РефератыЭкономикаМеМетоды анализа основной тенденции развития в рядах динамики

Методы анализа основной тенденции развития в рядах динамики

Содержание

Введение. 3


1. Методы анализа основной тенденции развития в рядах динамики. 4


1.1. Средние показатели в рядах динамики. 4


1.2. Проверка ряда на наличие тренда. Непосредственное выделение тренда. 6


1.3. Анализ сезонных колебаний. 11


1.4. Анализ взаимосвязанных рядов динамики. 13


2. Статистико-детерминированный характер социально-экономических явлений и виды связей между ними. 16


Заключение. 19


Список использованных источников. 20


Введение

Ряды динамики – статистические данные, отображающие развитие во времени изучаемого явления. Их также называют динамическими рядами, временными рядами.


В каждом ряду динамики имеется два основных элемента:


1) показатель времени t;


2) соответствующие им уровни развития изучаемого явления y;


В качестве показаний времени в рядах динамики выступают либо определенные даты (моменты), либо отдельные периоды (годы, кварталы, месяцы, сутки).


Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.


Основным условием для получения правильных выводов при анализе рядов динамики является сопоставимость его элементов.


Ряды динамики формируются в результате сводки и группировки материалов статистического наблюдения. Повторяющиеся во времени (по отчетным периодам) значения одноименных показателей в ходе статистической сводки систематизируются в хронологической последовательности.


При этом каждый ряд динамики охватывает отдельные обособленные периоды, в которых могут происходить изменения, приводящие к несопоставимости отчетных данных с данными других периодов. Поэтому для анализа ряда динамики необходимо приведение всех составляющих его элементов к сопоставимому виду. Для этого в соответствии с задачами исследования устанавливаются причины, обусловившие несопоставимость анализируемой информации, и применяется соответствующая обработка, позволяющая производить сравнение уровней ряда динамики.


Несопоставимость в рядах динамики вызывается различными причинами. Это могут быть разновеликость показаний времени, неоднородность состава изучаемых совокупностей во времени, изменения в методике первичного учета и обобщения исходной информации, различия применяемых в различное время единиц измерения и т.д.[1]


1. Методы анализа основной тенденции развития в рядах динамики
1.1. Средние показатели в рядах динамики

Для получения обобщающих показателей динамики социально-экономических явлений определяются средние величины: средний уровень, средний абсолютный прирост, средний темп роста и прироста и пр.


Средний уровень ряда динамики характеризует типическую величину абсолютных уровней.


В интервальных рядах динамики средний уровень у определяется делением суммы уровней на их число n (формула 1):


(1)


В моментном ряду динамики с равноотстоящими датами времени средний уровень определяется по формуле 2:


(2)


В моментном ряду динамики с неравноотстоящими датами средний уровень определяется по формуле 3:


, (3)


где – уровни ряда динамики, сохранившиеся без изменения в течение промежутка времени .


Средний абсолютный прирост представляет собой обобщенную характеристику индивидуальных абсолютных приростов ряда динамики. Для определения среднего абсолютного прироста сумма цепных абсолютных приростов делится на их число n (формула 15):


(4)


Средний абсолютный прирост может определяться по абсолютным уровням ряда динамики. Для этого определяется разность между конечным и базисным уровнями изучаемого периода, которая делится на m – 1 субпериодов (формула 5):


(5)


Основываясь на взаимосвязи между цепными и базисными абсолютными приростами, показатель среднего абсолютного прироста можно определить по формуле 6:


(6)


Средний темп роста – обобщающая характеристика индивидуальных темпов роста ряда динамики . Для определения среднего темпа роста применяется формула 7:


(7)


где Тр1 , Тр2 , ... , Трn - индивидуальные (цепные) темпы роста (в коэффициентах), n -- число индивидуальных темпов роста.


Средний темп роста можно определить и по абсолютным уровням ряда динамики по формуле 8:


(8)


На основе взаимосвязи между цепными и базисными темпами роста средний темп роста можно определить по формуле 9:


(9)


Средний темп прироста можно определить на основе взаимосвязи между темпами роста и прироста. При наличии данных о средних темпах роста для получения средних темпов прироста используется зависимость, выраженная формулой 10:


(10)


(при выражении среднего темпа роста в коэффициентах)[2]


1.2. Проверка ряда на наличие тренда. Непосредственное выделение тренда


Изучение тренда включает в себя два основных этапа:


1) Ряд динамики проверяется на наличие тренда


2) Производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных показателей – результатов.


