд-во МГУ, 1994.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Методы измерения параметров состояния окружающей среды и экологических показателей транспортных объектов

Слов:2334
Символов:22102
Размер:43.17 Кб.