РефератыЭкономикаВыВычисление статистических показателей с помощью пакета "Excel"

Вычисление статистических показателей с помощью пакета "Excel"

Министерство образования и науки Украины


кафедра прикладной математики


КОНТРОЛЬНАЯ РАБОТА


по дисциплине "Эконометрия"


Харьков, 2008 г.


Задание № 1.

По заданным статистическим данным с помощью пакета "Excel":


построить диаграмму рассеивания и подтвердить гипотезу о линейной зависимости


Y = b0
+ b1
* X;


определить параметры b0
и b1
;


вычислить коэффициенты детерминации R2
и коэффициент корреляции r;


сделать прогноз Y в указанной точке Xр
.


Решение:


1. Набираем исходные данные в таблицу 1:


Таблица 1


















































X


Y


3.11


10.65


3.15


11.87


3.85


12.69


4.84


13.40


4.62


15.12


4.87


16.03


6.09


16.29


7.06


18.07


6.23


18.40


6.83


19.53


8.01


20.48


8.26


21.72


9.37


23.17


9.02


23.57


9.76


24.41



2. На основе данных таблицы1 строим диаграмму рассеивания.


Визуально можно предположить, что между данными существует линейная зависимость, то есть их можно аппроксимировать линией.


Y = b0
+ b1
X


3. Найдем параметры b0
и b1
.


Опишем полученный результат:


в первой строке находятся оценки параметров регрессии b1
, b0
;


во второй строке находятся средние квадратичные отклонения sb1
, sb0
.


в третьей строке в первой ячейке находится коэффициент детерминации R2
, а во второй ячейке оценка среднего квадратичного отклонения показателя sе
.


в четвертой строке в первой ячейке находится расчетное значение F - статистики, во второй ячейке находится k - число степеней свободы;


в пятой строке в первой ячейке находится сумма квадратов отклонений расчетных значений показателя от его среднего значения, а во второй ячейке - сумма квадратов остатков.


Полученные результаты заносим в таблицу 2.


Таблица 2.



















Результаты расчетов


1,958977


5,277335


0,10027


0,671183


0,967063


0,836194


381,6981


13


266,8909


9,089857



По данным таблицы 2 можем записать модель:


Y = 5,277335 + 1,958977Х


Коэффициент детерминации R2
= 0,967063 - близок к 1, следовательно, модель адекватна.


4. Найдем прогноз в заданной точке Xp
= 10,1. Для этого подставим Xp
в модель. Получим


Yp
= 5,277335 + 1,958977 * 10,1 = 25,063.


Все полученные результаты запишем в таблицу 3.


Таблица 3.





















































X


Y


3.11


10.65


3.15


11.87


3.85


12.69


4.84


13.40


4.62


15.12


4.87


16.03


6.09


16.29


7.06


18.07


6.23


18.40


6.83


19.53


8.01


20.48


8.26


21.72


9.37


23.17


9.02


23.57


9.76


24.41


10,1


25,063






5. Диаграмма примет вид:


6. Вычислим коэффициент корреляции r. В результате расчета получим коэффициент корреляции r = 0,9834.


r = = √0,967063 = 0.9834


Задание № 2.

По заданным статистическим данным с помощью пакета "Excel":


построить диаграмму рассеивания и подтвердить гипотезу о криволинейной связи между Х и Y;


произвести линеаризацию;


определить параметры a и b;


сделать прогноз в указанной точке;


Решение:


Набираем исходные данные в таблицу 1:


Таблица 1.



































X


Y


1,03


0,44


1,63


0,33


2,16


0,25


2,71


0, 20


3,26


0,16


3,77


0,12


4,35


0,10


4,91


0,07


5,50


0,05


6,01


0,04



На основе данных таблицы 1 строим диаграмму рассеивания.






beax







Визуально можно предположить, что зависимость не линейная. Исходная модель имеет вид Y = beax
. Делаем линеаризующую подстановку: V = Y, U = lnX.


Полученные данные заносим в таблицу 2.


Таблица 2.

























































X


Y


V


U


1,03


0,44


0,44


0.02956


1,63


0,33


0,33


0.48858


2,16


0,25


0,25


0.77011


2,71


0, 20


0, 20


0.99695


3,26


0,16


0,16


1.18173


3,77


0,12


0,12


1.32708


4,35


0,10


0,10


1.47018


4,91


0,07


0,07


1.59127


5,50


0,05


0,05


1.70475


6,01


0,04


0,04


1.79342



Строим корреляционное поле:





Визуально можно предположить, что между данными существует линейная зависимость, то есть их можно аппроксимировать линией


Y = b1
X + b0


Диаграмма примет вид:


3. Найдем параметры b0
и b1
.