Проверка на наличие тренда
в ряду динамики может быть осуществлена по нескольким критериям.


1) Метод средних. Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два), для каждого из которых определяется средняя величина (). Выдвигается гипотеза о существенном различии средних. Если эта гипотеза принимается, то признается наличие тренда.


2) Фазочастотный критерий знаков первой разности (критерий Валлиса и Мура). Суть его заключается в следующем: наличие тренда в динамическом ряду утверждается в том случае, если этот ряд не содержит либо содержит в приемлемом количестве фазы – изменение знака разности первого порядка (абсолютного цепного прироста).


3) Критерий Кокса и Стюарта. Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае, когда число уровней ряда не делится на три, недостающие уровни надо добавить) и сравнивают между собой уровни первой и последней групп.


4) Метод серий. По этому способу каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов: например, если уровень ряда меньше медианного значения, то считается, что он имеет тип А, в противном случае – тип В. Теперь последовательность уровней выступает как последовательность типов. В образовавшейся последовательности типов определяется число серий (серия – любая последовательность элементов одинакового типа, с обоих сторон граничащая с элементами другого типа).


Если в ряду динамики общая тенденция к росту или снижению отсутствует, то количество серий является случайной величиной, распределенной приближенно по нормальному закону (для n > 10). Следовательно, если закономерности в изменениях уровней нет, то случайная величина R оказывается в доверительном интервале


.


Параметр t назначается в соответствии с принятым уровнем доверительной вероятности Р.


Среднее число серий вычисляется по формуле 11:


. (11)


Среднее квадратическое отклонение числа серий вычисляется по формуле 23:


. (12)


здесь n - число уровней ряда.


Выражение для доверительного интервала приобретает вид



Полученные границы доверительного интервала округляют до целых чисел, уменьшая нижнюю границу и увеличивая верхнюю.


Непосредственное выделение тренда
может быть произведено тремя методами.


1) Укрупнение интервалов. Ряд динамики разделяют на некоторое достаточно большое число равных интервалов. Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (одновременно уменьшается количество интервалов).


2) Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал может быть нечетным (3,5,7 и т.д. точек) или четным (2,4,6 и т.д. точек).


При нечетном сглаживании полученное среднее арифметическое значение закрепляют за серединой расчетного интервала, при четном это делать нельзя. Поэтому при обработке ряда четными интервалами их искусственно делают нечетными, для чего образуют ближайший больший нечетный интервал, но из крайних его уровней берут только 50%.


Недостаток методики сглаживания скользящими средними состоит в условности определения сглаженных уровней для точек в начале и конце ряда. Получают их специальными приемами – расчетом средней арифметической взвешенной. Так, при сглаживании по трем точкам выровненное значение в начале ряда рассчитывается по формуле 12:


. (12)


Для последней точки расчет симметричен.


При сглаживании по пяти точкам имеем такие уравнения (формулы 13):


(13)


Для последних двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках.


Формулы расчета по скользящей средней выглядят, в частности, следующим образом (формула 14):


для 3-членной . (14)


3) Аналитическое выравнивание. Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления. Развитие предстает перед исследователем как бы в зависимости только от течения времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющийся во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически. В результате приходят к трендовой модели, выраженной формулой 15:


, (15)


где f(t) – уровень, определяемый тенденцией развития;


- случайное и циклическое отклонение от тенденции.


Целью аналитического выравнивания динамического ряда является определение аналитической или графической зависимости f(t) . На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции. Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.


Чаще всего при выравнивании используются следующий зависимости:


линейная ;


параболическая ;


экспоненциальная


или ).


1) Линейная зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные и цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.


2) Параболическая зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.


3) Экспоненциальные зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, - устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т.д.).


Оценка параметров () осуществляется следующими методами:


1) Методом избранных точек,


2) Методом наименьших расстояний,


3) Методом наименьших квадратов (МНК)


В большинстве расчетов используется метод наименьших квадратов, который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных:


.


