Промышленная экология
Тема: «Электромагнитные излучения»
Эволюция развития человечества и создание индустриальных методов хозяйствования привели к образованию глобальной техносферы, одним из элементов которой является железнодорожный транспорт. Природная среда при функционировании элементов техносферы является источником сырьевых и энергетических ресурсов и пространством для размещения ее инфраструктуры.
Железнодорожный транспорт по объему грузовых перевозок занимает первое место среди других видов транспорта, по объему перевозок пассажиров второе место после автомобильного транспорта.
Успешное функционирование и развитие железнодорожного транспорта зависит от состояния природных комплексов и наличия природных ресурсов, развития инфраструктуры искусственной среды, социально-экономической среды общества.
Состояние окружающей среды при взаимодействии с объектами железнодорожного транспорта зависит от инфраструктуры по строительству железных дорог, производству подвижного состава, производственного оборудования и других устройств, интенсивности использования подвижного состава и других объектов на железных дорогах, результатов научных исследований и их внедрения на предприятиях и объектах отрасли.
Каждый элемент системы имеет прямые и обратные связи друг с другом. При развитии и функционировании объектов железнодорожного транспорта следует учитывать свойства природных комплексов многосвязность, устойчивость, коммутативность, аддитивность, инвариантность, многофакторную корреляцию.
Воздействие объектов железнодорожного транспорта на природу обусловлено строительством дорог, производственно-хозяйственной деятельностью предприятий, эксплуатацией железных дорог и подвижного состава, сжиганием большого количества топлива, применением пестицидов на лесных полосах и др.
Строительство и функционирование железных дорог связано с загрязнением природных комплексов выбросами, стоками, отходами, которые не должны нарушать равновесие в экологических системах. Равновесие экосистемы характеризуется свойством сохранять устойчивое состояние в пределах регламентированных антропогенных изменений в окружающих транспортное предприятие природных комплексах. Самоочищающая способность природной среды снижается из-за уничтожения и истощения природных комплексов. Линии железных дорог, прокладываемые на сложившихся путях миграции живых организмов, нарушают их развитие и даже приводят к гибели целых сообществ и видов.
Факторы воздействия объектов железнодорожного транспорта на окружающую среду можно классифицировать по следующим признакам: механические (твердые отходы, механическое воздействие на почвы строительных, дорожных, путевых и других машин); физические (тепловые излучения, электрические поля, электромагнитные поля, шум, инфразвук, ультразвук, вибрация, радиация и др.); химические вещества и соединения (кислоты, щелочи, соли металлов, альдегиды, ароматические углеводороды, краски и растворители, органические кислоты и соединения и др.), которые подразделяются не чрезвычайно опасные, высоко опасные, опасные и малоопасные; биологические (макро- и микроорганизмы, бактерии, вирусы).
Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятное воздействие на человека и биологические объекты, большую сложность представляют электромагнитные поля, особенно относящиеся к радиочастотному излучению. Здесь неприемлем замкнутый цикл производства без выброса загрязняющего фактора в окружающую среду, поскольку используется уникальная способность радиоволн распространяться на далекие расстояния. Современный технический прогресс несет неизбежность воздействия электромагнитного излучения (ЭМИ) на население и окружающую живую природу. Широкое применение телевидения и радиовещания, радиосвязи и радиолокации, использования СВЧ-излучающих приборов и технологий и т. п. И хотя возможна определенная канализация излучения, уменьшающая нежелательное облучение населения, и регламентация во время работ излучающих устройств, дальнейший технический прогресс все же повышает вероятность воздействия ЭМИ на человека.
В настоящее время электромагнитное загрязнение окружающей среды приобрело глобальные масштабы вследствие широкого распространения источников электромагнитного поля (ЭМП). Этот процесс связан с технологическим развитием общества, и отказаться от использования ЭМП пока не представляется возможным. Поэтому ЭМП, как фактор внешней среды, необходимо рассматривать с двух позиций: биологической вредности и социальной полезности.
Но возможность неблагоприятного влияния на организм человека электромагнитных полей (ЭМП) было обращено внимание еще в конце 40-х годов. В результате обследования людей, работающих в условиях воздействия ЭМП значительной интенсивности, было показано, что наиболее чувствительными к данному воздействию является нервная и сердечно-сосудистая система. Описаны изменения кроветворения, нарушения со стороны эндокринной системы, метаболических процессов, заболевания органов зрения. Было установлено, что клинические проявления воздействия радиоволн наиболее часто характеризуются астеническими и вегетативными реакциями.
Электромагнитным излучением являются электромагнитные волны, возбуждаемые различными излучающими объектами, – заряженными частицами, атомами, молекулами, антеннами и пр.
По мере развития науки и техники были обнаружены различные виды излучений: радиоволны, видимый свет, рентгеновские лучи, g - излучение. Все эти излучения имеют одну и ту же природу. Они являются электромагнитными волнами. Разнообразие свойств этих излучений обусловлено их частотой (или длиной волны). Между отдельными видами излучений нет резкой границы, один вид излучения плавно переходит в другой. Различие свойств становится заметным только в том случае, когда длины волн различаются на несколько порядков.
Для систематизации всех видов излучений составлена единая шкала электромагнитных волн представленная в таблице 1.