Полученные результаты заносим в таблицу 3.


Таблица 3.



















Результаты расчета


-0,2297


0,436791


0,005542


0,006967


0,995364


0,009454


1717,627


8


0,153525


0,000715



Параметры модели b0
= 0,436791, b1
= - 0,2297. Коэффициент детерминации R2
= 0,995364 - близок к 1, следовательно, модель адекватна.


Находим параметры исходной нелинейной модели:


а = еb1
= e-0,2297
= 0,79477


b = eb
0
= e0,436791
= 1,54773


Исходная нелинейная модель примет вид: Y = 1,54773e0,79477
X


5. Вычислим прогнозируемое Yp
в то Xp
= 6,5:


Yp
= 1,54773e 0,79477*6,5
= 271,18


Задание № 3

По заданным статистическим данным с помощью пакета "Excel":


построить корреляционную матрицу;


по корреляционной матрице проверить факторы X1
, X2
, X3
на мультиколинеарность, и, если она есть, устранить ее, исключив один из факторов;


проверить гипотезу о наличии линейной связи между показателем Y и оставшимися факторами;


определить параметры линейной связи;


вычислить коэффициент детерминации;


сделать прогноз в указанной точке.


Решение:


Набираем исходные данные в таблицу 1:


Таблица 1.



























































































X1


X2


X3


Y


2,61


10,35


6,61


7,72


4,89


11,78


7,94


10,77


6,24


14,09


8,62


11,86


9,01


14,64


8,83


13,73


10,79


15,17


10,68


17,04


13,53


17,42


10,66


18,8


16,32


19,24


11,78


21,28


18,6


20,6


13,78


23,7


21,48


22,

04


13,74


27,63


23,02


22,69


14,56


27,45


25,17


22,65


14,09


29,71


26,4


24,83


16,66


32,8


27,62


24,82


15,12


31,81


30, 19


25,17


15,42


25,22


32,25


26,22


15,77


37,26


33,76


27,72


17,4


39,2


35,97


29,15


17,77



2. По исходным данным строим корреляционную матрицу (таблица 2):


Таблица 2.































X1


X2


X3


Y


X1


1


0,9921671


0,9741853


0,9656738


X2


0,9921671


1


0,9864174


0,9700431


X3


0,9741853


0,9864174


1


0,96548


Y


0,9656738


0,9700431


0,96548


1



Визуально можно предположить, что между данными X2
и X3
и X1
и X3
есть зависимость, значит, фактор X3
исключаем из модели, так как между ним и Y связь меньше, чем между Y и X2
(0,96548 < 0,9700431). Модель будет иметь вид:


Y = b0
+ b1
X1
+ b2
X2
;


3. Строим график зависимости между X1
, X2
и Y: визуально можно предположить, что зависимость между X1
, X2
и Y линейная, коэффициент детерминации R2
= 0,9416518 - близок к 1, следовательно, модель адекватна.


4. Найдем параметры b0
, b1
и b2
. Полученные результаты заносим в таблицу 3:


Таблица 3.
























Результаты расчета


1,344552


0, 1954415


-7,0318824


0,9429349


0,5065553


9,4389862


0,9416518


2,4854573


---


104,90023


13


---


1296,0419


80,307473


---



5. По данным таблицы можем записать модель:


Y = - 7,0318824 + 0, 1954415X1
+ 1,344552X2
;


Коэффициент детерминации R2
= 0,9416518 - близок к 1, следовательно, модель адекватна.


6. Найдем прогноз в заданной точке. Для этого достаточно подставить Xp
в модель.


Yp
= - 7,0318824 + 0, 1954415 * 35,97 + 1,344552 * 29,15 = 39, 19


Задание №4.

Предположим, что между показателем Y - объем выпущенной продукции и факторами X1
- трудовые затраты, X2
- объем основных фондов, существует зависимость типа


Y = AX × X


(производная функция Кобба-Дугласа). По приведенным статистическим данным с помощью пакета "Excel":


определить коэффициенты А, б1
, б 2
;


вычислить прогноз в указанной точке;


определить коэффициент эластичности по каждому из факторов в точке прогноза.