Для линейной зависимости () параметр обычно интерпретации не имеет, но иногда его рассматривают, как обобщенный начальный уровень ряда; - сила связи, т. е. параметр, показывающий, насколько изменится результат при изменении времени на единицу . Таким образом, можно представить как постоянный теоретический абсолютный прирост.


Построив уравнение регрессии, проводят оценку его надежности. Это делается посредством критерия Фишера (F). Фактический уровень (), вычисленный по формуле 28, сравнивается с теоретическим (табличным) значением:


, (16)


где k - число параметров функции, описывающей тенденцию;


n - число уровней ряда;


Остальные необходимые показатели вычисляются по формулам 17–19:


(17)


(18)


(19)


сравнивается с при степенях свободы и уровне значимости a (обычно a = 0,05). Если >,

то уравнение регрессии значимо, то есть построенная модель адекватна фактической временной тенденции.[3]


1.3. Анализ сезонных колебаний

Уровень сезонности оценивается с помощью:


1) индексов сезонности;


2) гармонического анализа.


Индексы сезонности
показывают, во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня, вычисляемого по уравнению тенденции f(t). При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет. Для каждого месяца (квартала) получают обобщенный индекс сезонности как среднюю арифметическую из одноименных индексов каждого года. Индексы сезонности – это, по либо уровень существу, относительные величины координации, когда за базу сравнения принят либо средний уровень ряда, либо уровень тенденции. Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции.


Если тренда нет или он незначителен, то для каждого месяца (квартала) индекс рассчитывается по формуле 20:


(20)


где - уровень показателя за месяц (квартал) t;


- общий уровень показателя.


Как отмечалось выше, для обеспечения устойчивости показателей можно взять больший промежуток времени. В этом случае расчет производится по формулам 21:


(21)


где - средний уровень показателя по одноименным месяцам за ряд лет;


Т - число лет.


При наличии тренда индекс сезонности определяется на основе методов , исключающих влияние тенденции . Порядок расчета следующий:


1) для каждого уровня определяют выравненные значения по тренду f(t);


2) рассчитывают отношения ;


3) при необходимости находят среднее из этих отношений для одноименных месяцев (кварталов) по формуле 22:


,(Т -- число лет). (22)


Другим методом изучения уровня сезонности является гармонический анализ
. Его выполняют, представляя временной ряд как совокупность гармонических колебательных процессов.


Для каждой точки этого ряда справедливо выражение, записанное в виде формулы 23:


(23)


при t = 1, 2, 3, ... , Т.


Здесь - фактический уровень ряда в момент (интервал) времени t;


f(t) – выровненный уровень ряда в тот же момент (интервал) t


- параметры колебательного процесса (гармоники) с номером n, в совокупности оценивающие размах (амплитуду) отклонения от общей тенденции и сдвиг колебаний относительно начальной точки.


Общее число колебательных процессов, которые можно выделить из ряда, состоящего из Т уровней, равно Т/2. Обычно ограничиваются меньшим числом наиболее важных гармоник. Параметры гармоники с номером n определяются по формулам 24-26:


1) ; (24)


2) (25)


при n=1,2,...,(T/2 – 1);


3) (26)


1.4. Анализ взаимосвязанных рядов динамики


В простейших случаях для характеристики взаимосвязи двух или более рядов их приводят к общему основанию, для чего берут в качестве базисных уровни за один и тот же период и исчисляют коэффициенты опережения по темпам роста или прироста.


Коэффициенты опережения по темпам роста – это отношение темпов роста (цепных или базисных) одного ряда к соответствующим по времени темпам роста (также цепным или базисным) другого ряда. Аналогично находятся и коэффициенты опережения по темпам прироста.


Анализ взаимосвязанных рядов представляет наибольшую сложность при изучении временных последовательностей. Однако нередко совпадение общих тенденций развития может быть вызвано не взаимной связью , а прочими неучитываемыми факторами . Поэтому в сопоставляемых рядах предварительно следует избавиться от влияния существующих в них тенденций , а после этого провести анализ взаимосвязи по отклонениям от тренда . Исследование включает проверку рядов динамики (отклонений) на автокорреляцию и установление связи между признаками.