Таблица 1
l, м |
n, Гц |
тип волн |
источники |
10 11
|
3·10 –3
|
низкочастотные волны |
генераторы переменного тока |
10 5
|
3·10 3 -
|
Радиоволны |
Открытый колебательный контур |
10 –3
|
3·10 11
|
инфракрасное излучение |
нагретые тела |
( 7.5-3.9) ·10 -7
|
( 4 – 8 )·10 14
|
видимый свет |
нагретые тела |
10 -7
|
3·10 15
|
ультрафиолетовое излучение |
нагретые тела |
10 –9
|
3·10 17
|
рентгеновское излучение |
рентгеновские трубки |
10 -11
|
3·10 19
|
g -излучение |
радиоактивный распад ядер элементов |
Где, l, м – длина волны;
n, Гц – частота волны.
Электромагнитные волны делятся:
- низкочастотные волны;
- радиоволны;
- инфракрасные излучения;
- видимый свет;
- ультрафиолетовое излучение;
- рентгеновское излучение;
- гамма-излучения.
Радиоволны- электромагнитные волны с частотой меньше 6000 ГГц.
Радиоволны делятся на частотные диапазоны это: длинные волны, средние волны, короткие волны, и ультракороткие волны.
Волны этого диапазона называются длинными, поскольку их низкой частоте соответствует большая длина волны. Они могут распространяться на тысячи километров, так как способны огибать земную поверхность. Поэтому многие международные радиостанции вещают на длинных волнах, изображенных на рисунке 1.
Рисунок 1 -Длинные радиоволны
Средние волны распространяются не на очень большие расстояния, поскольку могут отражаться только от ионосферы (одного из слоев атмосферы Земли). Передачи на средних волнах лучше принимают ночью, когда повышается отражательная способность ионосферного слоя. На рисунке 2 изображены средние волны.
Рисунок 2 -Средние радиоволны
Короткие волны многократно отражаются от поверхности Земли и от ионосферы, благодаря чему распространяются на очень большие расстояния. Передачи радиостанции, работающей на коротких волнах, можно принимать на другой стороне земного шара. На рисунке 3 изображены короткие волны.
Рисунок 3 - Короткие радиоволны
Ультракороткие волны (УКВ) могут отражаться только, от поверхности Земли и потому пригодны для вещания лишь на очень малые расстояния. На волнах УКВ-диапазона часто передают стереозвук, так как на них слабее помехи. На рисунке 4 изображены ультракороткие волны.
r;">
Рисунок 4 - Ультракороткие радиоволны
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).
Инфракрасное излучение было открыто в 1800 г. английским учёным У. Гершелем.
Сейчас весь диапазон инфракрасного излучения делят на три составляющих:
- коротковолновая область: λ=0,74 - 2,5 мкм;
- средневолновая область: λ=2,5 - 50 мкм;
- длинноволновая область: λ=50 - 2000 мкм.
Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн — терагерцовое излучение (субмиллиметровое излучение).
Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне.
Свет - электромагнитную волну. Волна - это просто изменение состояния среды или поля, распространяющееся в пространстве с какай-то скоростью. У любой волны есть длина - это расстояние между гребнями волны показана на рисунке 4.
.
Рисунок 4 – Длина волны
Длины волн, которые способен воспринимать человеческий глаз носит название видимого света. Например, свет с наибольшей длиной волны воспринимается как красный, а с наименьшей – как фиолетовый.
Цвета, которые мы воспринимаем, различаются в зависимости от длины волны видимого света.
Причина, по которой человек способен видеть свет заключается в воздействии света определенных длин волн на глазную сетчатку. Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз).
Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн, но он может воспринимать огромный диапазон различных цветов (диапазон волн).
Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.
В таблице 2 показаны виды ультрафиолетового излучения.
Таблица 2 – Виды ультрафиолетового излучения
Наименование |
Аббревиатура |
Длина волны в нанометрах |
Количество энергии на фотон |
Ближний |
NUV |
400 нм — 300 нм |
3.10 — 4.13 эВ |
Средний |
МUV |
300 нм — 200 нм |
4.13 — 6.20 эВ |
Дальний |
FUV |
200 нм — 122 нм |
6.20 — 10.2 эВ |
Экстремальный |
EUV, XUV |
121 нм — 10 нм |
10.2 — 124 эВ |
Вакуумный |
VUV |
200 нм — 10 нм |
6.20 — 124 эВ |
Ультрафиолет А, длинноволновой диапазон, Чёрный свет |
UVA |
400 нм — 315 нм |
3.10 — 3.94 эВ |
Окончание таблицы 2 |
|||
Наименование |
Аббревиатура |
Длина волны в нанометрах |
Количество энергии на фотон |
Ультрафиолет B (средний диапазон) |
UVB |
315 нм — 280 нм |
3.94 — 4.43 эВ |
Ультрафиолет С, коротковолновой, гермицидный диапазон |
UVC |
280 нм — 100 нм |
4.43 — 12.4 эВ |
Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.
Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру.
Рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 105 - 102 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т. п.
Гамма-излучение, гамма-лучи (γ-лучи) — вид электромагнитного излучения с чрезвычайно маленькой длиной волны — < 5×10−3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Энергия квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке — то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.
Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.
Рисунок 5 – Гамма-излучения
Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:
- фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).
- комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).
- рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).
- фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).
Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.
Гамма-излучения применяются в следующих областях:
- Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.
- Консервирование пищевых продуктов.
- Стерилизация медицинских материалов и оборудования.
- Лучевая терапия.
- Уровнемеры.
- Гамма-каротаж в геологии.
Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.
Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).