Решение:


1. Набираем исходные данные в таблицу 1:


Таблица 1.






























































X1


X2


Y


54,2


33,6


75,4


56,8


39,1


85,4


59,7


40,4


88,5


61,4


42,9


92,7


63,5


44


95,2


64,7


46,8


99,5


64,8


51,9


106,2


67,4


56,3


113,2


69


56,6


114,5


70,7


58,7


118,1


71,3


59,6


118,7


73,7


62,4


123


75,9


63,9


127,4


77,5


67,2


?



Так как модель не линейная, перейдем к линейной с помощью замены:


V = lnY, U1
= lnX1
, U2
= lnX2
, b0
= lnA, b1
= б1


получим линейную модель:


V = b0
+ b1
U1
+ b2
U2


Полученные результаты заносим в таблицу 2.


Таблица 2.









































































































X1


X2


Y


V


U1


U2


54,2


33,6


75,4


4,3228


3,9927


3,5145


56,8


39,1


85,4


4,4473


4,0395


3,6661


59,7


40,4


88,5


4,4830


4,0893


3,6988


61,4


42,9


92,7


4,5294


4,1174


3,7589


63,5


44


95,2


4,5560


4,1510


3,7842


64,7


46,8


99,5


4,6002


4,1698


3,8459


64,8


51,9


106,2


4,6653


4,1713


3,9493


67,4


56,3


113,2


4,7292


4,2106


4,0307


69


56,6


114,5


4,74057


4,2341


4,0360


70,7


58,7


118,1


4,7715


4,2584


4,0724


71,3


59,6


118,7


4,7766


4,2669


4,0877


73,7


62,4


123


4,8122


4,3000


4,1336


75,9


63,9


127,4


4,8473


4,3294


4,1573


77,5


67,2


4,3503


4, 2077



2. Найдем параметры b0
, b1
и b2
. Полученные результаты заносим в таблицу 3:


Таблица 3.
























Результаты расчета


1,296429


0,5234561


4,655595


0,09192


0,1394437


4,694014


0,998782


0,6193063


---


4101,677


10


---


3146,317


3,8354032


---



3. По данным таблицы можем записать модель:


V = 4,6556 + 0,5235U1
+ 1,2964U2


4. Найдем параметры исходной модели:


А = ebo
= e4.655595
= 105.1723; a1
= b1
= 0,5234561; a2
= b2
= 1,296429.


Исходная модель имеет вид:


Y = 105.1723 * X1
0.5235
* X2
1.2964


5. Найдем прогноз в заданной точке:


Y = 105.1723 * 77.50.5235
* 67.21.2964
= 239856.97;


Вычислим коэффициент эластичности, который показывает, на сколько% увеличится (если Ех
> 0) или уменьшится (если Ех
< 0) показатель Y, если фактор X изменится на 1%.


EX1
= (X1
* ∂y) / (y * ∂x1
) = (X1/
(105.1723 * X1
0.5235
* X2
1.2964
)) * ( (∂ (105.1723 * X1
0.5235
* X2
1.2964
)) / ∂x1
) = (X1/
(105.1723 * X1
0.5235
* X2
1.2964
)) * (105.1723 * X2
1.2964
* (∂ (X1
0.5235
)) / ∂x1
) = (X1/
X1
0.5
) * 0.5X1
-0.5
= 0.5X1
1-0.5-0.5
= 0.5X1
0
= 0.5


Вывод

Для модели Кобба-Дугласа коэффициент эластичности - это показатели степени a1
и a2
, при чем a1
= 0.5235 - коэффициент эластичности по трудозатратам, а a2
= 1.2964 - коэффициент эластичности по объему основных фондов.


Литература

1. Лук`яненко І.Г., Краснікова Л.І. Економетрика. Підручник. - К. Товариство “Знання”. - 1998. - 494 с.


2. Грубер Й. Эконометрия: учебное пособие для студентов экономических специальностей. - К. 1996. - 400 с.


3. Методические указания и контрольные задания по дисциплине "Эконометрия" для студентов экономического направления заочного факультета. / Сост. В.Н. Черномаз, Т.В. Шевцова, - Харьков: 2006 г. - 32 с.


4. Конспект лекций по курсу "Эконометрия"

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Вычисление статистических показателей с помощью пакета "Excel"

Слов:2759
Символов:27351
Размер:53.42 Кб.