Под автокорреляцией понимается зависимость последующих уровней ряда от предыдущих . Проверка на наличие автокорреляции осуществляется по критерию Дарбина – Уотсона (формула 27) :


, (27)


где - отклонение фактического уровня ряда в точке t от теоретического (выравненного) значения.


При К = 0 имеется полная положительная автокорреляция , при К = 2 автокорреляция отсутствует, при К = 4 – полная отрицательная автокорреляция. Прежде чем оценивать взаимосвязь, автокорреляцию необходимо исключить . Это можно сделать тремя способами .


1. Исключение тренда с авторегрессией. Для каждого из взаимосвязанных рядов динамики Х и У получают уравнение тренда (формулы 28):


(28)


Далее выполняют переход к новым рядам динамики, построенным из отклонений от трендов , рассчитанным по формулам 29:


(29)


Для последовательностей выполняется проверка на автокорреляцию по критерию Дарбина – Уотсона. Если значение К близко к 2 , то данный ряд отклонений оставляют без изменений. Если же К заметно отличается от 2 , то по такому ряду находят параметры уравнения авторегрессии по формулам 30:


(30)


Более полные уравнения авторегрессии можно получить на основе анализа автокорреляционной функции, когда определяются число параметров () и соответствующие этим параметрам величины шагов .


Далее по формуле 31 подсчитываются новые остатки:


(t = 1, ... , Т) (31)


и , по формуле 32, коэффициент корреляции признаков:


. (32)


2. Корреляция первых разностей . От исходных рядов динамики Х и У переходят к новым , построенным по первым разностям (формулы 33):


(33)


По DХ и DУ определяют по формуле 35 направление и силу связи в регрессии:


(35)


3. Включение времени в уравнение связи: .


В простейших случаях уравнение выглядит следующим образом (формула 36):


(36)


Из перечисленных методов исключения автокорреляции наиболее простым является второй, однако более эффективен первый.


2.
Статистико-детерминированный характер социально-экономических явлений и виды связей между ними


Для количественной оценки динамики социально – экономических явлений применяются статистические показатели: абсолютные темпы роста и прироста, темпы наращивания и т. д.


В основе расчета показателей рядов динамики лежит сравнение его уровней. В зависимости от применяемого способа сопоставления показатели динамики могут вычисляться на постоянной и переменной базах сравнения .


Для расчета показателей динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. Исчисляемые при этом показатели называются базисными . Для расчета показателей динамики на переменной базе каждый последующий уровень ряда сравнивается с предыдущим . Такие показатели называются цепными .


Способы расчета показателей динамики рассмотрим на данных товарооборота магазина в 1987 – 1991 гг. (см. таб. 2).


Абсолютный прирост – важнейший статистический показатель динамики, определяется в разностном соотношении , сопоставлении двух уровней ряда динамики в единицах измерения исходной информации . Бывает цепной и базисный :


1) Базисный абсолютный прирост определяется как разность между сравниваемым уровнем и уровнем , принятым за постоянную базу сравнения(формула 1):


(1)


2) Цепной абсолютный прирост – разность между сравниваемым уровнем и уровнем, который ему предшествует, (формула 2):


(2)


Абсолютный прирост может иметь и отрицательный знак, показывающий , насколько уровень изучаемого периода ниже базисного.


Между базисными и абсолютными приростами существует связь: сумма цепных абсолютных приростов равна базисному абсолютному приросту последнего ряда динамики (формула 3):


(3)


Ускорение – разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период равной длительности (формула 4):


(4)


Показатель абсолютного ускорения применяется только в цепном варианте, но не в базисном. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.


Темп роста – распространенный статистический показатель динамики. Он характеризует отношение двух уровней ряда и может выражаться в виде коэффициента или в процентах.


1) Базисные темпы роста исчисляются делением сравниваемого уровня на уровень, принятый за постоянную базу сравнения, по формуле 5:


(5)


2) Цепные темпы роста исчисляются делением сравниваемого уровня на предыдущий уровень (формула 6):


(6)


Если темп роста больше единицы (или 100%), то это показывает на увеличение изучаемого уровня по сравнению с базисным. Темп роста, равный единице (или 100%), показывает, что уровень изучаемого периода по сравнению с базисным не изменился. Темп роста меньше единицы (или 100%) показывает на уменьшение уровня изучаемого периода по сравнению с базисным. Темп роста всегда имеет положительный знак.


Между базисными и цепными темпами роста имеется взаимосвязь: произведение последовательных цепных темпов роста равно базисному темпу роста, а частное от деления последующего базисного темпа роста на предыдущий равно соответствующему цепному темпу роста.


Темпы прироста характеризуют абсолютный прирост в относительных величинах. Исчисленный в процентах темп прироста показывает, на сколько процентов изменился сравниваемый уровень по отношению к уровню, принятому за базу сравнения.


1) Базисный темп прироста вычисляется делением сравниваемого базисного абсолютного прироста на уровень, принятый за постоянную базу сравнения (формула 7):


(7)


2) Цепной темп прироста - это отношение сравниваемого цепного абсолютного прироста к предыдущему уровню (формула 8):


= : (8)


Между показателями темпа роста и темпа прироста существует взаимосвязь , выраженная формулами 9 и 10:


(%) = (%) - 100 (9)


(при выражении темпа роста в процентах).


= - 1 (10)


(при выражении темпа роста в коэффициентах).


Формулы (7) и (8) используют для нахождения темпов прироста по темпам роста.


Важным статистическим показателем динамики социально – экономических процессов является темп наращивания, который в условиях интенсификации экономики измеряет наращивание во времени экономического потенциала.


Вычисляются темпы наращивания Тн делением цепных абсолютных приростов на уровень, принятый за постоянную базу сравнения, по формуле 11:


(11)


Заключение

Всякий ряд динамики теоретически может быть представлен в виде составляющих:


1) тренд – основная тенденция развития динамического ряда (к увеличению или снижению его уровней);


2) циклические (периодические колебания, в том числе сезонные);


3) случайные колебания.


С помощью рядов динамики изучение закономерностей развития социально – экономических явлений осуществляется в следующих основных направлениях:


1) Характеристика уровней развития изучаемых явлений во времени;


2) Измерение динамики изучаемых явлений посредством системы статистических показателей;


3) Выявление и количественная оценка основной тенденции развития (тренда);


4) Изучение периодических колебаний;


5) Экстраполяция и прогнозирование.


Под взаимосвязанными рядами динамики понимают такие, в которых уровни одного ряда в какой – то степени определяют уровни другого. Например, ряд, отражающий внесение удобрений на 1 га, связан с временным рядом урожайности, ряд уровней средней выработки связан с рядом динамики средней заработной платы, ряд среднегодового поголовья молочного стада определяет годовые уровни надоев молока и т.д.[4]


Список использованных источников

1. Елисеева И.И. Общая теория статистики.


2. Теория статистики. Учебник./Под ред. Шмойлова Р. А. 3-е изд., перераб.-М.: Финансы и статистика, 2002


3. Гусаров В.М. Теория статистики. – М.: Аудит, 2001. – 248 с.


4. Кильдишев Г.С., Овсиенко В.Е., Рабинович П.М., Рябушкин Т.В. Общая теория статистики. – М.: Статистика, 2001. – 423 с.


5. Практикум по статистике: Учебное пособие для вузов (Под ред. В.М. Симчеры). ВЗФЭИ. – М.: ЗАО «Финстатинформ», 2001. – 259 с.


[1]
Теория статистики. Учебник./Под ред. Шмойлова Р. А. 3-е изд., перераб.-М.: Финансы и статистика, 2002


[2]
Гусаров В.М. Теория статистики. – М.: Аудит, 2001. – 248 с.


[3]
Кильдишев Г.С., Овсиенко В.Е., Рабинович П.М., Рябушкин Т.В. Общая теория статистики. – М.: Статистика, 2001. – 423 с.


[4]
Практикум по статистике: Учебное пособие для вузов (Под ред. В.М. Симчеры). ВЗФЭИ, 2001. – 259 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Методы анализа основной тенденции развития в рядах динамики

Слов:3348
Символов:26874
Размер:52.49 Кб.